

Introduction to Geant4

Marc Verderi, Laboratoire Leprince-Ringuet, Institut polytechnique de Paris, Palaiseau,

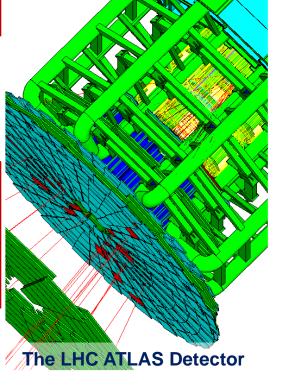
France

Overview of presentation

G4

- Geant4 Overview
- Geant4 Application Domains
- Physics Modeling
- Software Aspects
- Coming Challenges

Geant4 Overview


03/03/2023

What is Geant4 ?

Geant4 as a Software Toolkit

- Geant4 is an Object Oriented Monte Carlo particle transport software toolkit for simulating the passage of elementary particles through matter and interacting with it.
- It started in 1994 as the CERN RD44 project :
 - Goal of RD44 : assess the benefit of OO technologies for detector simulation for LHC era (LHC yet to come at that time !)
 - Medical and space domains requests included since the beginning !
 - Geant4 v1.0 released in Dec 1998
 - After alpha release in Apr 1997 and beta one in Jul 1998
- Key functionalities:
 - Kernel

- \rightarrow to **animate** the system
- Geometry + navigation & materials → to **describe** the setup
- Physics processes & tracking
- → to generate the series of physics interactions
- EM (O(100 eV) PeV), special extensions (O(eV) & O(mK)), hadronic (rest multi-TeV)
- Scoring
- GUI and Visualization drivers
- \rightarrow to **collect data** from the simulation
- → to **pilot** the application and **visualize**
- "Toolkit" because users select components and build their application
 - Not an application like ROOT, or Powerpoint, etc.
- Users can extend the toolkit !

What is Geant4 ? Geant4 as a Collaboration

- Geant4 is also the name of the Collaboration maintaining, developing and validating the software
 - ~130 members + O(10) "contributors" = new light status
 - ~30 FTE
 - ~30 institutes, worldwide
 - (Map of collaborative institutes after)
 - 16 working groups
- Web site:
 - http://geant4.cern.ch/
 - Download area, documentation, news, announcement of releases, meetings (Technical Forum, etc.)

Distributed development model:

- Based on GitLab (geant4-dev repo.)
 - Reserved to members & contributors
- About 1000 Merge Requests / year

Distribution through:

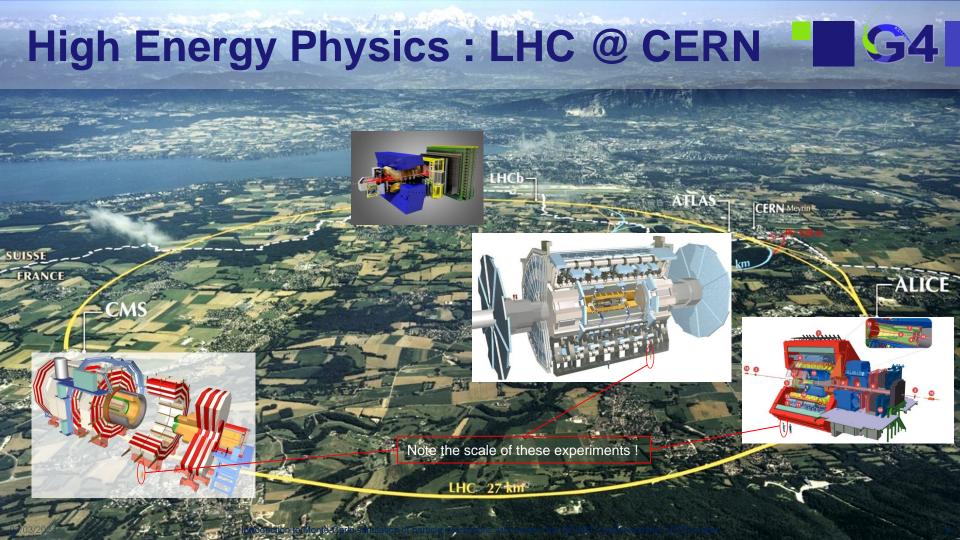
- Geant4 Web site
- GitHub instance
 - GitLab mirror for public releases & patches


- Open to public for Pull Requests
- Special way, CVMFS, for LHC experiments (monthly tag)

• One public release/year, in December

- Latest release: Geant4 v11.1
- Three general papers:
 - "Geant4: a simulation toolkit", S. Agostinelli *et al.*, NIM A, vol. 506, no. 3, pp. 250-303, 2003
 - "Geant4 Developments and Applications", J. Allison *et al.*, IEEE TNS, vol. 53, no. 1, pp. 270-278, 2006
 - "Recent Developments in Geant4", J. Allison *et al.*, NIM A, vol. 835, pp. 186-225, 2016

Map of Collaborative Institutes

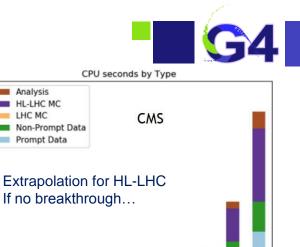


Geant4 Application Domains

Not an exhaustive coverage of domains !

With few examples of application in these selected domains

High Energy Physics


- LHC experiments very demanding in terms of simulation
 - Large detectors :
 - O(1 10) millions of volumes
 - High energy O(10 TeV) in center of mass:
 - Generate many tracks, daughters tracks, etc.
 - Up to O(10 k) tracks/events in lead-lead collisions !

Processing time and production volume:

- From O(1 s) to O(1 mn) per event
- O(10⁹) events processed / experiment !
- Processing made on large infrastructure (GRID)
- → high demand on Geant4 to be "as fast as possible"
 - Each % improvement is a lot of money saved...

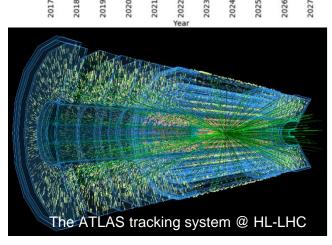
New phase HL-LHC (~2027) even more challenging !

- Typical request for O(10) higher throughput !
 - Together with better physics (syst. errors relative to stat. errors)
 - And higher pill-up, higher detector granularity for some part...
- Triggers quite R&Ds activities:
 - Trying to port Geant4 on GPU : not trivial at all !
 - Consider part of the simulation with AI-based fast simulation

1600

1400

1200


1000

600

400

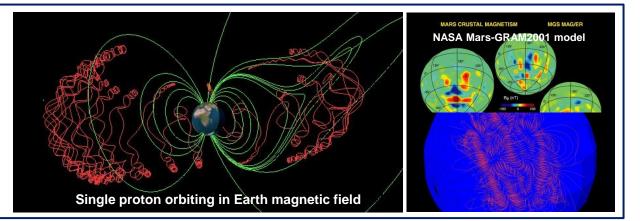
200


800 HS06

03/03/2023

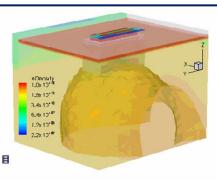
Introduction to Monte-Carlo simulation of particle interactions with matter: the GEANT4 toolkit and the GATE project

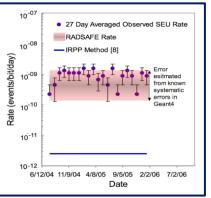
Geant4 in Space



Planetary scale simulation, dosimetry

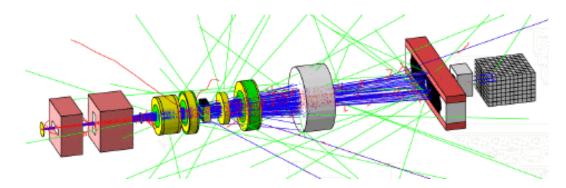
Planetocosmic:

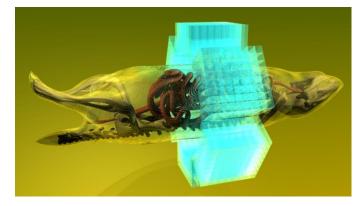

- Geant4 simulation of Cosmic Rays in planetary Atmo-/Magneto- spheres
- Laurent Desorgher *et al.* (Now at ICHUV, Switzerland)

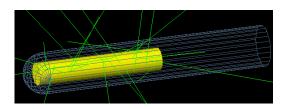


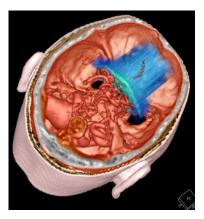
Single event effect rate:

- RADSAFE / MRED project
- Robert A. Weller *et al.* (Vanderbilt University, Nashville, TN, USA)

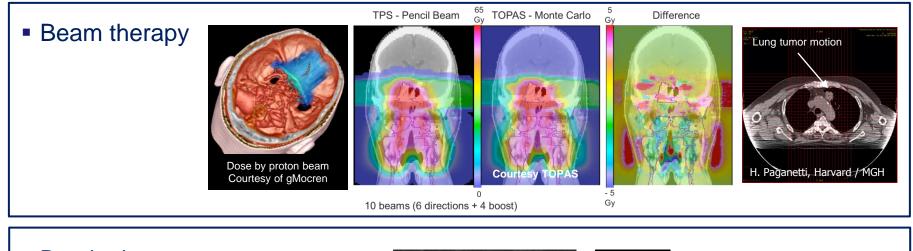


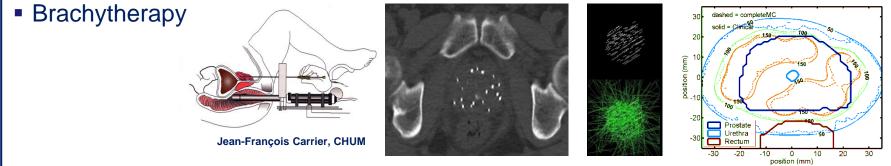



Geant4 in Medical Science

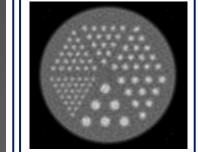


- Main use cases:
 - Beam therapy
 - Brachytherapy
 - Imaging
 - Irradiation study





Beam Therapy, Brachytherapy


Introduction to Monte-Carlo simulation of particle interactions with matter: the GEANT4 toolkit and the GATE project

Imaging

GATE

- Toolkit for Imaging applications
- based on the Geant4 toolkit
- easier to use for Imaging applications
- http://www.opengatecollaboration.org
- Ex of High resolution phantoms
 - (400 μm)³ voxelized mouse phantom
 - Simulated map of 18-fluorine absorbed dose

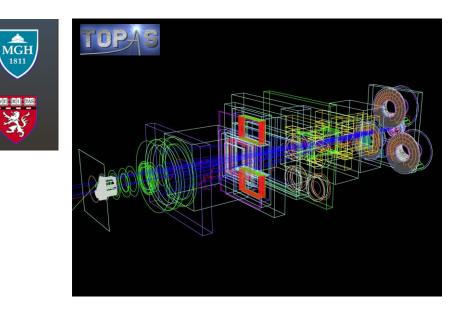
One reconstruction example, extracted from https://doi.org/10.1186/s40 658-020-00309-8

14

Triple-head gamma camera

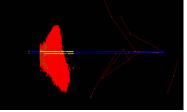
S. Staelens

Irene Buvat, INSERM/CHU Uni Ghent

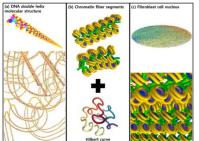

R Taschereau and AF Chatziioannou.

Medical Physics, 34(3), 1026-36 (2007)

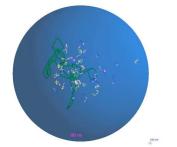
Radiation Studies, Beam Delivery System

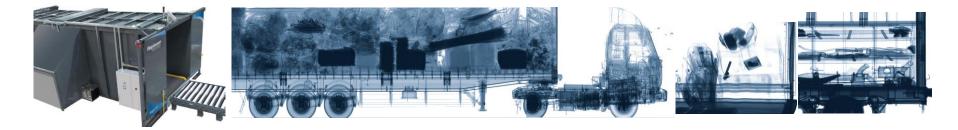

- Therapeutic irradiations generate also undesired doses from lost particles or interactions in the body:
 - In particular neutron doses in proton irradiations
 - Courtesy of Massachusetts General Hospital ron is from are 9-month male 4-year female 8-year female 11-year male 14-year male
 - Ability of handling complex setups useful in estimating these doses

 Time dependent simulation of an IBA doublescattering beam delivery system:

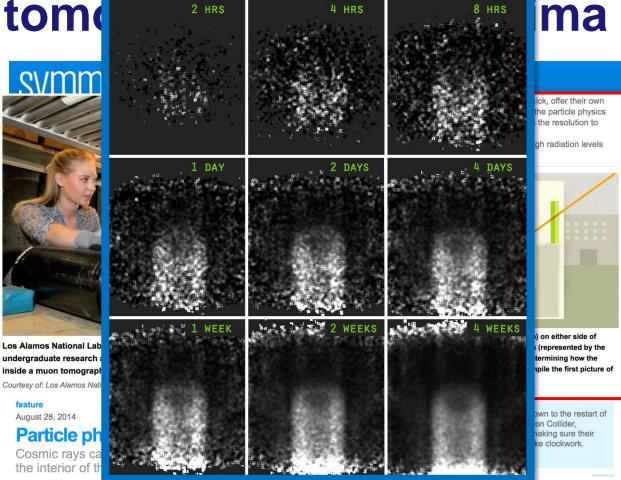


Down to DNA scale : microdosimetry


- Aims at building a "bottom-up" understanding of the dose
 - From damages to the DNA: single or double-strand break
 - Up to cells → organs → entire body
- The project Geant4-DNA deals with this development
 - http://geant4-dna.org/
 - Project initiated O(15) years ago by the European Space Agency, for manned missions to Mars !
- Modeling includes:
 - Direct damages to the DNA strands
 - Chemistry phase:
 - Formation of free radicals + scattering + attack on DNA strands
 - Chemistry phase important as responsible for ~60% of DNA damages !
 - Involve processes down to the O(eV) scale !
 - With no "condensed history" (discussed after), hence time-consuming
- Geant4-DNA has become very popular in the medical domain
 - Study of particle irradiation effects, nano-particle enhancement, now used for FLASH, ...
- Same approach used by "MuElec" project for microdosimetry in silicon.



rradiation of a pBR322 plasm including radiolysis - movie courtesy of V. Stepa (NPI-ASCR/LP2iB-CENBG/CNRS/IN2P3/ESA)


Geant4 in Homeland Security : simulating X-ray cargo radiography

Muon tom

03/03/2023

Introduction to Monte-Carlo simulation of particle interactions with matter: the GEANT4 toolkit and the GATE project

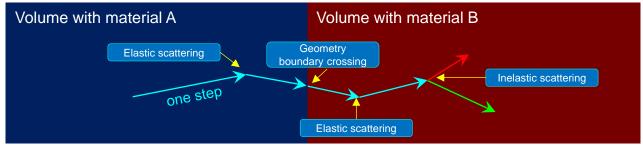
G4

Archeology

-G4

- The same "muongraphy" technique is used in several areas:
 - Volcanos
 - But also archeology
- Applied in the discovery of a big void in the Great Pyramid
- Geant4 used in the simulation of the muon detection system

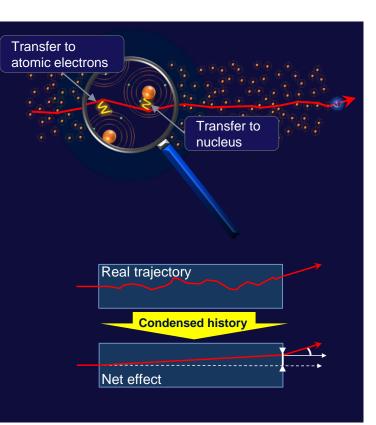
- Images : courtesy of D. Attié & S. Procureur
- Other groups are using this technique in this field:
 - Eg : arXiv:2202.07434v1 [physics.ins-det] 15 Feb 2022



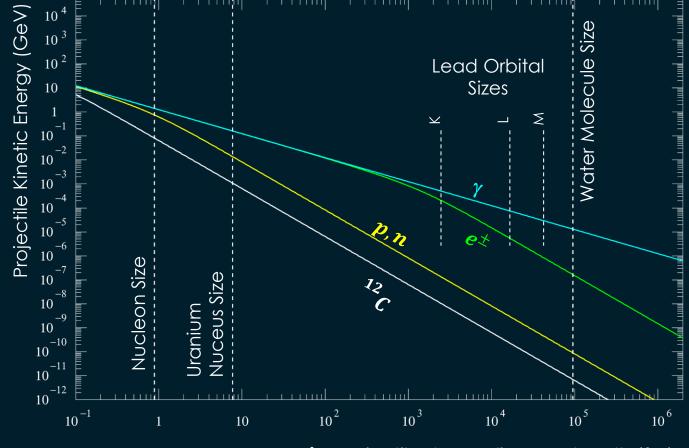
Physics Modeling

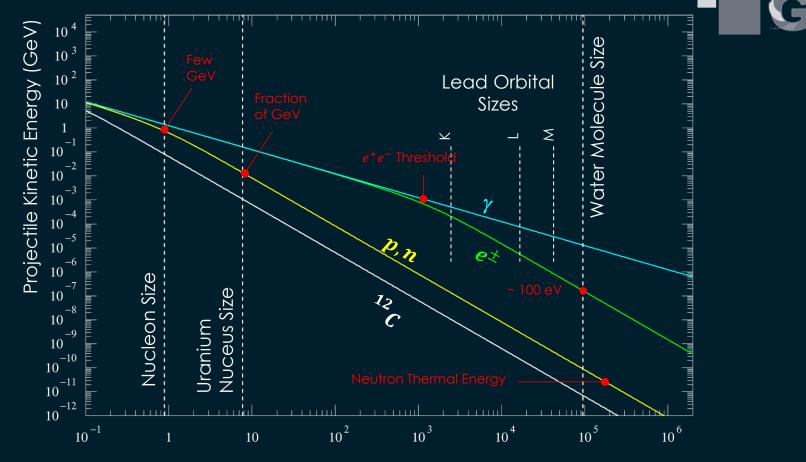
Monte-Carlo Particle Transport

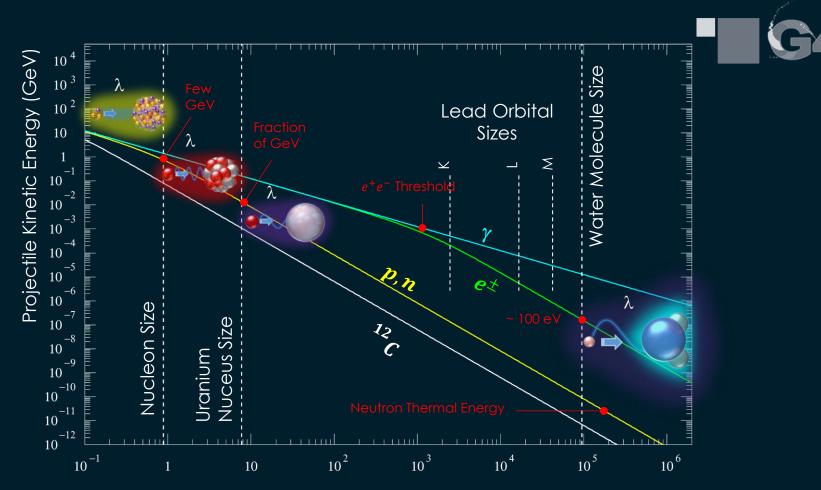
In a Monte-Carlo particle transport code, particles are transported by steps:



- The particle undergoes interactions by n processes i's
 - Each one being driven by a cross-section σ_i
 - Which depends on the particle type, kinetics & material
 - The cross-section σ_i determines the distance ℓ_i to next interaction for process i:
 - Which is obtained by sampling $p_i(\ell) = \sigma_i \cdot exp(-\ell \cdot \sigma_i)$
- How a step is calculated ?
 - 1. Cross-sections σ_i 's are calculated at the beginning of the step
 - 2. Distances ℓ_i are sampled accordingly
 - And the shortest distance is taken, $\ell_{win} = \min(\{\ell_i\}_{i=1...n}) \rightarrow$ this determines the step length
 - 3. The particle is then moved to the end step point, and the **final state of process** "*win*" is applied
 - If this process produced daughters particles, they are stacked, and will be tracked too, later on

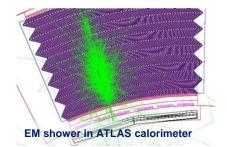

Charged Particle Transport


- The previous algorithm is general in theory
- But is unaffordable for charged particles:
 - Ionization generates O(10⁶) interactions/mm
 - Bremsstrahlung has infrared divergence
 - → Both generate very numerous but very little interactions
 - With tiny energy particles, which almost don't travel
 - → Lot of CPU time needed to simulated all these !
- Condensed History approach:
 - Theoretically sum-up the numerous tiny interactions
 - To generate their net effect in one step
 - Tiny energy particles accounted as "local energy deposit" and are not created
 - User defines a threshold for that : so-called "cut"
 - When an ionization e⁻ –a "δ-ray"-, or a bremsstrahlung γ, is produced above the "cut", it is tracked
 - So the "cut" defines the limit between continuous and discrete energy loss

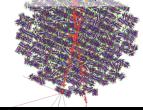


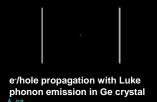
 λ : Projectile de Broglie Wavelength (fm)

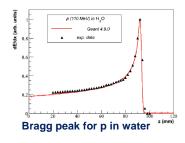
 λ : Projectile de Broglie Wavelength (fm)

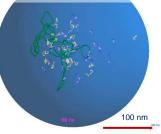

 λ : Projectile de Broglie Wavelength (fm)

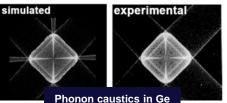
Electromagnetic Physics

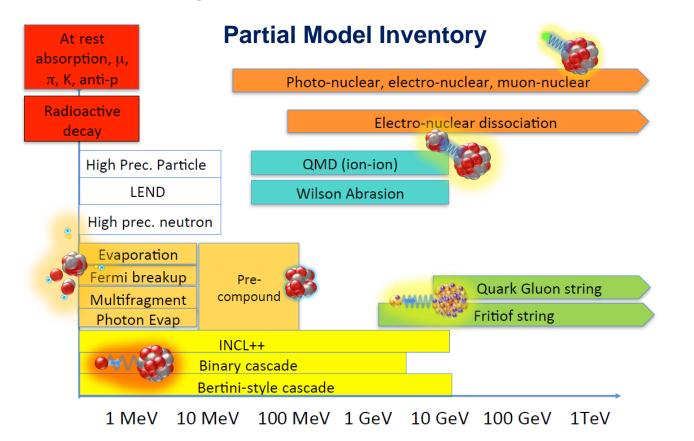



Standard" Electromagnetic:

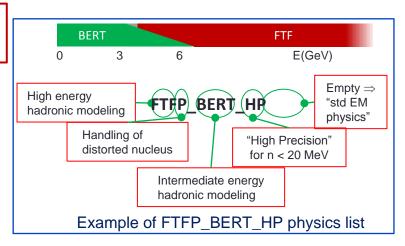

- Energy range 1 keV O(100 TeV)
- Processes for e-, e+, γ
- Charged hadrons ionization up to 100 TeV
- Muon, up to PeV
- "Low energy" Electromagnetic:
 - More precise description:
 - PENELOPE 2008 reimplementation
 - LIVERMORE data for cross-sections and final states
 - Energy range down to ~250 eV / ~100 eV
 - Charged hadron ionization
 - ICRU' 49 & 73 & 90, NIST
 - Material relaxation (PIXE, Auger e-, ...)
- DNA & MuElec:
 - For microdosimetry studies in DNA and Silicon
 - Processes down to a few eV
 - Chemistry stage for DNA
 - Water radical scattering
- Optical photon: long wavelength γ (X-ray, UV, visible)
 - Reflection, refraction, absorption, wavelength shifts, Rayleigh
- Phonons:
 - Suited for very low-temperature detectors (tens of mK)


Cell nucleus (15 µm diameter) with 6×10⁹ base pairs of DNA NIM B 306 (2013) 158-164

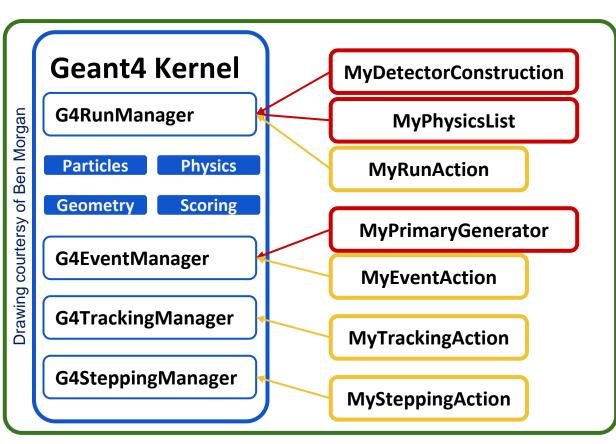



pBR322 plasmid irradiation, including radiolysis

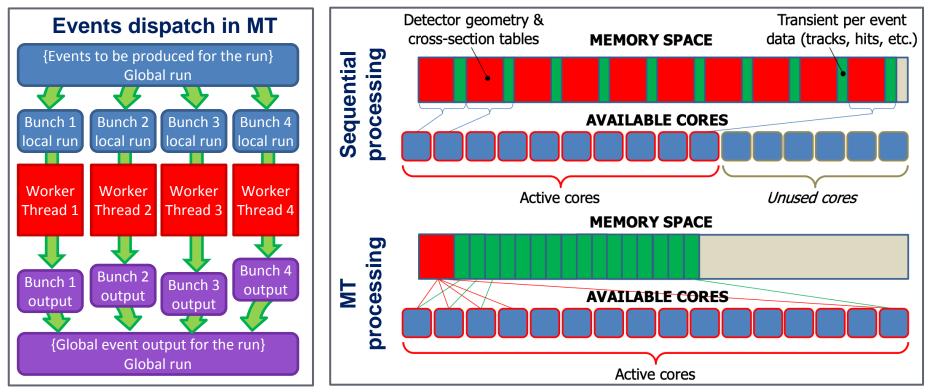
Hadronic Physics



The Physics List Concept


- There are <u>many</u> physics models in Geant4 !
 - electromagnetic & hadronic, but also radioactive decay, options for low energy neutrons, low energy electromagnetic, etc.) available in Geant4
 - plus some options like fast simulation, variance reduction (not discussed today)
- Some physics models are:
 - complementary (valid on ≠ energy domains)
 - competitive (valid on the same energy domain)
- A "physics process" –eg "hadron inelastic" is often a composed of several models
 - Each model serving one energy domain
- The "physics list" concept aims gathering consistent set of "physics processes"
 - And to configure their underneath "models", parameters, etc
- Geant4 provides "ready to go" physics lists, meant to respond to different use-cases, eg:
 - High Energy Physics
 - With for example LPM effect activated, by no details on atomic structure
 - Medical
 - With accurate description of Bragg peak
 - DNA
 - With ultra-low energy processes activated, but no precision on high energy side
- These are continuously monitored
- They can served as a basis for more specialized physics

Software Aspects

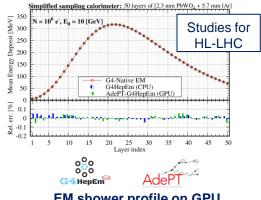

Geant4 Main Components

Mandatory Description

- System Geometry
 - Scoring
- Particles and Processes
- Primary Particle Source(s) Optional Actions
- Custom control of steps, tracks, events, runs

Multithreading : Efficient Resource Usage

- MT (introduced in Geant4 10.0, in 2013) resolved the "embarrassingly problem" of Geant4
- Scheme evolved to "tasking" with 11.0 : more flexible and easier bridge to hybrid computing



Coming Challenges

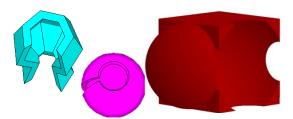
Human & Technological Challenges

- Geant4 is next to 30 years old !
 - Software is still improving...
 - ... but "historical" members got older by 30 years !
 - Not enough new blood coming & <u>staying</u> in Geant4 !
 - And fixed term contract policy is a <u>disaster</u> for such long terms projects...
 - New and stable generation of developers is absolutely needed !
- Mutation to parallelism(s)
 - Computing power increasing but under "parallel" technologies
 - Many core, SIMD, GPU, etc.
 - Geant4 resolved the "embarrassingly parallel problem"
 - With "event-level parallelism" (MT and now Tasking)
 - "Track-level parallelism" is hoped to improve compute intensity
 - By sharing in one go calculations among several tracks
 - Using of fine grained parallelism technologies : SIMD, GPU
 - But high energy Monte-Carlo particle transport code is an <u>evil</u> case for these technologies !
 - As it leads to lots of "thread divergences"
 - That break the needed "regular" processing flow to attain high efficiency
 - Ongoing R&Ds to see where we could land...

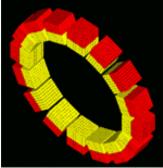
EM shower profile on GPU NVIDIA card GeForce RTX Mihaly Novak & Jonas Hahnfeld (CERN)

Conclusion

- Geant4 is a general purpose particle transport Monte Carlo toolkit with wide physics coverage and numerous application domains
 - Geant4 was initiated in 1994, 29 years ago, and it is still evolving
 - It is a free and Open Software
 - It is available from <u>https://geant4.web.cern.ch/</u>
 - Its OO structure allowed it to **accommodate many use cases** & hence serve many domains
- Geant4 is also the name of the Collaboration in charge of the toolkit
 - About 130 members, for ~30 FTE, distributed worldwide
 - They maintain and develop Geant4 with a distributed model
- Despite a long series of successes, Geant4 has still great challenges to cope with !
 - In particular, the strong HL-LHC demand poses acute challenges !
 - With much higher speed requested, together with better physics quality
 - To not increase systematic errors from simulation compared to statistical ones
- But the biggest challenge is a human one : a new and stable generation of developers is desperately needed !

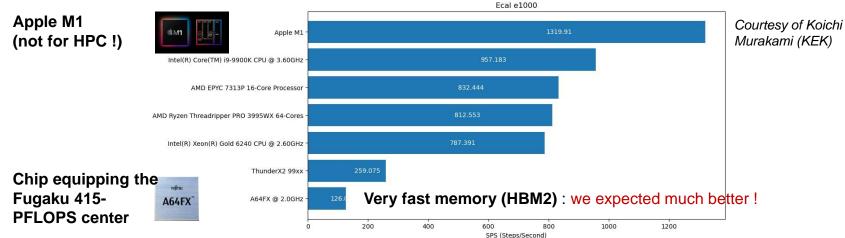

BACKUP

03/03/2023


Key geometry capabilities

G4

- Richest collection of shapes
 - CSG (Constructed Solid Geometry), Boolean operation, Tessellated solid, etc.
 - The user can extend
- Describing a setup as hierarchy or 'flat' structure
 - Describing setups up to billions of volumes
 - Tools for creating & checking complex structures
 - Interface to CAD
- Navigating fast in complex geometry model
 - Automatic optimization
 - By subdivision of geometry in "voxels" containing a few volumes, with fast navigation between neighbor voxels
- Geometry models can be 'dynamic'
 - Changing the setup at run-time
 - e.g. "moving objects"



- Investigations will continue to better understand the spread in performances !
 Other bardware will be tested, when evailable
- Other hardware will be tested, when available

Investigation : hardware benchmark

- GPUs are being largely spread as accelerators in hybrid computing
- But important to evaluate other hardware solutions

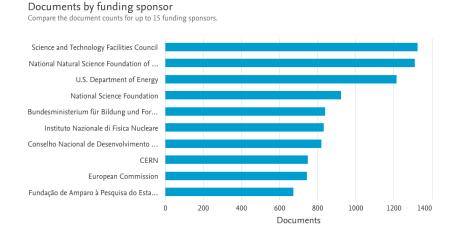
Can Geant4 run on GPU ?

-G4

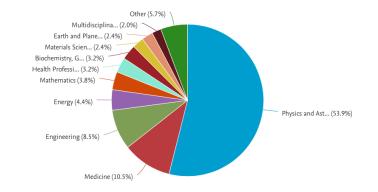
- We have often the question "can Geant4 run on GPU ?"
 - Underlying hope : GPUs are fast, so running Geant4 on GPU would be fast !
 - Not that simple...
- GPU are fantastic to treat « many very similar things » « behaving almost the same »
 - Typical example and original motivation : optical photons
 - The treatment can be done in parallel, applying the same calculation to a set of data.
 - And this can be repeated calculation after calculation if the set of data is not destroyed by these calculations.
 - In other words, no divergences appear in the data set : the data set remains of « the same nature ».
 - GPUs are designed to make these parallel calculations efficiently, and they are performing nicely !
- But with a Monte Carlo like Geant4:
 - « many very similar things » → « many very different things » !
 - Many type of particles !
 - « behaving almost the same » \rightarrow « behaving not at all the same » !
 - Interactions of particles are very different from on type to an other
 - Even particles of same type can undergo very different interactions !
- Usage of GPU limited a priori to some « sectors », strongly linked to their divergences:

Source of plenty of divergences !

- Net gain of that ?
 - Great for medical applications (demonstrated) : low E elec. in simple geometries.
 - But for HEP and complicated geometries: ongoing R&D, first responses expected in a time scale of one year.


12,644 documents have cited:

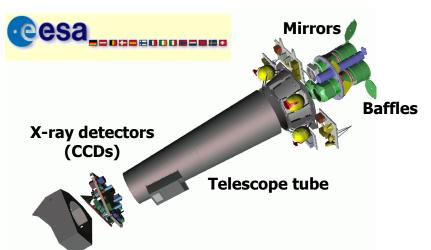
GEANT4 - A simulation toolkit


Agostinelli S., Allison J., Amako K., Apostolakis J., Araujo H., Arce P., Asai M., (...), Zschiesche D.

(2003) Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506 (3), pp. 250-303.

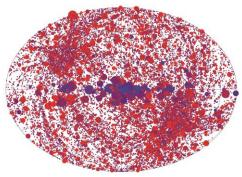
🔝 Set feed

Documents by subject area

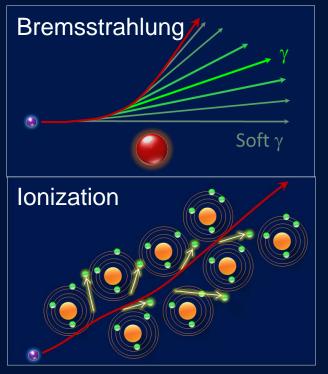


Geant4 - A simulation toolkit <u>NIM A, vol 506(3), pp250-303, 2003</u>

Significant use across many research areas, considered mission critical for HEP ³⁹


XMM Newtown telescope : the start of Geant4 in Space Science

Artist view of XMM

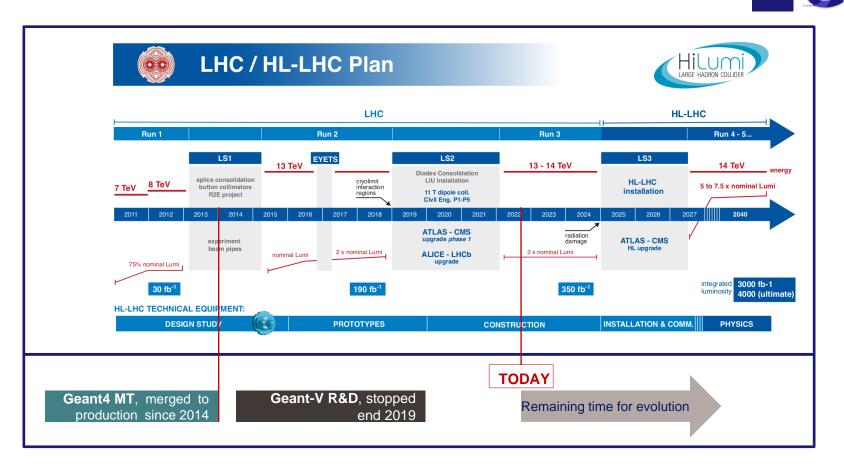


Map of X-ray sources by XMM

- Launch December 1999
 - Expected end of mission December 2025
- Highly elliptic orbit:
 - Perigee 7000 km
 - Apogee 114000 km
- Flight through the Van Hallen radiation belts

- Chandra X-ray observatory, with similar orbit, experienced unexpected degradation of CCDs
- Geant4 helped to understand:
 - X-ray telescopes also focus protons very well...
 - which damage the CCD cameras !
- XMM could take counter-action !

(Quasi-)Diverging Cross-Sections


- (Quasi-)diverging cross-sections for:
 - **Bremsstrahlung**, which has a diverging cross-section
 - Produces an infinity of soft γ
 - Which don't fly far away...
 - (Well, some dielectric effect limit the divergence in reality)
 - Ionization, which can lead to huge amount of soft e⁻
 - Which can't travel far away...

Under a "given precision" these very low energy particles contribute to the "local energy deposit"

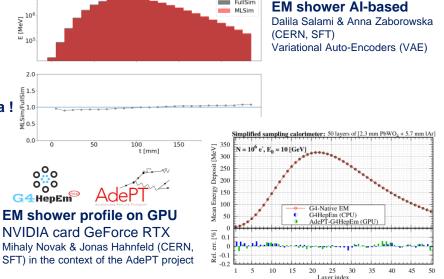
Sounds like a specialist issue ?

- It isn't ! You must specify this "given precision"
- Which is a "production threshold"
- Badly named as "cut" in common language
- In Geant4, production thresholds are expressed in range
 - Particles unable to travel beyond "x" distance are not produced
- Typically range cut must be ~ size of smallest volume
 - /run/setCuts 1 mm

HL-LHC & Simulation Time Scales

Three main lines of development

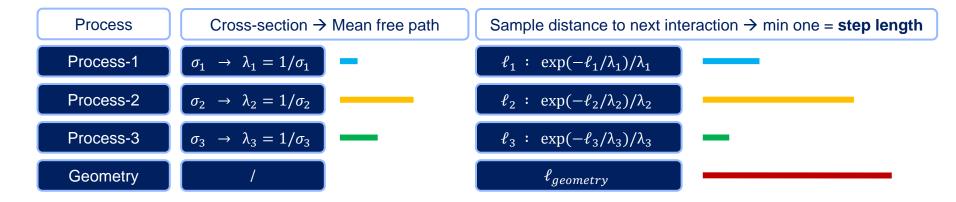
Continue with adiabatic improvements of detailed simulation


- Technical improvements
 - Code revision, modern standards, more use of acceleration techniques, etc.
- And physics precision improvements
 - If speed-up by factor f, need to improve physics precision by factor \sqrt{f} !
- It is not excluded (but not promised !) that a factor $f \sim 2$ is reachable
 - Generally, few percent gain in speed at each release

Improve fast simulation

- Classical parametric approaches
 - Well known GFlash for EM showers.
- But also modern techniques based on Machine Learning
 - Might be an approach for hadronic showers and advanced models
- Important : fast simulation may be the security net of that era !
- And also, explore wider use of biasing techniques

R&D accelerators and new architectures


- Large spread of GPUs :
 - High reward @ high risk
 - Approach : articulate GPU CPU in an efficient flow
- Benchmarks on new architectures

FullSim

e⁻, 500 [GeV], 0°, Pb

