Slava Rychkov (LPT ENS & UPMC)

Plan:

- 1. Beyond SM models for super-early LHC (10 pb^-1)
- 2. EWSB-motivated physics (1 fb⁻¹)

Super-early models

Bauer, Ligeti, Schmaltz, Thaler, Walker 0909.5213

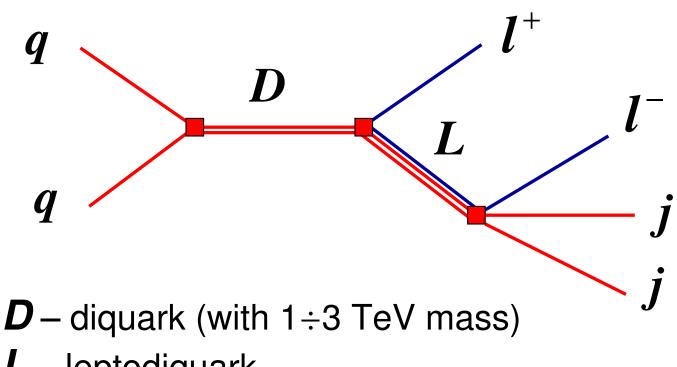
?? Is it possible to find a model such that:

- 1. σ (LHC) **large** to have >10 signal events already with 10 pb^-1
- 2. σ (Tevatron) **small** to evade projected 2010 Tevatron sensitivity with 10 fb⁻¹
- 3. Large BR to "easy" final states with almost no background (multileptons)
- 4. Consistency with other existing bounds (e.g. LEP)

Necessary condition

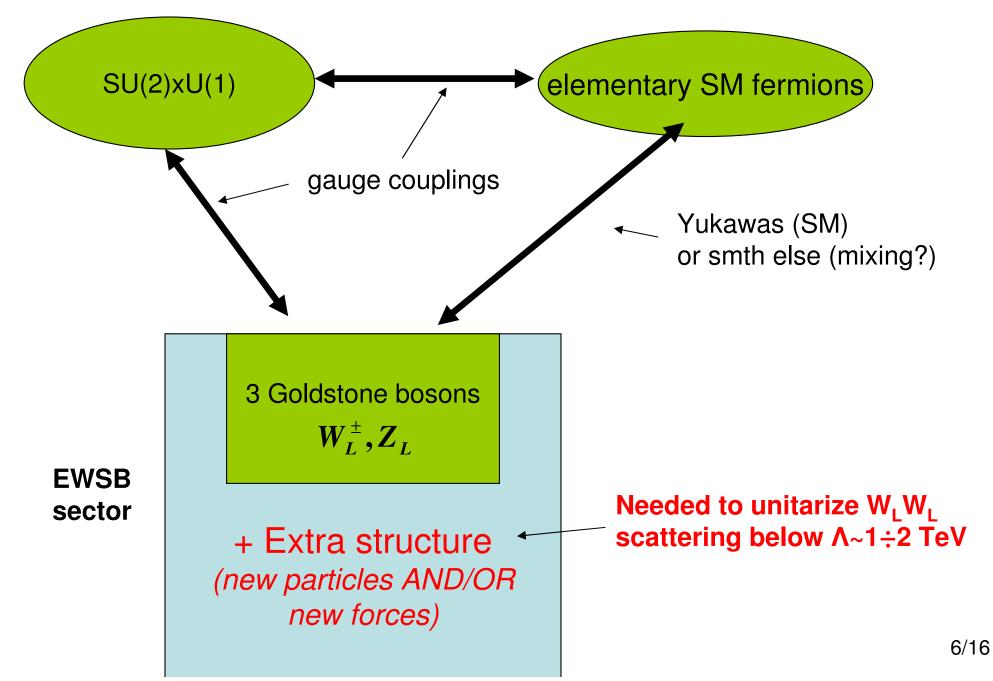
Must be an s-channel resonance, coupled to qq or qqbar at tree level

- resonances coupled to gg (like Higgs) have loopsuppressed couplings
- pair production cross section is suppressed w.r.t. to a resonance by $\alpha/4\pi$


 $\Rightarrow \sigma$ too small

Example 1: electro**phobic** Z' $q\bar{q} \rightarrow Z' \rightarrow \mu\bar{\mu}$

- with O(1) couplings to **quarks** and **muons**
- mass in 1.5÷2 TeV range


- No coupling to electrons to avoid LEP-II bounds on 4-fermion operators
- No coupling to Higgs to avoid LEP-I bounds on Z-Z' mixing
- E.g.: Z' coupled to (anomaly free) B-3L_μ Salvioni, Strumia, Villadoro, Zwirner 0911.1450

Ex. 2: Diquark+leptodiquark

- L leptodiquark
- Renormalizable Lagrangian in 2 lines
- Consistent model (conserves L, B number) Bauer, Ligeti, Schmaltz, Thaler, Walker 0909.5213

EWSB : generic structure

Model	Extra structure	Purpose
Standard Model	Higgs boson	Perfect unitarization of $W_L W_L$ scattering

Model	Extra structure	Purpose
Standard Model	Higgs boson	Perfect unitarization of $W_L W_L$ scattering
2HDM	Extended Higgs sector h^0, H^0, A^0, H^{\pm}	Same as in SM (less economical)

Model	Extra structure	Purpose
Standard Model	Higgs boson	Perfect unitarization of $W_L W_L$ scattering
2HDM	Extended Higgs sector h^0, H^0, A^0, H^{\pm}	Same as in SM (less economical)
Minimal SUSY	2HDM extended Higgs sector	Same as above
	Superpartners	Cancel Higgs mass quad. div. (solve hierarchy problem)

Strong EWSB

L	~	
Model	Extra structure	Purpose
Strong EWSB (A~1÷2 TeV)	Heavy vector bosons V ⁰ ,V [±] with M~TeV (<i>techni-p</i>)	unitarization of W _L W _L scattering (imperfect)
	Heavy non-chiral fermions with M~TeV	Give mass to SM fermions via mixing (<i>partial compositeness</i>)

Model	Extra structure	Purpose
Strongish EWSB (A~10 TeV)	Pseudo-Goldstone Higgs boson	 Partial unitarization Improves EWPT consistency
	Heavy vectors V ⁰ ,V [±] with M~ few TeV	To complete unitarization (still imperfect)
	Heavy non-chiral fermions with M~few TeV (top partners <tev)< td=""><td> Give mass to SM fermions via mixing Cancel top-quark Higgs mass quadratic divergence </td></tev)<>	 Give mass to SM fermions via mixing Cancel top-quark Higgs mass quadratic divergence

What EWSB-related physics, apart from SUSY, can you discover with 1fb⁻¹?

What EWSB-related physics, apart from SUSY, can you discover with 1fb⁻¹?

• SM-like Higgs

– in 2HDM at large tan β

- or if new spectacular decay channels e.g. lepton jet model: $H \rightarrow z'z' \rightarrow 4l$ Gopalakrishna, Jung, Wells 0801.3456

(Higgs portal to a hidden sector; motivated by astrophysical positron excesses; DM annihilation into z'z'?)

(NO) Heavy vector bosons of strong EWSB

- coupling to $q\overline{q}$ only via small mixing with Z

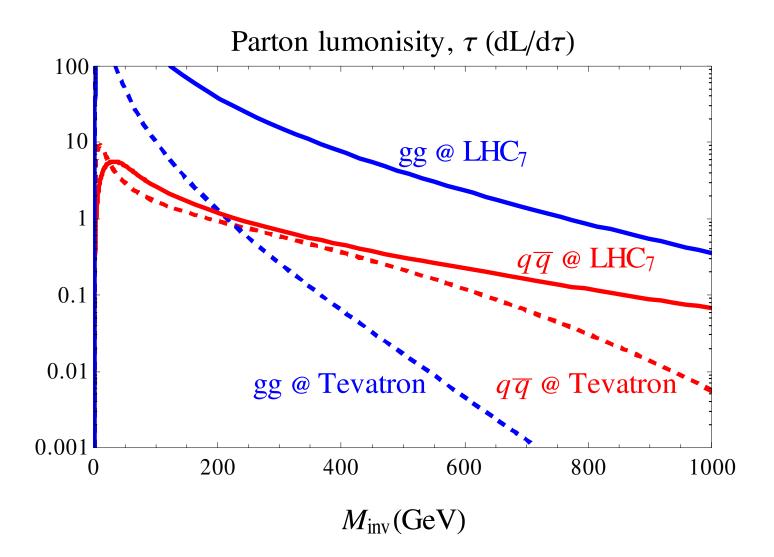
- dominant decay to $W_{\rm L}W_{\rm L}$ (like heavy Higgs)

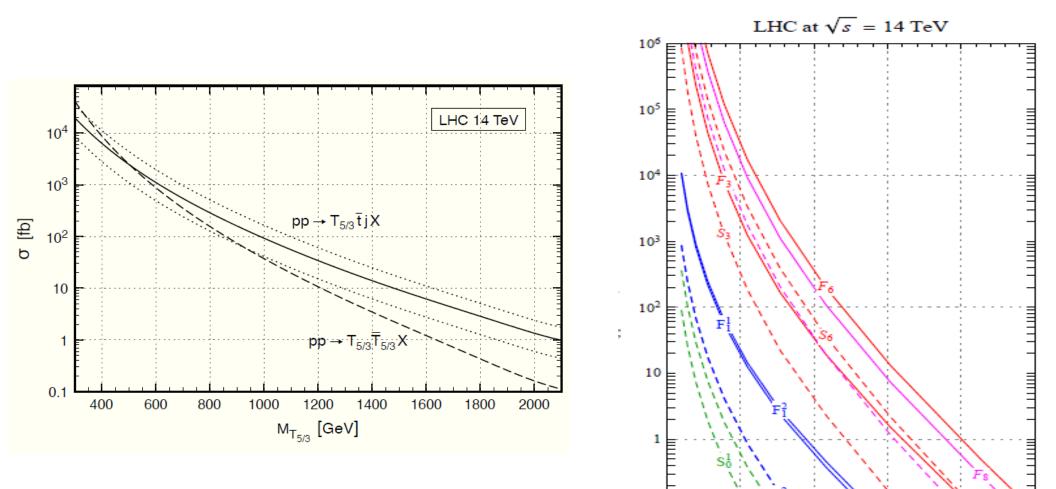
=> need 50-100 fb^-1

(YES) Heavy quarks of strong EWSB

 $T^{2/3}$, $B^{-1/3}$ subject to the usual t', b' searches CMS-PAS-EXO-09-012

Top partners with exotic charges: $T^{5/3}$ Contino, Servant 0801.1679; CMS-PAS-EXO-08-008


$$T^{5/3} \rightarrow W^+ t \rightarrow W^+ W^+ b$$


=> same sign dileptons

Conclusions

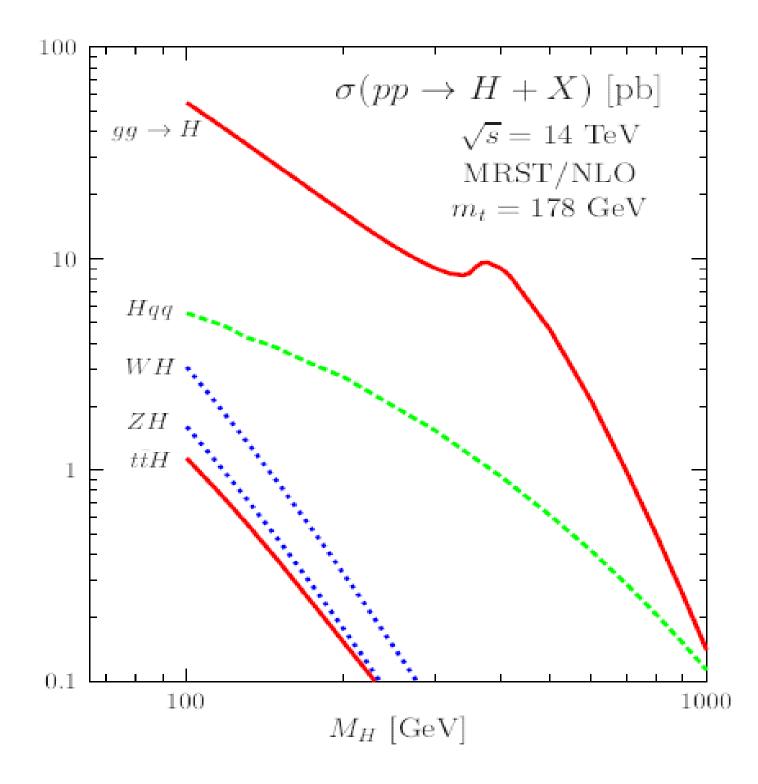
- With 10 pb⁻¹, go for super-models
- With 1 fb⁻¹, go for
 - $\text{large tan } \beta$,
 - -higgs into lepton jets $H \rightarrow z'z' \rightarrow 4l$
 - heavy vector-like quarks (t',b',T^{5/3})

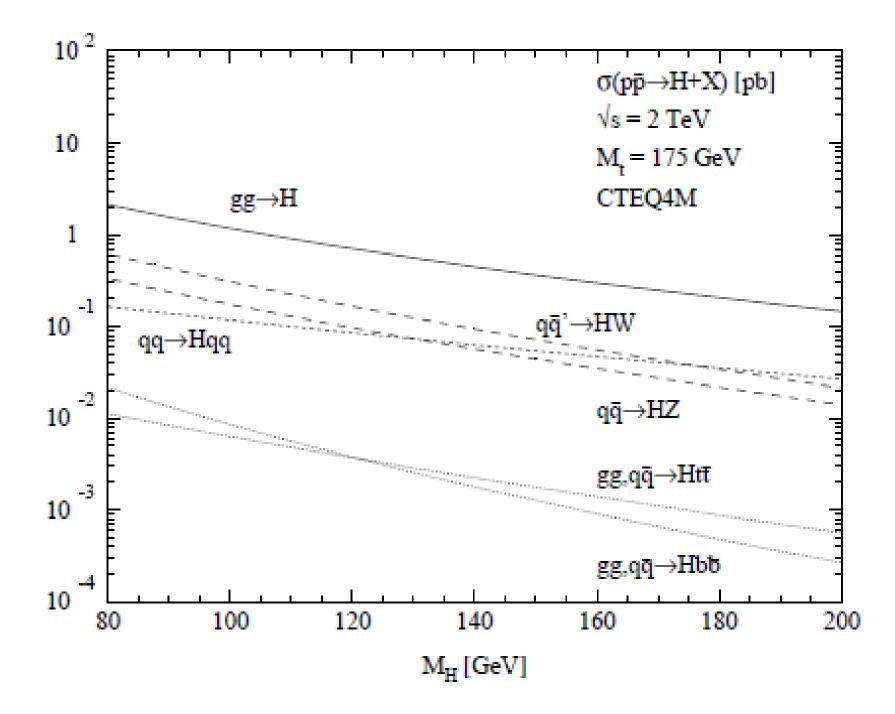
Backup slides

 10^{-1}

10⁻² ____0

500


1000


mass M in GeV

1500

2000

2500

