Direct search for dark matter axion with MADMAX

Pascal Pralavorio (pralavor@in2p3.fr)

CPPM/IN2P3 – Aix-Marseille Université

- 1- Scientific context
- 2- MADMAX: principles and prototyping phase
- 3- Technological developments (inc. IN2P3 participation)
- 4- Conclusion

Journées R&T IN2P3, 07 novembre 2023

How to see the axion ?

Convert it to photon in a magnetic field

Exp. constraints

Axion search very rich in experimental challenges

Axion/ALP direct searches

Complementary experimental approaches (all present in DESY axion hub)

DM axion search: status / prospects

□ Haloscopes = main way to search for Dark Matter axion

- Only very few experiments currently probe a (very small) part of the QCD axion phase space
- Vast R&D program to improve signal sensitivity and expand range of axion mass search

Rising interest (techno improvements + LHC/WIMP results) : **next decades promising**

DM axion search: how?

Experimental challenges for haloscopes

- Convert axions into photons [E field of $O(10^{-12}, \frac{B}{10^{-T}})$ V/m] > high B_{field} [B >> 1T]
- Boost E_{field} [up to detectable P~10⁻²² W] → resonant set-up or large area
- Scan over range of axion mass
 tunable set-up [precision mechanics]

P. Pralavorio (CPPM)

MADMAX (1/2)

A novel experimental concept: dielectric haloscope

Constructive interference of coherent photon emissions at dielectric layer surfaces
 + resonant enhancement (~leaky resonant cavities) : boost (β²) signal wrt mirror only

MADMAX (1/2)

A novel experimental concept: dielectric haloscope

- Constructive interference of coherent photon emissions at dielectric layer surfaces
 + resonant enhancement (~leaky resonant cavities) : boost (β²) signal wrt mirror only
- $P_{sig} = 10^{-22} \text{ W} \times \left(\frac{\beta^2}{50000}\right) \times \left(\frac{B_e}{10 \text{ T}}\right)^2 \times \left(\frac{A}{1 \text{ m}^2}\right) \times C_{a\gamma}^2$ $P_{sig}^{\text{detect.}} = 10^{-22} \text{ W} \times \left(\frac{SNR}{5}\right) \times \left(\frac{T_{sys}}{4 \text{ K}}\right) \times \left(\frac{4 \text{ days}}{t}\right)^{1/2}$ $P_{sig}^{\text{detect.}} = 10^{-22} \text{ W} \times \left(\frac{SNR}{5}\right) \times \left(\frac{T_{sys}}{4 \text{ K}}\right) \times \left(\frac{4 \text{ days}}{t}\right)^{1/2}$ $P_{sig}^{\text{detect.}} = 10^{-22} \text{ W} \times \left(\frac{SNR}{5}\right) \times \left(\frac{T_{sys}}{4 \text{ K}}\right) \times \left(\frac{4 \text{ days}}{t}\right)^{1/2}$ $P_{sig}^{\text{detect.}} = 10^{-22} \text{ W} \times \left(\frac{SNR}{5}\right) \times \left(\frac{T_{sys}}{4 \text{ K}}\right) \times \left(\frac{4 \text{ days}}{t}\right)^{1/2}$ $P_{sig}^{\text{detect.}} = 10^{-22} \text{ W} \times \left(\frac{SNR}{5}\right) \times \left(\frac{T_{sys}}{4 \text{ K}}\right) \times \left(\frac{4 \text{ days}}{t}\right)^{1/2}$ $P_{sig}^{\text{detect.}} = 10^{-22} \text{ W} \times \left(\frac{SNR}{5}\right) \times \left(\frac{T_{sys}}{4 \text{ K}}\right) \times \left(\frac{4 \text{ days}}{t}\right)^{1/2}$ $P_{sig}^{\text{detect.}} = 10^{-22} \text{ W} \times \left(\frac{SNR}{5}\right) \times \left(\frac{T_{sys}}{4 \text{ K}}\right) \times \left(\frac{4 \text{ days}}{t}\right)^{1/2}$ $P_{sig}^{\text{detect.}} = 10^{-22} \text{ W} \times \left(\frac{SNR}{5}\right) \times \left(\frac{T_{sys}}{4 \text{ K}}\right) \times \left(\frac{4 \text{ days}}{t}\right)^{1/2}$ $P_{sig}^{\text{detect.}} = 10^{-22} \text{ W} \times \left(\frac{SNR}{5}\right) \times \left(\frac{T_{sys}}{4 \text{ K}}\right) \times \left(\frac{4 \text{ days}}{t}\right)^{1/2}$ $P_{sig}^{\text{detect.}} = 10^{-22} \text{ W} \times \left(\frac{SNR}{5}\right) \times \left(\frac{T_{sys}}{4 \text{ K}}\right) \times \left(\frac{4 \text{ days}}{t}\right)^{1/2}$ $P_{sig}^{\text{detect.}} = 10^{-22} \text{ W} \times \left(\frac{SNR}{5}\right) \times \left(\frac{T_{sys}}{4 \text{ K}}\right) \times \left(\frac{4 \text{ days}}{t}\right)^{1/2}$ $P_{sig}^{\text{detect.}} = 10^{-22} \text{ W} \times \left(\frac{SNR}{5}\right) \times \left(\frac{T_{sys}}{4 \text{ K}}\right) \times \left(\frac{4 \text{ days}}{t}\right)^{1/2}$ $P_{sig}^{\text{detect.}} = 10^{-22} \text{ W} \times \left(\frac{SNR}{5}\right) \times \left(\frac{10^{-2} \text{ W}}{t}\right)^{1/2}$ $P_{sig}^{\text{detect.}} = 10^{-22} \text{ W} \times \left(\frac{SNR}{5}\right) \times \left(\frac{10^{-2} \text{ W}}{t}\right)^{1/2}$ $P_{sig}^{\text{detect.}} = 10^{-22} \text{ W} \times \left(\frac{SNR}{5}\right) \times \left(\frac{10^{-2} \text{ W}}{t}\right)^{1/2}$ $P_{sig}^{\text{detect.}} = 10^{-22} \text{ W} \times \left(\frac{10^{-2} \text{ W}}{t}\right)^{1/2}$ $P_{sig}^{\text{detect.}} = 10^{-22} \text{ W} \times \left(\frac{10^{-2} \text{ W}}{t}\right)^{1/2}$ $P_{sig}^{\text{detect.}} = 10^{-22} \text{ W} \times \left(\frac{10^{-2} \text{ W}}{t}\right)^{1/2}$ $P_{sig}^{\text{detect.}} = 10^{-22} \text{ W} \times \left(\frac{10^{-2} \text{ W}}{t}\right)^{1/2}$ $P_{sig}^{\text{detect.}} = 10^{-22} \text{ W} \times \left(\frac{10^{-2} \text{$
 - Axion mass scan: move discs with piezo motors (μm prec.) at 4K under 10 T (50 MHz step)

→ MADMAX exploits a novel exp. approach to cover an uncharted phase space

MADMAX (2/2)

Formed in 2017. 10 institutes: French (2), German (6), Spanish (1) and US (1) \rightarrow ~50 people

→ Start with prototyping phase to validate booster concept: cutting-edge R&D

Prototyping phase strategy

CERN lends us the world largest warm bore dipole magnet [Morpurgo]

Usage by MADMAX during YETS approved by CERN RRB under CPPM impulse

Address the two main challenges to develop booster concept

- Understand Radio Frequency (RF) response in O(10) GHz regime \rightarrow Calibrate boost factor
- Move the disks at μm level precision at cold and under high B-field

	Name	Goal	Туре	Made of	Avail.	Test Room Temp. Cold (10 K)
	P200	Piezo-motor + mechanics	Open booster	1 moveable disk ϕ = 200 mm	2022	2022
	CB100	RF studies + First physics	Closed booster	3 fixed disks ϕ = 100 mm	2021	2022, 23, 24
	CB200	RF studies + First physics	Closed booster	3 fixed disks ϕ = 200 mm	2023	24
	OB300	Scan ALP around 80 μeV	Open booster	3-20 moveable disks ϕ = 300 mm	2024	25, 26?

➔ Gradually build the final booster design + do physics

RF studies + ALP Physics (1/2)

RF studies + ALP Physics (2/2)

Name	Goal	Concept	Made of	Avail.	CERN test
CB100	RF studies + First physics	Closed booster	3 fixed disks φ = 100 mm	2021	2024

Develop a 'cheap' cryostat with CERN cryolab to cool the booster + LNA \rightarrow Validated the principle in 2023

Set-up with moveable disk (1/2)

Name	Goal	Concept	Made of	Avail.	DESY magnet test
P200	Piezo-motor + mechanics	Open Booster	1 moveable disk φ = 200 mm	2021	2022

Successful test of JPE piezo motor at 5 K and 5.3 T (*ALP magnet in DESY*)

Build full mechanical structure of Open Booster and insert 1 mirror + 1 disk (3 piezo motors)

P. Pralavorio (CPPM)

Set-up with moveable disk (2/2)

P. Pralavorio (CPPM)

Final prototype + ALP physics

MADMAX timescale

P. Pralavorio (CPPM)

MADMAX & IN2P3

Pionnering experimental work at IN2P3 on DM axion search

- CPPM joined MADMAX in 2020 (2 physicists, 1 PhD, 4 IT → 4 FTE). IJCLab: will join in 2024
- Master Project at IN2P3 since 2023
- Presentation at IN2P3 Conseil Scientifique on Dark Matter (23-Oct 2023)
- Remark: CNRS IRL "DMLab" (with Helmholtz centers) → MADMAX is a central project

MADMAX & CPPM (1/2)

Precision mechanics for the prototype boosters

- Precision 3D measurements O(µm) for geometry control of the disks
 - ✓ CPPM expertise/infrastructure for precision measurements (e.g. ATLAS pixels)
- Conception/fabrication of disk support rings
 - ✓ Interfaces between disks, piezo motors and interferometer system
 - ✓ Cutting edge and challenging R&D → Optimisation of fabrication process to obtain best planarity (<10µm)

MADMAX & CPPM (2/2)

Coordination of prototype tests at CERN in Morpurgo magnet

- Impulsion for magnet choice, approved by CERN RRB in 2020 for 2021-25 YETS (~1 month/yr)
- Conception, fabrication and installation of mechanical infrastructures around the magnet (*Rails for electric racks, supports for prototypes, rails for big test cryostat, ...*)
- Design and construction of mechanical structure to align OB300 booster in cryostat and of integration tools (at DESY and CERN)
- Simulation and data analysis

Receiver (1/2)

Composed of

- Low Noise Amplifier (LNA) ...
 - ✓ "Classic" HEMT, G=33 dB, 4 K added noise

• ... connected to custom-made receiver

- s/n 010
- ✓ Three mixing stages to down sample from 20 GHz to 50 MHz (heterodyne mixing)
- ✓ Fast Fourier Transform in 4 samplers → 1% dead time
- ✓ Tested at CERN in 2022 but difficult to move + some saturation & time instability

... connected to commercial spectrum analyzer (SA)

- ✓ Tested at CERN in 2023 : stable, no saturation but higher dead time*
- ✓ Just bought a new SA with data streaming (~0 % dead time)

Receiver (2/2)

Progresses on Low Noise amplifier

Josephson Junction being developed to further minimize noise (quantum limit)

• **Next**: >40 GHz techno. to be developed

Magnet

MACQU

Progresses on final magnet

Design completed: 2x9 skateboard coils with novel copper **CICC** conductor BILFINGER [NbTi with Cu jacket @ 1.8K]

Recently demonstrated that coils will be safe in terms of quench protection (MAdmax Coil for Quench Understanding)

Conclusions

Axion = DM candidate motivated by particle physics since 40 years

DM axion direct search: rising interest, next decades promising

- Resonant cavity sensitivity starts to scratch the QCD axion phase space (~1 μeV)
- Will be extended to most of the interesting mass range (1-1000 μeV) with novel experiments

□ MADMAX = novel exp. approach to cover theory-favored phase space

- Needs for precise (μm) instrumentation in extreme conditions (high B, 4 K, 10's GHz)
- Prototyping phase at CERN 2021-2026 to validate concept → ALP competitive searches
- CPPM in MadMax since 2020 \rightarrow construction, simulation, test and data analysis of protos

Technological developments on mechanics (precision, piezo motors), magnet, low noise amplifier, cooling

BACKUP

Axion scales

APPEC Committee Report

Rept. Prog. Phys., 85(5):056201, 2022, 2104.07634

P. Pralavorio (CPPM)

RF (1/3)

P. Pralavorio (CPPM)

RF (2/3)

RF (3/3)

OB calibration (1/2)

Boost factor determined using Bead Pull Method (non-resonant perturbation theory) + Lorentz reciprocity theorem J. Egge, <u>JCAP 04 (2023) 064</u>

OB calibration (2/2)

Test with a single disk + mirror (low boost factor)

Measure boost factor (+ systematics)

[paper in preparation]