CMS France 1 April 2010

Arabella Martelli

WZ di-boson production at CMS

- Physics motivations
- Existing results (Tevatron $\int s = 1.96 \text{TeV}$)

Outline

- Existing prospects for CMS at $\int s = 14 \text{TeV}$
- Preliminary prospects for CMS at $\int s = 7 \text{TeV}$

- WZ: complementary signature to allow for SM EWK test (at LHC with un-preceding $\int s$)
 - WWZ TGC + boson longitudinal polarization + SM σ prediction (see later)
- WZ is a background for the 2main Higgs channels ->WW and ->ZZ:
 - WZ bg to WW (and H->WW) and WZ+jets among backgrounds for ZZ
 - Z+jets background is the main one for WZ and contributes to ZZ->41 bg as well
 - to exploit 31 + (1SCluster || 1 Track) -> higher statistic in ZZ (and higher bg)

to be looked at!!

- BSM signals providing 3leptons + MET:
 - SM contribution is expected to be reduced (constraints on signature)
 - BSM models (R-parity, SUSY, Little Higgs) allow for multi-lepton final states
 - i.e. W'->WZ->3l+ ME⊤ early exclusion at 95% C.L. at D0 with 4.1fb⁻¹:

• Focus here on EWK processes and σ observation measurements

 $[\]circ$ 188<Mw'<520GeV (SSM) and 208< $\rho_T<$ 408GeV (low scale technicolor)

WZ at hadron collider

CMS France 1 April 2010

- at Tevatron (p pbar): q-qbar channel enhanced, $\sigma(W^+Z) = \sigma(W^-Z)$
- at LHC: no gg quark loop involved (gg->ZWq-qbar gives small contribution)

WZ at collider

• Decay modes:

- 3lepton choice (I = e, μ):
 - reduced BR ~ 1.5%
 - clear signature and background reduction in hadronic environment
 - Iepton charge disentangles W charge: allows for EWK precision tests (polarization)

• Focus on the pure leptonic final states

•

- TGC: direct consequence of the non-Abelian SU(2) \times U(1) gauge group in the SM:
 - assuming both C, P conservation -> 6 parameters describe the effective Lagrangian

$$\begin{aligned} L_{eff}^{WWV} &= -i \, g_{WWV} \left[g_1^V (W_{\mu\nu}^{\dagger} W^{\mu} V^{\nu} - W_{\mu}^{\dagger} V^{\nu} W^{\mu\nu}) + k_V W_{\mu}^{\dagger} W_{\nu} V^{\mu\nu} + \frac{\lambda_V}{m_W^2} W_{\rho\nu}^{\dagger} W_{\nu}^{\mu} V^{\rho\nu} \right] \\ where \ V &= \gamma, Z \ g_{WW\gamma} = e, \ g_{WWZ} = e \ cot \theta_W \end{aligned}$$

- with $g^{v_1} = 1$ imposed by electromagnetic gauge invariance
- deviation from SM described by $\Delta g_1^Z = (g_1^Z 1), \Delta \kappa_\gamma = (\kappa_\gamma 1), \Delta \kappa_Z = (\kappa_Z 1), \lambda_\gamma, \lambda_Z$ with $\Delta \kappa_\gamma = -\cot(2\Theta_W) \cdot (\Delta \kappa^Z - \Delta g_1^Z), \lambda_\gamma = \lambda_Z$
 - SM expectation $\Delta \kappa_{\gamma} = \Delta \kappa_{Z} = \Delta g_{1}^{Z} = \lambda_{\gamma} = \lambda_{Z} = 0$

• $(\Delta g^{0}_{1}, \Delta k^{0}, \Lambda^{0}, M^{2}_{WZ}, \Lambda)$ due to tree level unitarity requirement at high energy

- ref. Nuclear Physics B282 (1987) 253-307 (K. HAGIWARA et al.)
- WWy and WWZ : only allowed in the SM
 - model dependent access to TGC through σ measurement and kinematic variables:
 - expectation from MC generators with anomalous TGC
 - t-channel and s-channel contribution from theory
 - some constraints from LEP2 and Tevatron

- Final combined result:
 - in agreement with SM expectation
 - best sensitivity up to now
 - clean environment: no pdf uncertainties
 - better defined background

Parameter	95% C.L.
Δg^{Z_1}	[-0.051, 0.034]
Δk_{γ}	[-0.105, 0.069]
۸ _Y	[-0.059, 0.026]

CMS France 1 April 2010 TGC at Tevatron (1.96 TeV) Arabella Mari

 $\sigma(WZ) = 2.7^{+1.7}_{-1.3} \text{ pb}$

- Multiple topologies taken into account lacksquare
- WZ first observation (unavailable at LEP2): direct meas.[€]to decouple WWY WWZ^{1,13}(stat) ± 0.2(syst) ± 0.3(lumi) pb</sup> •
- current result in the full leptonic final state (Moriond, March 2010)^{3.7 ± 0.3 pb} ۲

• CDF 1.9fb⁻¹: $\sigma(WZ)_{meas} = 4.3^{+1.3}_{1.0}(stat) \pm 0.4(syst + lumi)pb$ • D0 1.1 fb⁻¹ $\sigma(WZ)_{meas} = 2.7^{+1.7}_{1.3} pb$

• Combination of four DØ	analyses to probe TGCs and T	W magnetic dipole (µ _W) and		
electric quadrupole (q _W)	moments.			
W7 JIIN	₩γ→Ινγ	WW→llvv		
b b c c c c c c c c	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} D\emptyset, 0.7 \ \text{fb}^{-1} \end{array} + \\ \begin{array}{c} \begin{array}{c} \text{Data Candidates} \\ \hline \\ \text{SM MC} + \text{Background} \ (\kappa=1, \lambda=0) \\ \hline \\ \text{Background} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} $	(a) ee+e μ+μμ DØ, 1 fb¹ 530 • Data		
Strange	10 10 10 10 10 10 10 10 10 10	Z^{20} $Z^{\gamma^* \rightarrow \parallel}$ Q^{0} S^{0} $S^{$		
WW+WZ→ <i>l</i> vjj	• 95% C.L. li	imits (A=2 TeV)		
10^4 DØ Run II, 1.1 fb ⁻¹ + Data	Imposing $SU(2)_L \times U(1)_V$	Assuming equal couplings		
10 ³ W+jets 10 ³ Z+jets	$-0.29 < \Delta \kappa_{\gamma} < 0.38$	-0.11 < Δκ < 0.18		
² 10 ²	$-0.03 < \chi < 0.03$ $-0.07 < \Delta g_1^Z < 0.16$	$-0.08 < \lambda < 0.08$		
	$1.86 < \mu_W < 2.16$	$1.86 < \mu_W < 2.15$		
	$-1.16 < q_W < -0.84$	-1.16 < q _W < -0.87		
• 50 100 150 200 250 300 Dijet p _T • Approaching sensitivity of individual				
	LEP experiments	12		

• Probing TGCs: Non-SM WWZ coupling enhances cross section at high values of Z p_T

95% C.L. limits for Λ =2 TeV				
DØ published, 1 fb ⁻¹	CDF preliminary, 1.9 fb ⁻¹			
-0.17 < λ _z < 0.21	-0.13 < λ _z < 0.14			
-0.14 < ∆g _Z < 0.34	-0.13 < ∆g _z < 0.23			
-0.12 < Δκ _Z =Δg _Z < 0.29	-0.76 < Δκ _z < 1.18			

CMS France 1 April 2010 Physics motivation: Bosons polarization Arabella Martelli

- W and Z longitudinal polarization: direct consequence of Higgs mechanism
- H->VV decay: access to Higgs spin and separation from di-boson continuum
- W->I nu decay: test on the SM V-A current
- Longitudinal polarization accessible in the only di-boson production:
- Boson decay angle Θ^*_1 : the kinematic observable sensitive to the boson polarization
 - being p_{--} p_{++} p_{00} the transverse left/right handed and longitudinal polarization of the boson
- i.e. in the WZ process, wrt the V rest frame (with A = $2 g_V g_A / [g^2_V + g^2_A]$)

$$Z: \quad \frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta_{\ell}^{*}} = \rho_{--}\frac{3}{8}(1 + 2A\cos\theta_{\ell}^{*} + \cos^{2}\theta_{\ell}^{*}) + \rho_{++}\frac{3}{8}(1 - 2A\cos\theta_{\ell}^{*} + \cos^{2}\theta_{\ell}^{*}) + \rho_{00}\frac{3}{4}\sin^{2}\theta_{\ell}^{*}$$

• W:
$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta_{\ell}^{*}} = \rho_{--}\frac{3}{8}(1+\cos\theta_{\ell}^{*})^{2} + \rho_{++}\frac{3}{8}(1-\cos\theta_{\ell}^{*})^{2} + \rho_{00}\frac{3}{4}\sin^{2}\theta_{\ell}^{*}$$

caveat: ME_T + p_{lepton} constrained on M_W
to reconstruct cos(θ*_I)

W polarization measurements

CMS France 1 April 2010

Arabella Martelli

- at LEP2 in the WW production:
 - polarization described by a complex 3x3 Spin-Density-Matrix
 - $^{\circ}$ imaginary SDM elements are sensitive to CP violating TGC parameters $\Xi^{\circ \circ \circ}$
 - focusing on single W->I nu allows for unambiguously W tagging
 - Results by combining WW correlations:
 - $^{\circ}$ measurements are consistent with helicity distribution from SM
 - no evidence for CP-violating couplings: constraints for new possible contributions
- at Tevatron in the top decay:
 - SM expectation: $\frac{1}{N} \frac{dN}{d\cos\Psi} = \frac{3}{2} \left[F_0 \cdot \left(\frac{\sin\Psi}{\sqrt{2}}\right)^2 + F_L \cdot \left(\frac{1-\cos\Psi}{2}\right)^2 + F_R \cdot \left(\frac{1+\cos\Psi}{2}\right)^2 \right]$ • F_0~ 70%, F_L~30%, F_R~0%
 - Result with big errors, within SM expectation

• Data, 183-208 GeV

 $\cos \theta_{\rm I}^*$

CMS France 1 April 2010

Arabella Martelli

LHC potentialities

CMS studies (LHC 14TeV)

CMS France 1 April 2010

- Signal topology: WZ -> Inu II (I = e, μ) channel
- Main backgrounds: Z+jets, ZZ, Zy, t-tbar, W+jets

- WZ selection efficiency ~ 15%
- Systematic uncertainties:

	Relative Uncertainty (%)			
Source	WZ	ZZ	$WW + tX + DY \rightarrow \ell\ell + W + jets$	$V(W/Z) + \gamma$
Luminosity	10	10	<u> </u>	10
Lepton & trigger efficiencies	6	6	—	4
Lepton miscalibration and misalignment	3	3	—	3
$E_{\rm T}^{\rm miss}$ modeling	2	9	—	29
Jet reconstruction	—	—	—	_
PDF uncertainties	2	4	—	4
NLO effects	6	9	—	9
Fakes	—	—	30	-
Conversions	—		—	30
MC statistics	4	11	—	35

Source	Systematic uncertainty,%
Luminosity	10.0
Trigger	1.0
Lepton reconstruction	2.0
Electron charge determination	2.0
Muon charge determination	1.0
Lepton energy scale	1.0
Electron identification	4.0
Muon identification	2.0
PDF uncertainties	4.0
$M_T(W)$ requirement	10.0

AN2010/050

CMS PAS EWK-08-003

- 5σ significance on WZ observation with less then 350pb-1 at 95%CL:
 - frequentist approach to estimate variation of expected signal and background events

CMS France 1 April 2010

Arabella Martelli

7TeV reach

- Signal: σ_{14TeV} ~ 3 σ_{7TeV}
- Main backgrounds: σ rescaling assumed as the one for Z
- $\frac{\sigma(WZ)}{\sigma(Z)}$ NLO computed at 14TeV, 10TeV, 6TeV (from theory)
 - J.M. Campbell et al. "Normalizing Weak Boson Pair Production at the Large Hadron Collider" <u>arXiv:0906.2500v2</u>
 - negligible dependence on generator cuts
- S/B rough extrapolation at 7TeV: -18% from 14TeV -> 7TeV
 - 10⁻³ Z+jet dominating bg 0.12 0.097 σ<mark>wz</mark>/σ^z $\sigma(Z+jet)$ rescales as $\sigma(Z)$ 0.1 with c.m.s. energy 0.1180.08 0.06 important effect expected 0.04 0.02 12 10 6 8 14

•

acceptance and kinematic

CMS France 1 April 2010

Arabella Martelli

- 20 000 events in W->I nu Z->II (I = e, μ) were generated with PYTHIA
 - both at 7TeV and 14TeV

• Selections from CMS-PAS applied to both samples:

Selection	% events - 14 TeV	% events - 7 TeV
pT _{lepton} > 15 GeV/c	78,02	77,67
$ n_e < 2.5 \&\& n_{\mu} < 2.4$	23,9	30,17
50GeV < Mz < 120GeV	97,53	96,77
Combined	19,53	24,69

<u>new tuning needed</u>

kinematic comparison

CMS France 1 April 2010

- Shape comparison: 14TeV 7TeV
- 7TeV: distributions are more central

lepton selections

Arabella Martelli

Shape comparison:

14TeV

7TeV

- Rough estimate: 35 WZ events (300pb⁻¹ 14TeV) -> ~ 5 events (100pb⁻¹ 7TeV)
- Detailed study needed with backgrounds included

•

Conclusions

CMS France 1 April 2010

- The Standard Model WZ channel was presented:
 - physics motivation
- Existing CMS prospects were looked at
 - 2008 public analysis at 14TeV
 - 2010 internal note at 7TeV
- Next steps
 - Rely on NLO generator samples at 7TeV (signal + backgrounds)
 - Optimize event selections wrt different acceptance and kinematic distribution
 - Update analysis for new electron reco and ID developments
 - Estimate observation sensitivity wrt integrated lumi
 - Second order study: estimate integrated lumi. needed for EWK SM tests