Cryogenic Detectors & associated instrumentation. - IN2P3, Massive Detector R&D Overview -

- Journée R&T IN2P3 -IPHC 06-08 Nov 20213 https://indico.in2p3.fr/event/29132/

Alex Juillard IP2I

contribution from APC, IP2I, LPSC, IJCLab & Institut Néel

+ Cryogenic Detector ?

basics

Science application w/ massive detector

(with IN2P3 involvement)

- 0νββ
- Dark Matter
- CEvNS

Ongoing Project R&D & next generation

experiments

massive bolometer

+ Conclusion

Cryogenic Detector ??

« massive » Bolometer:

- Some of the fabrication step done *«by hand»*
- Particle detection « one by one »
- Main application :

Rare event detection

- Dark Matter
- 0νββ
- CEvNS

Matrice de Bolomètre :

- + 1 → 100k « pixels »
- Some of the fabrication step done *«collectively»*
- Particle detection « one by one » or by flux
- Main application :
 Astro
 - Sub-mm (50-600 Ghz)

Thermometer :

- ♦ T → measurable value
- ◆ Resistive
 - superconductor
 - Metal InsulatorTransition
- Magnetic
- w/ out of equilibrium mediator
 - Copper pairs in SC material:
 - Kinetic Inductance vs dN_{qp}
 - Out of equilibrium phonon
 can brake Cooper Pairs

Link with Quantum sensor

see A. Catalano for KIDs matrix detectors

Cryogenic Detector ??

 $T_{bath} \sim \! 10 \; mK$ - 300 mK

R&D = absorber + thermometer + electronics (Z adaptation, gain, readout) + cryo environment

4

Cryogenic Detector : why ??

EDELWEISS-III ; 2017 JINST 12 P08010

CUPID ; Eur. Phys. J. C (2022) 82:810

Double readout cryogenic detectors allows for an evt-by-evt background rejection :

- + Heat and Ionization on Ge detector :
 - Elec. Recoil / Nuclear Recoil discrimination
 - → Heat only event rejection
 - ➡ surface event rejection
- Heat and Light on different crystal
 - α background rejection

R&D : Ge-NTD thermal sensors

Ge-NTD (IJCLab, IP2I)

Neutron doped semiconductor. Near Metal Insulator Transition.

- NTD production on french reactor feasible in France
- Production (2015) during the LUMINEU ANR (CSNSM - CEA)
- No new production planed. Contact w/ other producer.

+ R&D : Optimization

- cutting, electrodes metallization. Gluing.
- Massive test for selection and extra noise measurement
- need = few 1000s of NTDs over the next decade

Eur. Phys. J. C 80, 44 (2020)

R&D : NbSi thermal sensor

Low Impedance

High Impedance

Nb_xSi_{1-x} (IJCLab)

Alloy near the Metal Insulator Transition or superconductor

- > 20 years of development. Co-evap of thin film.
- Best result in the superconducting mode (high or low Z)
- Micro-lithography (CNRS/C2N) for both detectors matrices (QUBIC) and massive bolometers (EDELWEISS, CryoSEL, TINY).
- + R&D :
 - Specific heat minimization \rightarrow Phonon traps
 - Low threshold « metastable »state for heat only event discrimination (Superconducting Single-Electron Device -SSED-, CryoSEL ANR project)

Four Si wafers with several phonon-trap designs were realized

Samples with TES islands \geq 5 µm are OK Samples with 2 µm TES have some problems

R&D on Massive Bolometer

3 major scientific goals (All are rare events search) :

+ $0\nu^2\beta$ (double beta desintegration w/o neutrino emission) :

Prepare the future of CUORE = **CUPID**

- → CUPID-Mo @ LSM is a major input for CUPID
- → Goal = 1 ton of detector with bkg discrimination
- Dark Matter « crisis » : no direct detection so far + no new physics at LHC
 - ➡ « near death » of the « standard » GeV-TeV SUSY WIMPs candidate.
 - ➡ Focus on low mass and ALPs (Axion Like Particle)
 - ➡ EDELWEISS-SubGeV, TESSERACT proposal @ LSM
- Search of New Physics with precision CEvNS (Coherent Elastic neutrino-nucleus scattering) measurement near nuclear reactor
 - Push the discrimination at very low threshold
 ✓ RICOCHET (installation started @ ILL reactor)
 - background rejection with cryogenic active vetos
 - ✓ Nucleus @ Chooz reactor
- Many other application:
 - → Fast neutron spectroscopy, rare decay observation, metrology, etc.

CUPID-Mo @ LSM [EPJC 83, 675 (2023), PRL162501 (2023)]

✦ IJCLab, IP2I + CEA

- Pilot ββ experiment based on scintillating bolometers with NTD readout
 - 20x Li₂MoO₄ crystals coupled to Ge light detectors
 - Data taking at LSM in EDELWEISS cryostat (2018-20)
 - Best worldwide results on $\beta\beta$ decay of ¹⁰⁰Mo
 - Demonstrator of the CUPID technology (see next slide)

Teflon: weak thermal link

Li₂Mo₄ crystal enriched in ¹⁰⁰Mo (99%) 210 g – cylinders ø44 mm x 45mm 2.1 kg of ¹⁰⁰Mo

Copper: Thermal Bath

CUPID (CUORE Upgrade with Particle Identification)

[EPJC 82, 810 (2022), JINST 18, P06033 (2023)]

✦ IJCLab, IP2I + CEA

- One of the 3 next-generation ββ experiments selected by the US and EU funding agencies (CUPID, LEGEND, nEXO)
 - 170 people & 33 institutions
 - Exploit **CUORE infrastructure** (Gran Sasso) with **CUPID-Mo technology**
 - **Single module**: Li₂¹⁰⁰MoO₄ 45×45×45 mm ~ 280 g
 - 57 towers of 14 floors with 2 crystals each **1596 crystals**
 - ~240 kg of ¹⁰⁰Mo with >95% enrichment ~1.6×10^{27 100}Mo nuclei
 - **Bolometric Ge light detectors as in CUPID-Mo**
- Data taking > 2030

10

Χ

CUPID (CUORE Upgrade with Particle Identification)

[EPJC 82, 810 (2022), JINST 18, P06033 (2023)]

✦ IJCLab, IP2I + CEA

- ◆ One of the 3 next-generation ββ experiments selected by the US and EU funding agencies (CUPID, LEGEND, nEXO)
 - Exploit **CUORE infrastructure** (Gran Sasso) with **CUPID-Mo technology**
 - **Single module**: Li₂¹⁰⁰MoO₄ 45×45x45 mm ~ 280 a

 - Bolo Numerous IN2P3 (& IRFU) tasks:
- Data tak

11

R&D: **CUPID** (CUORE Upgrade with Particle Identification)

CUPID Prototype Tower : ANR CUPID1 2022-25 + R&T IN2P3

✦ Assembly in IJCLab and Gran Sasso

• To be tested Mid-2024 in Cuoricino Cryostat @ Gran Sasso

Light Detector

Tower Construction

R&D: **CUPID** (CUORE Upgrade with Particle Identification)

CUPID Prototype Tower : ANR CUPID1 2022-25 + R&T IN2P3

Assembly in IJCLab and Gran Sasso

• To be tested Mid-2024 in Cuoricino Cryostat @ Gran Sasso

Light Detector

IJCLab Clean

Tower Construction

IN2P3 (& IRFU) tasks:

- SiO coating of 50% of the light detectors
 - gluing (NTD and heater) of LMOs and light
 - pre-test of light detectors at IJCLab (&
 - participation to the tower assembly @ Gran
 - Sasso

CUPID related R&D : CROSS

[Appl. Phys. Lett. 118, 184105 (2021), Appl. Phys. Lett. 118, 184105 (2021)]

Reject surface events by PSD assisted by metal film coating

- Proof of concept achieved with small prototypes
- Both surface α's and β's are separated from bulk events

Technology demonstrator

- ~ 5 kg of ¹⁰⁰Mo shared in ~36 x Li₂MoO₄ crystals (+ 6x ¹³⁰TeO₂ crystals)
- Dedicated cryostat @ Canfranc underground laboratory

Redundancy

- surface sensitivity
- scintillation light detection
- Improved Light detectors
 - enhanced by Neganov-Trofimov-Luke technology : demonstrated
 - ➡ Now CUPID baseline

erc (2018-24)

CUPID related R&D : BINGO

Less passive materials

Compact assembly

[arXiv.2301.06946, arxiv.2204.14161]

- Three innovations to reject background in ββ decay experiments based on Li₂MoO₄ and TeO₂
 - Revolutionary assembly to reject surface background
 - The light detector shields the passive materials
 - Enhanced-sensitivity light detectors (Neganov-Trofimov-Luke) (see next slide)
 - Internal veto (ultrapure BGO/ZnWO₄ scintillators)
 - \Rightarrow mitigate γ background in TeO₂
- ♦ BINGO demonstrator at LSM
 - Dedicated cryostat : instand of the EDELWEISS space LSM

CUPID related R&D : BINGO

[arXiv.2301.06946, arxiv.2204.14161]

NIM A 940 (2019) 320

BINGO - Technology demonstration NTL

Optimisations for CUPID/BINGO: Square and trapezoidal geometries, two-sided LDs, optimised voltage & operation, minimize loss from charge trapping η

Medex'23, 07 September 2023

Concentric1 - 0V

Benjamin Schmidt, BINGO - Experimental track 10

Bly

CUPID related R&D : TINY erc

- Development of bolometric detectors containing the most promising ββ isotopes
 ⁹⁶Zr and ¹⁵⁰Nd
 - Main challenge in Nd-based compounds: high specific heat from magnetism
 - detect phonons before thermalization
- TINY objective: develop a demonstrator with a 2 kg mass detector distributed in a few elements for each isotope
 - New dedicated cryostat @ Saclay (installation in 2025) for R&D
 - demonstrator tested in CROSS or BINGO Cryostat

(2023-29)

Ricochet @ ILL

Precise Measurement of a known signal IP2I, IJCLab, LPSC, I. Néel, ILL

- ◆ US-France-Russia collab.
 - ➡ 2 detectors technology
- Change of philosophy wrt Dark Matter

+ CEνNS measurement for MeV ν

(measured in 2018 @ 30 MeV)

- ◆ Specifications goals for french techno.
 - 1 kg Ge (27*38g) (18 for the 1rst phase)
 - 20 eV ioni + 10eV chal (10* better than EDWIII)
- some of the R&D (HEMT transistors) common w/ EDELWEISS
- ◆ CENNS erc funding (2019-24)
- Ricochet ANR funding (2021-25)

60 MW reactor @ ILL / Grenoble

- Ricochet installation started in 2022
- ♦ 5-10 years program

Fig. 6 Electrostatic simulation of a Full Inter-Digitized electrodes scheme on a 38 g germanium crystal $(\Phi = 30 \text{ g}, h = 10 \text{ mm})$. The crystal is surrounded at 2 mm distance by a chassis connected to the ground (not shown). The capacitance of the 4 electrodes with respect to the ground is about 20 pF (Color figure online.)

Ricochet R&D: detector geometry optimization

Low-Voltage approach for optimal particle identification

- Fiducial volume: 62 %
- Surface event rejection: YES
- Total capacitance: 18 pF

14

Heat energy [keVee]

14

Ricochet R&D: 1K cold elec & 1K-10mK interface optimization

 HEMT (High electron Mobility Transistor) @
 1K to replace the standard Si-JFET working at 100K

Bias and feedback
 resistor placed at
 10mK to minimize the
 thermal noise

 ◆ 35 µm contantan tracks on 100 µm kapton foil for the 10mK-1K path

✦ Intense work on the 1K HEMT based cold elec and 1K-10mK interface :

- Mitigate stray capacitance (ionization reso)
- Mitigate heat load on 10mK stage
 - → low HEMT bias dissipation
 - ➡ Use of special material for the 1K-10mK mechanics
- Mitigate Johnson noise of FB and and bias resistor

Ricochet R&D: MiniCryoCube demonstrator @ IP2I

shielding

w/o 1K shielding

10mK plate (45cm)

Analog + Numerical

◆ Aug-Oct 2023 @ IP2I :

First tests of a MiniCryoCube array in the Ricochet cryostat operated at Lyon with its dedicated 300K electronics for dual heat/ionisation measurement

Ricochet R&D: MiniCryoCube demonstrator @ IP2I

Presented at: TAUP2023, IDM2023, Nobel Symposium 2023 (NS-182 « Dark Matter »

- ER/NR discrimination threshold has been improved by about one order of magnitude w.r.t EDW and SuperCDMS
- Ricochet can now probe reactor neutrinos (CEvNS) (and equiv. 3 GeV WIMP with highly efficient LEE and ER rejection)
 - ➡ Ricochet resolution goals: 10 eV (heat) + 20 eVee (ionisation)
 - ➡ factor of ~2 still missing

Ricochet : Installation @ ILL

Low Mass Dark Matter : 2 complementary modes

Low Mass Dark Matter : 2 complementary modes

« small is beautiful ! »

- No observation of « standard » WIMPs (M> few GeV) w/ interaction rate < 1 evt/ton.year !
- Cryogenic detector no more competitive in this region
- Focus at low mass (resolution & threshold)
- ✤ If DM = Sub-GeV WIMPs then there are a lot of them !
 - 1 kg of good detector is competive
- + Axion & ALPs : Electronic Recoils
 - main background = Heat Only excess at low E
- * R&D goals: IPNL IJCLab LPSC (+ CEA)
 - HV withstand (w/o current leakage) for Luke Neganov « boost »
 - Discrimination down to a single **e-/h+ pair**
 - New transistor technology
 - ➡ Si-JFET → HEMT (C2N/CNRS)
- + > 10 years program

Coming experiments could use part of the EDELWEISS space (now dismantled) @ LSM

Figure 1: Response of the CRYOSEL detector operated at 0 V (left) and 200 V (right). Orange: expected NR signal for a 1 GeV/ c^2 WIMP with a scattering cross-section of 10^{-40} cm². The blue and red lines correspond to the ER and heat-only backgrounds observed in EDELWEISS detectors. The shape of the NR response is sensitive to the actual quenching factor and straggling effects for this type of interaction. In right panel a rejection factor of 1000 is considered for HO events.

Low Mass Dark Matter : Low Energy Excess (LEE), Heat only (HO) events

10

 10^{3}

10²

Low Voltage :

• despite large EDELWEISS-III large target mass (20 kg Ge) and excellent ER/NR separation, results limited by large HO population

Only Heat only ? :

• HO nature confirmed by absence of NTL boost from 15V to 78V

High Voltage :

• despite $\sigma = 0.53 e^{-1}$ resolution on 33g @ 78V, results also limited by HO

1000

Phonon Energy (eV)

Low Mass Dark Matter : CryoSEL project

CryoSEL : ANR 2022-25

- 40 g Ge crystal
- Phonon sensor = single NbSi strip (10 µm wide) forming a 5 mm-wide circle
- Use this small film as Point-Contact-like electrode of HV detector
- NTD glued on large enveloping electrode (high-resolution NTLamplified heat measurement)
- NbSi operated as SSED (Superconducting Single-Electron Detector)
- Detector kept well below Tc so that SSED is only triggered by large bursts of primary NTL phonons from high-field region just in front of it
- Most HeatOnly will not trigger SSED

Low Mass Dark Matter : CryoSEL project

CryoSEL :

- Operation of SSED as NTL phonon
 "tag": 5σ thresh = 1.250 kΩ
- With laser pulses, ~100% trigger at 2.6 keVee @ 60V
- Tag operation confirmed by K+L+HO ionization vs NTD data
- Threshold still far from goal → improvements to come from film with increased phonon efficiency, from increased bias and from reduced Tc

TESSERACT : Proposal experiment @ LSM

<u>Transition Edge Sensors with Sub-Ev Resolution And Cryogenic Targets</u>

phonon January Alizon

- DOE Funding for R&D and project development began in June 2020 (Dark Matter New Initiative)
- One experimental design, and different target materials with complementary DM sensitivity, all using TES
- Includes SPICE (Al₂O₃ and GaAs) and HeRALD (LHe)
- ~40 people from 8 institutions
- Actively searching for an underground lab

TESSERACT @ LSM proposal:

- Benefit from EDW+Ricochet+CUPID Ge bolometer expertise and low-background cryogenic experience to:
 - 1. Add the French semiconductor Ge bolometer technology (both LV and HV mode) to the TESSERACT science program
 - 2. **Deploy** the future TESSERACT experiment at LSM
- Achieve leading light DM sensitivities on short time scales
- Benefit from exchange of technologies with US partners

TESSERACT : Proposal experiment @ LSM

TESSERACT

EDELWEISS room at LSM (May 2023)

- Potential TESSERACT layout in Modane accommodating the BINGO cryostat in the former EDELWEISS space
 - $\cdot~$ Work ongoing between US and IN2P3 TESSERACT partners
- Ideally two cryostats would be needed tom combine short (R&D) and long (DM search) cycles simultaneously
- Significant emphasis on vibrational and EM noise suppression
- Integration of dedicated low energy NR and ER calibration sources

TESSERACT : New generation TES sensors

TESSERACT

- 273 meV (RMS) leading to eV-scale threshold already achieved with a 0.2g Si detector and Tc = 50 mK
- Targeted Tc around 15-20 mK recently achieved

~100 meV threshold achievable on 1 cm³ crystals

Next challenge: parasitic power (vibrations, EMI, IR photons) needs to be <aW to fully reach TES sensitivity

TESSERACT @ LSM: summary

CN

IN2P3

All detector technologies will be using:

- 1. athermal phonon TES with sub-eV energy thresholds,
- 2. drastically mitigated LEE (under intense investigation),
- 3. and payloads between 10g to 100g

	Target	Search type	Mass range	LEE rejection	Particle ID
SPICE Polar crystals	Al ₂ O ₃ , SiO ₂	ERDM	100 meV - MeV	Dual TES channel	None
SPICE Scintillator	GaAs	NRDM/ ERDM	eV - MeV MeV - GeV	Phonon/ photon coïncidence	Dual Phonon- photon readout
HERALD	He	NRDM	MeV - GeV	Multiple He4/ photon detector	Pulse shape discrimination
	Ge, Si	ERDM	eV - MeV	SSED	None
	Ge, Si, C	NRDM	MeV - GeV	Phonon/ Ionization coincidence	Dual phonon- ionisation readout

Conclusion

- Cryogenic massive detectors have reached maturity and are integrated into complex instruments and demanding sites (underground labs, nuclear reactors)
- Few well identified projects with high IN2P3 contributions over the next decades
- Proposal for a new Dark Matter Search experiment @ LSM
 - see Tesseract talk @ CS IN2P3 « Recherche directe de matière noire »
 23 Oct 2023 <u>https://indico.in2p3.fr/event/31015/</u>
- ✦ Many other projects not mentioned here

for a more general review w/ bolometer matrix see Réunion GDR DI2I 10–12 juil. 2023 SUBATECH, Nantes <u>https://indico.in2p3.fr/event/29808/contributions/126565/</u>

+

ANF DRTBT2024 (Detection de Rayonnement à Très Basse Température) Aussois 24-29 Mars 2024

Ex. of instrument : EDELWEISS-III

36 * FID-800

+ Ge 820 g

- High impedance Ge-NTD thermometer (neutron doped Ge crystals)
- 4 sets of AI electrodes for charge collection
 - Simultaneous measurement of ionization & heat
 - Background active rejection

Running 2013-2022

- + 10mK Cryostat + 40 tons of shielding (PE + Pb) @ LSM
- + 3000 coax. cables (6 km)
- + 350 Si-JFET transistors@ 120K
- ◆ 36*2 « Bolometers Boxes » @ 300K

R&D : CUPID

CUPID

CUORE Upgrade with Particle Identification

- ♦ 30 institut., 100s of people
- Long process of R&D selection
 - https://arxiv.org/abs/1504.03612
- French R&D (CUPID-Mo, IJCLab-IP2I + CEA) selected as the CUPID baseline
 - <u>https://arxiv.org/abs/1907.09376</u>
 - Luke Neganov Ge Light detectors will be produced by IJCLab
- dedicated « small » underground R&D project : CROSS, BINGO ERC project

+ lots to be done over the next 3 decades

Parameter	CUPID	CUPID-reach	CUPID-1T
Crystal	$\mathrm{Li}_2^{100}\mathrm{MoO}_4$	$\mathrm{Li}_2{}^{100}\mathrm{MoO}_4$	$\mathrm{Li}_2^{100}\mathrm{MoO}_4$
Detector mass (kg)	472	472	1871
100 Mo mass (kg)	253	253	1000
Energy resolution FWHM (keV)	5	5	5
Background index $(counts/(keV kg y))$	10^{-4}	2×10^{-5}	5×10^{-6}
Containment efficiency	79%	79%	79%
Selection efficiency	90%	90%	90%
Livetime (years)	10	10	10
Half-life exclusion sensitivity (90% C.L.)	$1.5 \times 10^{27} \text{ y}$	$2.3 \times 10^{27} \text{ y}$	$9.2 \times 10^{27} \text{ y}$
Half-life discovery sensitivity (3σ)	1.1×10^{27} y	$2 \times 10^{27} \text{ y}$	$8 \times 10^{27} \text{ y}$
exclusion sensitivity (90% C.L.)	$1017~\mathrm{meV}$	$8.214~\mathrm{meV}$	$4.16.8~\mathrm{meV}$
discovery sensitivity (3σ)	$1220~\mathrm{meV}$	$8.815~\mathrm{meV}$	$4.47.3~\mathrm{meV}$

RICOCHET: *A future low-energy neutrino observatory*

Ricochet integration at ILL started

RICOCHET: Searching for new physics with CENNS

TESSERACT@LSM: Ge/Si semiconductors

The LV technology in TESSERACT will allow to vastly extend the NRDM searches down to 100 MeV with particle ID and LEE rejection in a region of the parameter space inaccessible to non-cryogenic experiments

Tesseract @ CS IN2P3 - 23 Oct 2023 https://indico.in2p3.fr/event/31015/

TESSERACT@LSM: Dark Matter Candidates

 10^{-22} eV

TESSERACT

Dark matter candidate:

About 50 orders of magnitude in mass (assuming it is an elementary particle)

- Focus of DM searches for the last decades has been on axion DM (ueV - meV) and the standard WIMP (10 GeV - TeV)
- The standard WIMP case « was » highly motivated thanks to the so-called WIMP miracle and the SUSY predictions
- After few decades, still no DM signal and ongoing or planned ton-scale experiments (LZ, XENON-nT, DarkSide-20k, DARWIN, ARGO,...) are approaching the neutrino limit
- Need for new experiments with broader DM mass range and increased sensitivity to more DM interactions !

rène Joliot-Curie

Tesseract @ CS IN2P3 - 23 Oct 2023 https://indico.in2p3.fr/event/31015/

TESSERACT@LSM: Dark Matter Search Range

TESSERACT

TESSERACT: Extending the Dark Matter mass search window from meV-to-GeV with ultra low-threshold cryogenic detectors with multiple targets and particle identification capabilities

Tesseract @ CS IN2P3 - 23 Oct 2023 https://indico.in2p3.fr/event/31015/