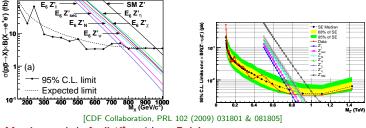
Recent developments of FEYNRULES Investigations of (non-)minimal supersymmetric models at the LHC.

Benjamin Fuks (IPHC Strasbourg / Université de Strasbourg)

In collaboration with N. Christensen, C. Duhr + Monte Carlo collaborators $+ \mbox{ CMS Strasbourg + master students}.$

CMS Physics France 2010 meeting @ IRFU Saclay April 1, 2010

Outline


The FEYNRULES approach for new physics investigations.

2 Ongoing phenomenological analyses at the IPHC Strasbourg.

- Model database & validation procedure.
- The Minimal Supersymmetric Standard Model.
- The Minimal Supersymmetric Standard Model with *R*-parity violation.
- The Next-to-Minimal Supersymmetric Standard Model

To get started: a (maybe not so) funny story.

- Mandatory: it is April 1st and I am Belgian.
- Why should theorists and experimentalists talk [more] together?
- One simple [counter-]example.
 - * Two PRL papers on Z' searches from CDF [even the same issue of PRL].
 - * Di-electron channel (left panel) and di-muon channel (right panel).
 - * Different theoretical predictions for the same benchmark: a factor of 2!!!
 - * Two different definitions of the signal:

$$\circ \ \sigma[p\bar{p} \to Z' \to \mu^+\mu^-] - \sigma[p\bar{p} \to \gamma, Z \to \mu^+\mu^-].$$

$$\circ \ \sigma[p\bar{p} \to \gamma, Z, Z' \to e^+e^-] - \sigma[p\bar{p} \to \gamma, Z \to e^+e^-].$$

(Non-)minimal SUSY models at the LHC

Monte Carlo tools and discoveries at the LHC.

- Establishing of an excess over the SM backgrounds [Difficult task].
 - * Use of Monte Carlo generators.
 - ♦ Reliable predictions for shapes.
 - ♦ Can be **tuned** (to some extent) to the data.
 - ♦ Can be used to describe the SM backgrounds.
 - * Warning: for some signals, accurate predictions are required.
- Confirmation of the excess.
 - * Model building activities: bottom-up approach, top-down approach.
 - * Implementation of the new models in the Monte Carlo tools.
- Clarification of the new physics.
 - * Measurement of the parameters.
 - * Use of precision predictions (e.g., NLO MC generators, resummation, ...).
 - * Sophistication of the analyses ⇔ new physics and detector knowledge.

Monte Carlo tools play a key role!

(Non-)minimal SUSY models at the LHC

Monte Carlo tools for BSM physics.

- New physics theories: a lot of theories, based on different ideas, in evolution.
- Implementation in Monte Carlo tools.
 - * A model \Leftrightarrow particles, parameters and vertices (\equiv Feynman rules).
 - ◊ The Feynman rules have to be derived.
 - ♦ Each rule has to be translated in a programming language.
 - * Tedious, time-consuming, error prone task.
 - * We need to **iterate** for each considered model.
 - * We need to **iterate** for each considered MC tool.
- Validation.
 - * **Comparison** with existing analytical and numerical results.
 - * Non-systematic and partial (set of available results, conventions,...).
 - * No dedicated framework.
- Distribution.
 - * Many models remain private (some exceptions, e.g., the MSSM).
 - * Use of many home-made and hacked versions of existing models. ⇒ Issues for validation, traceability and maintenance.

An efficient framework is needed.

(Non-)minimal SUSY models at the LHC

Benjamin Fuks - CMS Physics France 2010 @ IRFU Saclay - 01.04.2010 - 5

First steps towards a full automatization (1).

• Starting from physical quantities.

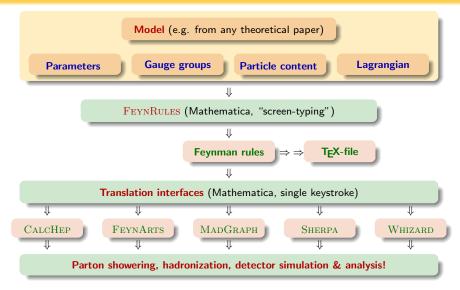
- * All the physics is included in the model Lagrangian.
 - ♦ Remark: the Lagrangian is **absent in the MC implementation**.
- * Traceability.
 - ♦ Univocal definition of a model.
 - $\diamond~$ No dependance on the conventions used by the MC tools.
- * Flexibility.
 - $\diamond~$ A modification of a model \equiv change in the Lagrangian.
- The LANHEP package [Semenov (1998)].
 - * In the context of CALCHEP/COMPHEP.

First steps towards a full automatization (2).

Aims:

- * To go **beyond** this scheme.
- * To create a general environment to implement any Lagrangian-based model.
- * To interface several Monte Carlo generators.
- * Robustness, easy validation and maintenance.
- * Easy integration in experimental software frameworks.
- * Allowing for both top-down and bottom-up approaches.

Main features of FEYNRULES.


[Christensen, Duhr (2009); Christensen, Duhr, BenjF (in prep.)]

- The working environment is MATHEMATICA.
 - * Flexibility for symbolic manipulations.
 - ◊ **Routines** to check a Lagrangian.
 - ۵ ...
 - * Various built-in features.
 - ♦ Matrix diagonalization.
 - ♦ Pattern recognition functions.
 - ٥ ...
 - * Additional functions can easily be added by users.
 - ♦ Model spectrum calculator.
 - ٥ ...

• Interfaces to Monte Carlo codes.

- * The philosophy, architecture and aim of the codes can be different.
- * Maximization of probability to have (at least) one (working) MC per model.
- * $\rm FeynRules$ translates models in terms of files readable by the MC tools.

(Non-)minimal SUSY models at the LHC

Benjamin Fuks - CMS Physics France 2010 @ IRFU Saclay - 01.04.2010 - 9

Scope and limitations.

• Supported fields.

- * Scalar fields.
- * Dirac and Majorana fermions [Weyl fermions: in validation].
- * Vector and ghost fields.
- * No spin 3/2.
- * Spin two fields.
- * Superfields [being implemented].

• The model must fulfil basic quantum field theory requirements.

- * Lorentz invariance.
- * Gauge invariance.
- * Higher-dimensional operators are supported [but not at the MC level].

Current developments.

[BenjF et al., FR-2010 Workshop on automatization for BSM physics - proceeding (in prep.)].

- Quantum field theory functionalities.
 - * Superfields.
 - * Automatized mass matrix diagonalization from the Lagrangian.
 - * Automatized treatment of higher-order operators.
- New interface between FEYNRULES and the Monte Carlo tools.
 - * PYTHON interface (HERWIG, MADGRAPH).
 - * Automatized generation of the HeLAS routines .
 - * New FEYNARTS interface.
- Development of a web-based FEYNRULES BSM model database.

Outline

The FEYNRULES approach for new physics investigations.

2 Ongoing phenomenological analyses at the IPHC Strasbourg.

- Model database & validation procedure.
- The Minimal Supersymmetric Standard Model.
- The Minimal Supersymmetric Standard Model with *R*-parity violation.
- The Next-to-Minimal Supersymmetric Standard Model

3 Summary - outlook.

Phenomenology

Summary - outlook 00

Validation procedure - the four-star system (LH2009)

On the road to the FEYNRULES validation system (at Les Houches '09)

Summary - outlook

Validation procedure - the four-star system (LH2009)

On the road to the FEYNRULES validation system (at Les Houches '09)

- considering of the apple parameters of the trial.

Validation procedure - the four-star system [LH 2009].

- Any model can be put on the FEYNRULES web-based model database.
- First star [DOC]:
 - * Documentation: description, references, ...
 - * Complete model or theory fragment.
 - * Consistency of the input parameters.

• Second star [THEO]:

- * Basic sanity checks: hermiticity, signs, ...
- * Comparison with literature.
- * Use of FEYNARTS/FORMCALC possible.
- Third star [1MC]:
 - * The MC is producing reliable results for basic processes.
 - * Reproduction of the SM results for sectors independent on new physics.
 - * Gauge invariance, behaviour at high energy.
 - * Numerical tables for cross sections (future references).
- Fourth star [nMC]:
 - * Reproduce the [1MC] step for more than one MC generator.
 - * Comparison tables for future references.

Example: validation of the MSSM.

CALCHEP, MADGRAPH, SHERPA and WHIZARD results.

Process MO-FR MO-FR MO-FR EH-FR EH-FR EH-FR EH-FR WO-FR WO-FR Case, Casu-Seta, Fast 7, 7975 / 10 ⁻⁷ 7, 7965 / 10 ⁻⁷ 7, 7973 / 10 ⁻⁷ 7, 7976 / 10 ⁻⁷ 7, 4973 / 10 ⁻⁷ <td< th=""><th>Comparison</th></td<>	Comparison
nam, cam, scam, s	δ = 0.02682 %
cma: <	δ = 0.06725 %
Case, case-yee, yee 1,71188,10 ⁻² 1,7126,10 ⁻²	δ = 0.2979 %
$ \begin{array}{c} cars, cars, vars, var, var, var, vars, vars$	δ = 0.2522 %
tan, tan, yet, yet, 5,22462,10 ¹ 5,2247,11 ⁰ 5,2247,11 ⁰ 5,2247,11 ¹ 5,2247,11 ¹ 5,2247,11 ⁰ 1,247,11 ⁰	δ = 0.1325 %
$ \begin{array}{c} \textbf{cus}, \textbf{cus}$	$\delta = 0.08809$ %
Case, same-sc.r. 1.20337×10 ⁻¹ 1.20357×10 ⁻¹ 1.20355×10 ⁻¹ 1.20357×10 ⁻¹ 1.203	δ = 0,09047 %
$ \begin{array}{c} \textbf{tau}, \textbf{tau}$	δ = 0.03159 %
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\delta = 0.1063$ %
tau.cu.>w. H 1.0824 1.08701 1.0826 1.9836 1.9836 1.08761 1.98761 tau.su.>sci. 1.08270 1.08212010 ⁻¹ 1.092101 ⁻¹⁰ 1.0925710 ⁻¹¹ 0.0925710 ⁻¹¹ 0.0925710 ⁻¹¹ 0.0925710 ⁻¹¹ 0.0925710 ⁻¹¹ 0.0925710 ⁻¹¹ 0.0925710 ⁻¹¹ 0.0957710 ⁻¹¹ 0.09	δ = 0.1624 %
$ \begin{array}{c} \textbf{cau, cau-sc. a} & 5.2268 \times 10^{-1} & 5.2566 \times 10^{-1} & 5.2666 \times 10^{-1} & 5.26164 \times 10^{-1} & 5.26164 \times 10^{-1} & 5.2994 \times 10^{-1} & 5.$	δ = 0.2991 %
$ \begin{array}{c} \textbf{cus}, \textbf{cus}$	δ = 0.3202 %
tau+,tau->816+,816-1.08456×10 ⁻¹ 1.08482×10 ⁻¹ 1.0844×10 ⁻¹ 1.08466×10 ⁻¹ 1.08464×10 ⁻¹ 1.08462×10 ⁻¹ 1.08465×10 ⁻¹ tau+,tau->811+,816-4.331×10 ⁻² 4.32897×10 ⁻² 4.3292×10 ⁻² 4.3295×10 ⁻² 4.32994×10 ⁻² 4.32997×10 ⁻² 4.3295×10 ⁻²	δ = 0.1647 %
tau+,tau->616+,s16-1.08456×10 ⁻¹ 1.08482×10 ⁻¹ 1.0844×10 ⁻¹ 1.08465×10 ⁻¹ 1.08464×10 ⁻¹ 1.08462×10 ⁻¹ 1.08465×10 ⁻¹ tau+,tau->511+,s16-4.331×10 ⁻² 4.32897×10 ⁻² 4.3292×10 ⁻² 4.32956×10 ⁻² 4.32954×10 ⁻² 4.32977×10 ⁻² 4.3259×10 ⁻²	δ = 0.04709 %
	δ = 0.03828 %
Tan, tan-bart art & 90050-10 ⁻¹ & 90007-10 ⁻¹ & 9005-10 ⁻¹ & 9008-10 ⁻¹ & 9008-10 ⁻¹ & 90122-10 ⁻¹ & 90142-10 ⁻¹	δ = 0.08351 %
	δ = 0.01897 %
tau+,tau->n1,n1 7.52127×10 ⁻² 7.52249×10 ⁻² 7.5229×10 ⁻² 7.52178×10 ⁻² 7.52178×10 ⁻² 7.52232×10 ⁻² 7.52236×10 ⁻²	δ = 0.02161 %
tau+,tau->n1,n2 2.56445×10 ⁻² 2.56203×10 ⁻² 2.5624×10 ⁻² 2.56212×10 ⁻² 2.56212×10 ⁻² 2.56206×10 ⁻² 2.56215×10 ⁻²	δ = 0.09431 %
tau+,tau->n1,n3 3.10904×10 ⁻³ 3.1058×10 ⁻³ 3.1067×10 ⁻³ 3.10674×10 ⁻³ 3.10674×10 ⁻³ 3.10725×10 ⁻³ 3.08907×10 ⁻³	δ = 0.6442 %
tau+,tau->n1,n4 4.61264×10 ⁻³ 4.61504×10 ⁻³ 4.6164×10 ⁻³ 4.61617×10 ⁻³ 4.61617×10 ⁻³ 4.6163×10 ⁻³ 4.59955×10 ⁻³	δ = 0.3657 %
tau+,tau->n2,n2 4.39512×10 ⁻² 4.39575×10 ⁻² 4.3953×10 ⁻² 4.39454×10 ⁻² 4.39454×10 ⁻² 4.39481×10 ⁻² 4.39481×10 ⁻²	δ = 0.03356 %
tau+,tau->n2,n3 4.87387×10 ⁻³ 4.86117×10 ⁻³ 4.867×10 ⁻³ 4.86689×10 ⁻³ 4.86689×10 ⁻³ 4.86644×10 ⁻³ 4.86744×10 ⁻³ 4.86902×10 ⁻³	δ = 0.2608 %
tau+,tau->n2,n4 6.44698×10 ⁻³ 6.45983×10 ⁻³ 6.4664×10 ⁻³ 6.46598×10 ⁻³ 6.46598×10 ⁻³ 6.46598×10 ⁻³	δ = 0.3008 %
tau+,tau->n3,n3 9.28002×10 ⁻⁵ 9.2623×10 ⁻⁵ 9.2716×10 ⁻⁵ 9.27123×10 ⁻⁵ 9.27123×10 ⁻⁵ 9.27189×10 ⁻⁵ 9.27202×10 ⁻⁵	δ = 0.1911 %
tau+,tau->n3,n4 2.14878×10 ⁻² 2.1484×10 ⁻² 2.1493×10 ⁻² 2.14921×10 ⁻² 2.14921×10 ⁻² 2.14931×10 ⁻² 2.1493×10 ⁻²	δ = 0.04203 %
tau+,tau->n4,n4 4.9133×10 ⁻⁴ 4.91839×10 ⁻⁴ 4.9184×10 ⁻⁴ 4.91841×10 ⁻⁴ 4.91841×10 ⁻⁴ 4.91851×10 ⁻⁴ 4.91854×10 ⁻⁴	δ = 0.1064 %
tau+,tau->x1+,x1- 1.0258×10 ⁻¹ 1.02574×10 ⁻¹ 1.0263×10 ⁻¹ 1.02618×10 ⁻¹ 1.02618×10 ⁻¹ 1.02611×10 ⁻¹ 1.02611×10 ⁻¹	δ = 0.05481 %
tau+,tau->x2+,x2- 6.70443×10 ⁻² 6.69276×10 ⁻² 6.6912×10 ⁻² 6.69091×10 ⁻² 6.69091×10 ⁻² 6.69091×10 ⁻²	δ = 0.2019 %
tau+,tau->x1+,x2- 1.16966×10 ⁻² 1.17145×10 ⁻² 1.17×10 ⁻² 1.16998×10 ⁻² 1.16997×10 ⁻² 1.17004×10 ⁻² 1.16851×10 ⁻²	δ = 0.2513 %
tau+,tau->h1,h1 9.27951×10 ⁻⁷ 9.27981×10 ⁻⁷ 9.2778×10 ⁻⁷ 9.27789×10 ⁻⁷ 9.27789×10 ⁻⁷ 9.27761×10 ⁻⁷ 9.27771×10 ⁻⁷	δ = 0.02368 %
tau+,tau->h1,h2 1.61028×10 ⁻⁵ 1.60933×10 ⁻⁵ 1.6097×10 ⁻⁵ 1.60975×10 ⁻⁵ 1.60975×10 ⁻⁵ 1.61073×10 ⁻⁵ 1.61073×10 ⁻⁵	δ = 0.08804 %
tau+,tau->h3,h3 6.04309×10 ⁻⁵ 6.03865×10 ⁻⁵ 6.0407×10 ⁻⁵ 6.0413×10 ⁻⁵ 6.0413×10 ⁻⁵ 6.04515×10 ⁻⁵ 6.04527×10 ⁻⁵	δ = 0.1096 %
tau+,tau->2,h1 8.90511×10 ⁻³ 8.91065×10 ⁻³ 8.9097×10 ⁻³ 8.91135×10 ⁻³ 8.91135×10 ⁻³ 8.90772×10 ⁻³ 8.90772×10 ⁻³	δ = 0.07004 %
tau+,tau->z,h2 9.18474×10 ⁻³ 9.17875×10 ⁻³ 9.1742×10 ⁻³ 9.17437×10 ⁻³ 9.17437×10 ⁻³ 9.18049×10 ⁻³ 9.18058×10 ⁻³	δ = 0.1149 %
tau+,tau->z,h3 9.19797×10 ⁻³ 9.19166×10 ⁻³ 9.1912×10 ⁻³ 9.19128×10 ⁻³ 9.19128×10 ⁻³ 9.19754×10 ⁻³ 9.19764×10 ⁻³	δ = 0.07368 %
tau+,tau->h3,h1 1.74141×10 ⁻⁵ 1.74135×10 ⁻⁵ 1.7414×10 ⁻⁵ 1.74136×10 ⁻⁵ 1.74136×10 ⁻⁵ 1.74234×10 ⁻⁵ 1.74237×10 ⁻⁵	$\delta = 0.05854$ %
tau+,tau->h3,h2 2.03081×10 ⁻³ 2.031×10 ⁻³ 2.0313×10 ⁻³ 2.0317×10 ⁻³ 2.0317×10 ⁻³ 2.0308×10 ⁻³ 2.0309×10 ⁻³	δ = 0.04483 %
tau+,tau->H+,H- 7.50756×10 ⁻³ 7.50766×10 ⁻³ 7.5092×10 ⁻³ 7.50967×10 ⁻³ 7.50967×10 ⁻³ 7.50797×10 ⁻³ 7.50797×10 ⁻³	δ = 0.02808 %

(Non-)minimal SUSY models at the LHC

Benjamin Fuks - CMS Physics France 2010 @ IRFU Saclay - 01.04.2010 - 16

The (almost) most general MSSM.

[Christensen, de Aquino, Degrande, Duhr, BenjF, Herquet, Maltoni, Schumann (2009)]

- A general version of the MSSM (any usual limit easily taken).
 - * Sfermion sector.
 - $\diamond~6\times 6$ and 3×3 CP and flavour violating mixing matrices.

$$\stackrel{\diamond}{=} e.g. \left(\tilde{u}_1, \tilde{u}_2, \tilde{u}_3, \tilde{u}_4, \tilde{u}_5, \tilde{u}_6 \right)^T = R^{\tilde{u}} \left(\tilde{u}_L, \tilde{c}_L, \tilde{t}_L, \tilde{u}_R, \tilde{c}_R, \tilde{t}_R \right)^T,$$
$$\left(\tilde{d}_1, \tilde{d}_2, \tilde{d}_3, \tilde{d}_4, \tilde{d}_5, \tilde{d}_6 \right)^T = R^{\tilde{d}} \left(\tilde{d}_L, \tilde{s}_L, \tilde{b}_L, \tilde{d}_R, \tilde{s}_R, \tilde{b}_R \right)^T.$$

- * Higgs sector.
 - $\diamond~$ Only 2 \times 2 mixing considered for the moment.
 - ♦ To be generalized in forthcoming versions.

$$\left(\tilde{h}_1, \tilde{h}_2, \tilde{h}_3\right)^T = R^h \left(\sqrt{2} \Re\{H_1^0\}, \sqrt{2} \Re\{H_2^0\}, A_{\mathrm{tree}}^0\right)^T$$

- * Written in terms of Weyls, scalars, vectors.
 - ♦ To be generalized in forthcoming versions (superfields).
- 105 free parameters.
 - * The **SLHA-FR format** (SLHA2-like format).
 - * C++ translator SLHA1/2 \Leftrightarrow SLHA-FR.

MSSM phenomenology @ Strasbourg.

- Squark/gluino production decaying to tau leptons [D. Bodin, U. Goerlach, Y. Mikami].
 - * See Yoshi's talk for details.
 - * Strong process \Rightarrow large cross section at the LHC.
 - * Cascade decays to LSP \Rightarrow missing transverse energy.
 - * Multileptons, multijets \Rightarrow large final state multiplicity.
- Slepton pair production [BenjF, D. Gelé, G. Serret].
 - * Weak process \Rightarrow challenging.
 - * Direct decays to LSP & not so much missing transverse energy.
 - * Clean final state.
 - * Is this channel reachable at the LHC?
 - ◊ If yes: at which energy, for which luminosity?
 - ♦ **Prospective work using the** FEYNRULES framework.
 - \Rightarrow from the model to the simulation of the detector.
 - \diamond Up to now: hardly at 7 TeV; life is more confortable at 10/14 TeV.
 - * Work in progress...

R-parity violating MSSM

• Implementation in FEYNRULES (soon public).

- * Full superpotential.
- * Full SUSY-breaking Lagrangian.
- * General mixings.
- * 105 + 192 free parameters.
 - ♦ The **SLHA-FR format** (SLHA2-like format).
 - $\diamond \text{ C++ translator SLHA1/2} \Leftrightarrow \mathsf{SLHA-FR}.$

• Monte Carlo model files.

- * Created with one single *R*-parity violating parameter.
 - [8 hours with a 8GB RAM machine \Rightarrow AAARRGGGHHH?].
- * Implementation of restrictions, new FEYNRULES algorithm.

[10-15 minutes on my laptop \Rightarrow better!].

* To do: full validation against Pythia/Herwig/SusyGen. (only partial now).

RPV-MSSM phenomenology @ Strasbourg.

- Series of mini-workshop on *R*-parity violating supersymmetry.
 - * Supported by the CNRS-IN2P3 Théorie-LHC France initiative.
 - * Theorists: J.M. Bessot (M1), BenjF, C. Lorentzen (PhD), I. Schienbein.
 - * CMS experimentalists: J. Andrea, A. Besson, E. Conte, J. Guigue (M2).
- Resonant slepton production [E. Conte, BenjF, J. Guigue].
 - * Slepton \rightarrow lepton + neutralino \rightarrow two leptons & two jets.
 - * No missing transverse energy.
 - * Investigation of displaced vertices.
 - * This channel is probably reachable at the LHC, at 7 TeV, for 1 fb $^{-1}$.
 - ◊ Is this competing with the present RPV bounds?
 - ◊ Regions of the parameter space reachable by the LHC?
- Resonant squark production [J. Andrea, BenjF].
 - * RPV contributions to single top production.
 - * This channel is reachable at the LHC, both at 7/14 TeV.
 - ♦ This is competing with the present RPV bounds!
 - ♦ Preliminary results ... soon available... [in one or two weeks]
- Implementation of new precision theoretical tools [BenjF, C. Lorentzen, I. Schienbein].

Summary - outlook 00

RPV-MSSM phenomenology @ 7 TeV with 1 fb^{-1} .

Things are going on!

Results [hopefully] soon available! \Rightarrow Two analyses almost over!

Next RPV workshop (probably @ Strasbourg) in July! ⇒ Interested? Contact Eric Conte or myself!

(Non-)minimal SUSY models at the LHC

Benjamin Fuks - CMS Physics France 2010 @ IRFU Saclay - 01.04.2010 - 21

The Next-to-Minimal Supersymmetric Standard Model

- Implementation in FEYNRULES (soon public).
 - * General mixings.
 - ♦ The general NMSSM has been implemented.
 - ♦ Extended neutralino sector.
 - ◊ Extended Higgs sector.
 - * 105 + 10 free parameters.
 - ♦ The **SLHA-FR format** (SLHA2-like format).
 - ♦ C++ translator SLHA1/2 \Leftrightarrow SLHA-FR.
- Validated against the stock version of WHIZARD [Braam, BenjF, Reuter].
- Tau lepton production in the NMSSM [BenjF, U. Goerlach, M. Kraft].
 - * Copiously produced.
 - \diamond If the lightest pseudoscalar Higgs is lighter than the $b\bar{b}$ threshold.
 - * Realistic scenario (cf. LEP, etc...) in large parts of the parameter space.
 - * Investigation of the τ multiplicity (7/10/14 TeV).

Outline

The FEYNRULES approach for new physics investigations.

Ongoing phenomenological analyses at the IPHC Strasbourg.
 Model database & validation procedure.

- The Minimal Supersymmetric Standard Model.
- The Minimal Supersymmetric Standard Model with *R*-parity violation.
- The Next-to-Minimal Supersymmetric Standard Model

Summary: the philosophy of FEYNRULES

- * Flexible theorist-friendly environment to develop new models. Mathematica-based.
- * Filling the gap between model building and collider phenomenology.
 1) Lagrangian → FEYNRULES → model files for your favourite MC codes.
 2) Monte Carlo code → phenomenology.

FEYNRULES is not tied to any generator.

* Avoid separate implementations of a model on different programs. FEYNRULES does it for you!

Exploit the strengths of the different programs!

- * Traceability, portability and documentation. Test of a model against data: all model information in the FEYNRULES files.
- * The validation of models is not neglected! Different generators, gauges, etc...

Supersymmetric models investigations with FEYNRULES

- MSSM: prospective work for non standard channels.
 ◇ Master2 internship of G. Serret (with BenjF, D. Gelé): slepton pair production.
- * RPV-MSSM: various ongoing different studies.
 - ♦ Master1 internship of J.M. Bessot (with E. Conte, BenjF): constraints, benchmarks.
 - ♦ Master2 internship of J. Guigue (with E. Conte, BenjF): single slepton.
 - ♦ Andrea & BenjF: single squark.
 - ♦ BenjF, Lorentzen, Schienbein: development of new theoretical tools.

* NMSSM.

- \diamond Master2 internship of M. Kraft (with BenjF, U. Goerlach): au lepton production.
- * New models: Left-Right MSSM, hybrid N = 1/N = 2 supersymmetry, etc...
 - ♦ ANR Jeunes chercheurs et jeunes chercheuses proposal: AutoLHC.
 - ♦ Feel free to join our effort [even for non-SUSY models]!

Backup slides

Backup slides

(Non-)minimal SUSY models at the LHO

Benjamin Fuks - CMS Physics France 2010 @ IRFU Saclay - 01.04.2010 - 26

Model description (1)

[J. Wells (2008)]

- Simple extension of the Standard Model gauge groups.
 - * Additional U(1)_X symmetry.
 - * No coupling to the SM fermions.
 - * The full gauge group G is

$$G = SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_X.$$

New particles.

- * One X boson associated to the new $U(1)_X$.
- * One Higgs field ϕ .
 - ♦ Breaking the new $U(1)_X$.
 - $\diamond~$ Singlet under the SM gauge groups.

The Hidden Abelian Higgs model

Model description (2)

New interactions.

* The Lagrangian is given by:

 $\mathcal{L}_{\mathrm{HAH}} = \mathcal{L}_{\mathrm{HAH,Gauge}} + \mathcal{L}_{\mathrm{HAH,Fermions}} + \mathcal{L}_{\mathrm{HAH,Higgs}} + \mathcal{L}_{\mathrm{HAH,Yukawa}}.$

New gauge sector.

- * X boson kinetic term.
- * X B mixing term.

$$egin{aligned} \mathcal{L}_{ ext{HAH,Gauge}} &= - \, rac{1}{4} \, G^a_{\mu
u} \, G^{\mu
u}_a - rac{1}{4} \, W^i_{\mu
u} \, W^{\mu
u}_i - rac{1}{4} \, B_{\mu
u} \, B^{\mu
u} \ - rac{1}{4} \, \mathsf{X}_{\mu
u} \, \mathsf{X}^{\mu
u} + rac{\chi}{2} \, \mathsf{B}_{\mu
u} \, \mathsf{X}^{\mu
u} \end{aligned}$$

• New Higgs potential.

$$\mathcal{L}_{\text{HAH,Higgs}} = D_{\mu} \Phi^{\dagger} D^{\mu} \Phi + D_{\mu} \phi^{\dagger} D^{\mu} \phi + \mu_{\Phi}^{2} \Phi^{\dagger} \Phi + \mu_{\phi}^{2} \phi^{\dagger} \phi$$
$$- \lambda (\Phi^{\dagger} \Phi)^{2} - \rho (\phi^{\dagger} \phi)^{2} - \kappa (\Phi^{\dagger} \Phi) (\phi^{\dagger} \phi).$$

Model description (3)

- Particle mixing in the gauge sector.
 - * Rotation in the (X_{μ}, B_{μ}) basis:

$$\left(\begin{array}{c} \tilde{X}_{\mu} \\ \tilde{B}_{\mu} \end{array}\right) = \left(\begin{array}{cc} \sqrt{1-\chi^2} & 0 \\ -\chi & 1 \end{array}\right) \left(\begin{array}{c} X_{\mu} \\ B_{\mu} \end{array}\right).$$

* The SM fermions couple both to \tilde{B}_{μ} and \tilde{X}_{μ} (cf. $\eta = \frac{\chi}{\sqrt{1-\chi^2}}$). * The gauge sector Lagrangian is diagonal,

$$\mathcal{L}_{\rm HAH,Gauge} = -\,\frac{1}{4}\,G^{\,a}_{\mu\nu}\,G^{\,\mu\nu}_{a} - \frac{1}{4}\,W^{i}_{\mu\nu}\,W^{\,\mu\nu}_{i} - \frac{1}{4}\,\tilde{B}_{\mu\nu}\,\tilde{B}^{\mu\nu} - \frac{1}{4}\,\tilde{X}_{\mu\nu}\,\tilde{X}^{\mu\nu}.$$

Model description (4)

- Symmetry breaking to $U(1)_{EM}$.
 - * Both Higgs fields acquire their vev v and ξ .

$$\Phi
ightarrow rac{1}{\sqrt{2}} \left(egin{array}{c} 0 \ H+v \end{array}
ight) \ \ ext{and} \ \ \phi
ightarrow rac{1}{\sqrt{2}} \left(h+\xi
ight).$$

* Neutral gauge boson mixing.

$$\left(\begin{array}{c} \tilde{B} \\ W^3 \\ \tilde{X} \end{array}\right) = \left(\begin{array}{cc} c_w & -s_w c_\alpha & s_w s_\alpha \\ s_w & c_w c_\alpha & -c_w s_\alpha \\ 0 & s_\alpha & c_\alpha \end{array}\right) \left(\begin{array}{c} A \\ Z \\ Z' \end{array}\right)$$

* Higgs boson mixing.

$$\left(\begin{array}{c}H\\h\end{array}\right)=\left(\begin{array}{cc}c_h&s_h\\-s_h&c_h\end{array}\right)\left(\begin{array}{c}h_1\\h_2\end{array}\right).$$

Implementation in a Monte Carlo code

- Starting from the SM implementation.
- Couplings.
 - * Full rewriting of the Higgs sector.
 - * New Z' couplings.
 - * Modification of the Z couplings.
 - * More than half of the SM implementation will be modified.
- New particles and parameters.

Hard and tedious job.

(Non-)minimal SUSY models at the LHC

Benjamin Fuks - CMS Physics France 2010 @ IRFU Saclay - 01.04.2010 - 31

Implementation of the new model in FEYNRULES (1)

- **1** Download the SM implementation.
- **2** Define the new gauge group and gauge boson.

The $U(1)_X$ gauge group	р	X field definition
U1X == {		V[61] == {
Abelian	-> True,	ClassName -> X,
GaugeBoson	-> X,	SelfConjugate -> True,
Charge	-> QX,	<pre>Definitions -> {X[mu_] -> chi eta Xp[mu]},</pre>
CouplingConstant	-> gX}	Unphysical -> True}

- * Gauge boson and gauge group definition.
- * Association of a coupling constant.
- * The $\tilde{\mathbf{X}}_{\mu}, \tilde{\mathbf{B}}_{\mu}, \mathbf{B}_{\mu}, \mathbf{W}_{\mu}^{3}$ field definitions must be modified.

Implementation of the new model in FEYNRULES (2)

- **1** Download the SM implementation.
- **2** Define the new gauge group and gauge boson.
- **③** Define the new (internal and external) parameters.

Parameters of the mode	el			
eta == {		* All the information needed by the MC codes.		
TeX	-> \[Eta],	* TEX-form (for the TEX-file).		
ParameterType	-> Externa	1, * Complex/real parameters.		
BlockName	-> HIDDEN,	* External/internal parameters.		
OrderBlock	-> 2,	* Same for the other model parameters.		
Value	-> 0.01,			
Description	-> "U(1)X	- U(1)Y mixing parameter"},		
MH2 == {				
ComplexParameter	-> False,			
ParameterType	-> Interna	1,		
Value	-> Sqrt[la	m v^2+rho xi^2+Sqrt[(lam v^2		
$-rho xi^2)^2+kap^2 v^2 xi^2]],$				
Description	-> "Mass o	f H2"}		

(Non-)minimal SUSY models at the LHC

The Hidden Abelian Higgs model

Implementation of the new model in FEYNRULES (3)

- Download the SM implementation.
- **2** Define the new gauge group and gauge boson.
- **③** Define the new (internal and external) parameters.
 - Add the new fields.

Some Higgs fields	
Mass Width PropagatorLabel PropagatorType	-> ScalarDash,
PropagatorArrow PDG S[110] == { ClassName	 -> 35}, * The same holds for the other Higgses. -> H, * All the information is needed by the MC codes.
SelfConjugate Unphysical Definitions	-> True, -> True, -> {H -> ch h1 + sh h2}}

(Non-)minimal SUSY models at the LHC

Implementation of the new model in FEYNRULES (4)

- Download the SM implementation.
- **2** Define the new gauge group and gauge boson.
- **③** Define the new (internal and external) parameters.
- Add the new fields.
- **6** Modify the Lagrangian.

```
The gauge Lagrangian
```

```
LGauge = -1/4*FS[B, mu,nu]*FS[B, mu,nu]

-1/4*FS[X, mu,nu]*FS[X, mu,nu]

+chi/2*FS[B, mu,nu]*FS[X, mu,nu]

-1/4*FS[Wi, mu, nu, i1]*FS[Wi, mu, nu, i1]

-1/4*FS[G, mu, nu, a]*FS[G, mu, nu, a];
```

- * Implicit summations \Rightarrow easy debugging.
- Fermionic Lagrangian in gauge basis
 ⇒ not modified.
- Higgs sector modified.

The Hidden Abelian Higgs model

Implementation of the new model in FEYNRULES (4)

- Download the SM implementation.
- **2** Define the new gauge group and gauge boson.
- **③** Define the new (internal and external) parameters.
- **4** Add the new fields.
- **6** Modify the Lagrangian.
- **6** Let us phenomenologize!

```
 \begin{split} & \text{FeynmanRules[Lag, FlavorExpand->SU2W]} \\ & \text{Particle 1 : Vector , W} \\ & \text{Particle 2 : Vector , W}^{\dagger} \\ & \text{Particle 3 : Vector , Z} \\ & \text{Particle 4 : Vector , Zp} \\ & \text{Vertex:} \\ & -i c_{\alpha} c_w^2 g_w^2 s_{\alpha} \left( \eta_{\mu_1,\mu_4} \eta_{\mu_2,\mu_3} + \eta_{\mu_1,\mu_3} \eta_{\mu_2,\mu_4} - 2\eta_{\mu_1,\mu_2} \eta_{\mu_3,\mu_4} \right) \\ & \text{WriteFeynArtsOutput[Lag]} \\ & \text{WriteGloutput[Lag]} \\ & \text{WriteSHOutput[Lag]} \\ & \text{WriteSHOutput[Lag]} \\ & \text{WriteWOOtput[Lag]} \\ & \text{WriteWOOtput[Lag]} \end{split}
```

(Non-)minimal SUSY models at the LHC