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Introduction
]

e LHC upgrade during the long shutdown starting 2026 leading to the

HL-LHC
o Increase the instantaneous luminosity by a factor 5 to 7
o 140 to 200 simultaneous p-p collisions (pileup)
e ATLAS will be upgraded to cope with the HL-LHC conditions
o Increase the first-level trigger rate from 100 kHz to 1MHz
o New readout electronics for the liquid Argon calorimeter
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The ATLAS Liquid Argon Calorimeter
- ]
e Measures the energy of electromagnetically interacting particles mainly

electrons and photons
e Trigger capabilities at the first level of triggering (implemented in hardware)
o Very fast online processing of ~ 300 Tb/s of data
o Use of FPGA technology for data processing

180000 channels

Ah /B"p“ar Pylse e Electronic signal with amplitude

corresponding to the deposited
energy in the calorimeter

e Shaped and sampled at 40 MHz

e Samples used to compute the
deposited energy
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LAr Upgrade

e
e Full electronics of the readout path will be exchanged

o New on-detector electronics that will digitize the signal at 40 MHz and

send it to the backend
o New off-detector electronics to compute the energy at 40 MHz
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https://cds.cern.ch/record/2285584/

LASP Firmware

[
e LASP board containing 2 processing units based on INTEL FPGAs

o Demonstrator board available with stratix 10 FPGAs
m baseline for the firmware development shown in this talk
o Final board will be equipped with Agilex FPGAs
e One FPGA should process 384 channels
o About 125 ns allocated latency for energy computation
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Energy reconstruction
| !
e Legacy energy reconstruction using an optimal  ;
filtering algorithm with max finder (OFMAX) i
o Optimal filtering to reconstruct the pulse and “r
determine its amplitude (ec energy) 02
o Max finder to determine the correct time 0 _@
(bunch crossing) Lt NS
e Not robust in case of distorted shapes due to S8 W A0 A0 0 e

pileup
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Energy reconstruction with NNs
|

Two neural networks types tested:
Convolutional Neural Networks (CNNs) (Dresden)
and
Recursive Neural Networks (RNNs) (CPPM)

This talk will cover only RNNs
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e Sequence of RNN cells each taking as
input an ADC sample at a given BCID
o 4 samples on the pulse
o N samples in the past to correct for
pileup
e Two general parameters control the -
size of the network +HAHEH

o Sequence length (number of samples)

o NN units (internal dimension of the
NNs in the cell)

e Several cell structures tested
o Vanilla RNN, GRU, LSTM
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https://link.springer.com/article/10.1007/s41781-021-00066-y

RNN Performance
]

e Compare energy resolution between RNNs and OFMax
o RNNs with increased size
o Keep size under control to fit FPGAs
e Second peak in resolution due to overlapping events
e Use Std. Dev. as metric (although the shape is not very gaussian)

Number of units (u) Sequence length (seq)
: .0 T 0 l v . 6,0 I LI B T I L2 B B ] LA T T l T Al [ T i | N J L2 ] l T = oy I 1 NS A ) T ] LA | RO ) l T | [ g 6 7 T l L LA
8 ool 024GeV<Efe<5Gev |l ANNudseqS 2 [ 024GeV<Efve<5Gev | ANNudseq30 |
5 C 1 RNNu8seq5 g 7000 1 RNNu8seq30 T
w - 1 RNNu16seq5 ] w i 1 RNN u16 seq 30 1
5000 |- 1 RNN u32seq5 - 6000 - 1 RNN u32 seq 30
- OFMax 1 OFMax
s ] 5000 |- -
4000 - - C ]
; B 4000 |- 3
3000 |- . - :
; 3000 |- —:
2000 |- ] . - = 1
C ] 2000 |- | -
1000 |- g 1000 |- B
0 # ' I B | l 11 g ' Iy} l 11 1 1 l geprr——y 428 0 1 gy I Fe ) | l 11 1 1 l 11 11 | B Py S 1
-04 -03 -02 -01 0.0 0.1 02 03 -04 -03 -02 -01 0.0 0.1 02 03

Egred — Elree [GeV] E,‘-’red — Elrve [GeV)



RNN Performance
]

o(EP™? — Elrue) [GeV]

Compare energy resolution between RNNs and OFMax
o RNNs with increased size
o Keep size under control to fit FPGAs
Second peak in resolution due to overlapping events
Use Std. Dev. as metric (although the shape is not very gaussian)
Vanilla RNN LSTM
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Performance as Function of Time Gap
|
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RNN Performance vs RNN Cell Type

Sequence lenght

Checking performance of Vanilla-RNN, GRU and LSTM

o Increased NN size by increasing sequence length and number of units
Network size probed by number of multiplications (MAC units)

o Dashed lines in the plots
Vanilla-RNN can reach the same performance of GRU and LSTM with
much less required MACs

o Best adapted to fit in FPGAs

StDev cross dependance to units number and sequence lenght

E =240 MeV, u=140, 4 samples on the peak
RNN LSTM GRU




Optimized NN Architecture

|
e Long sequences (20-30) needed to £ . 240 MoV & Gap <= 20 BG
efficiently correct for pileup g |— oFMmax
. G 0.06
e Number of cells scales with the sequence s |—A/W
Iength go_os — Dense + RNN
o RNN cells needs significant processing " ooaf- Units: 30
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RNN Quantization

|
e RNNs need quantization to fit on FPGAs

o Full floating point arithmetics takes a lot of FPGA resources

o Need to use fixed points representations with small number of bits
e Quantize weights post training (PTQ)

o Reduced resolution due to truncation/rounding

o Can reach float precision with 16 bits
e Quantized Aware Training (using gKeras)

o Optimize weights that are already quantized

o Can reach float precision with 8 bits

B ' ' ' —— PTQ (HLS)
== QAT (HLS)
- Software (Keras) 1
== OFMax

1 T

e Stratix 10 considerations
o One floating point
multiplication per DSP
o Two fixed point multiplication
with 18x19 bits
e Agilex considerations
o Additional DSP mode with four o' b
9x9 bits multiplications I
° Reduced number Of bltS a”OW tO ....................................................
use more multiplications e el
o Also matters for additions and t . . 10 2 T‘;tal bits1614
timing closer

RMSE [GeV]




RNN Performance (Summary)
|

e Small RNNs (sequence length 5) can outperform OFMax overall
o But not in all regions (details not discussed here)

e Need to go to larger sequence length (20-30)
o Much more resources in FPGA

e Can reduce NN resources by using a dense layer to init the RNN
o Solution adapted for the LAr usecase: no drop in performance

e Important to consider QAT to reduce the number of bits
o Reach same performance with lower number of bits
o Can have a large effect on FPGA implementation
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Firmware Implementation
|

LASP demonstrator board built at CPPM
£ e

i

e Implemented on Stratix 10 FPGA
o Reference 1SG280HU1F50E2VG
o Implementation on Agilex will follow
e Challenges:
o 384 channels per FPGA
o 125 ns latency
e Preliminary implementation in HLS
shows that LSTM is too large to fit
o Stick to Vanilla RNN
o Start with small RNN with 8 units
and sequence length of 5
m 491 parameters, 480 MAC units

SN

75N |

I

e Added support for both Vanilla RNNs and LSTMs on INTEL FPGAs to
HLS4ML for wider usage

16


https://github.com/fastmachinelearning/hls4ml/pull/575

JINST 18 (2023) P05017

HLS optimisations
- Etienne Fortin, PhD thesis (2022)

e Optimisation needed to fit RNNs within resource and latency limitations
o Impossible to fit 384 NNs in the FPGAs, need to serialize (time multiplexing)
o Need to go to high frequency

e Several optimisations are performed

Activation functions in LUT (only for LSTM)

Number of bits in fixed point representation (18x19 to match Stratix 10 DSP)

Rounding and truncation in arithmetic operations

Implementation of vector/matrix multiplication (Dot product)

o O O O

e Dot product implementations
o Naive C++: let HLS do it all
o ACC37: accumulate (sum) in
DSPs by chaining them

-
N
o
o

1000 —@— ALUT, non-chained DSPs 7

| —®— FF, non-chained DSPs
- —&— ALUT, chained DSPs
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o ACC19: ACC in ALUT a b, - - FF, chained DSPs
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Implementation | ALUTs | FF | DSP 200; 1
C++ style 709 | 222 | 8 006200 300 400 500 600 700"
@1 00 MHz ACC37 1 16 79 4 Frequency [MHz]
ACC19 137 78 4 17



https://www.theses.fr/s207837
https://iopscience.iop.org/article/10.1088/1748-0221/18/05/P05017

Rounding vs Truncation
|
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VHDL implementation of Vanilla RNN

—— HLS placement

e HLS does not allow to reach the target frequency

and resource usage

o Increase of the RNN ALM resources and reduction
of FMax as we add networks to the FPGA

e Move to VHDL for the final fine tuning
e Force placement of the RNN components
o Allow to better tackle timing violations and improve

FMax
e Use incremental compilation VHDL forced placement
o Keep networks with no timing violations and e e Lo,
. v GEN_NN[0].neural_network_inst|c2_bn|GEN_NN[1]
recompile only the rest /B o v ot G0
v.eennn[o] ral_network_inst|c2_bn|dense_layer_inst
H ‘m \" =
Optimized placement of RNN cells ‘ :‘ ”“‘”‘ = |
First cells in the middle and connected to H ;
all cells (common computations done only u - e |
in first cell and propagated to the others B i — aniesss— |
Dense layer next to last cell . - !
= — ' l




RNN firmware results
7

e HLS allows fast development and optimisation of the firmware
o Multiple developments and firmware optimisations done in a short time
o However less control on hardware specific implementation

e VHDL is needed to fine tune the design and fit the LAr requirements

e Vanilla RNN firmware produced and fit the requirements with Stratix 10
o Better performance expected with the Agilex FPGA
o However still need to test it within the full LASP firmware

N networks ALM DSP FMax latency
X

multiplexing
target 384 30%* 70%* - 125 ns

channels
“Naive” HLS 384x1 226% 529% - 322 ns
(no multiplexing)
HLS optimized 37x10 90% 100% 393 MHz 277 ns
VHDL optimized 28x14 18% 66% 561 MHz 116 ns

*pased on experience with the phase | upgrade 20



Testing on hardware

7
e VHDL implementation tested on Startix
10 Devkt
e Test firmware to inject input and W eE 1 EX 5 0.24 GeV
weights and collect the output is built SE
o Data extraction using a JTAG-UART ‘E
connection with a NIOS 3
e Data match firmware simulation bit-by-bit 2E
e Firmware resolution < 0.1% as expected 1— HN : " "

from simulation 00020003 0.002 0.001 0 —0.007 0002 0.005 0.004
Ehardware _ Ekeras [G eV]
T 3 )

Inputs and Weights —|
Neural Network twos i » E
A

RAM Double Port

outclk1 |\ Counter Write Adresse
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Conclusion
]

Neural networks outperform the optimal filtering algorithm for the
energy reconstruction in the ATLAS LAr Calorimeter

o Particularly in the region with overlap between multiple pulses
Several optimisations carried out to improve the RNN performance
while keeping minimal resource usage

o Next step is to quantify the effect on object (electrons, photons)
reconstruction and physics performance

Small Vanilla RNN implemented on Stratix 10 FPGAs

HLS implementation allowed fast prototyping but did not fit resource
and latency requirements

Final implementation done in VHDL

o Fits requirements and successfully tested on hardware

Next steps is to implement larger networks in Agilex FPGAs

o Then integrate the NNs in the full LASP firmware

22
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3 [ AREUS Smuanon —— True energy
e E ENE Middle ino) = 05125, 0.0125) — Digitzed signal
_ i [ <ps w 140

e Two architectures used
o Single cell and Sliding windows
o 4 samples corresponding to the
signal pulse are used
m + several in the past to correct
for pileup
e Two types of RNNs T e
o Vanilla RNN and LSTM tHT — ~$»
e Sliding window retained | ‘ | o

J‘:; | H
Single cell architecture _J [ | » "* *E»:-}

Continuous computation with a single cell =
Takes into account full past info (from the igieis “”:‘

beginning of run) 1 L »¢* ---*‘
oy i . SN Sliding windows architecture
‘ ‘ ‘ Computation on a moving slice of the

data in fixed intervals
e o

Takes into account a limited set in the
24
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https://link.springer.com/article/10.1007/s41781-021-00066-y

RNN configuration
|

Table 2 Configurable key parameters of the single-cell and sliding-
window algorithms.

Single-cell Sliding-window
LSTM LSTM Vanilla RNN
Receptive " 5 5
Time inference  Field
Samples
after deposit 2 4 %
Dimension 10 10 8
RNN layer Activation tanh tanh RelLU
Recurrent - - N/A
Activation e SOl
DienseTyer Dimension | | |
Activation RelLU RelLU RelLLU
Number of 491 491 89
Parameters
MAC units 480 2360 368




Dot product implementations
IR,  Naive C++ implementation

}

for (int i=0; i < 8; i++){
acc += al[i] * b[i];

ACC37 implementation

for (int
tmp [i]

}

for (int
ace +=

}

i=0; i1 < 4; i++){
= al[i]*b[i] + a[7-il*b[7-i];

i=0; 1 < 4; i++){
tmp [1] ;

ACC19 implementation

for (int
tmp [1]

+

for (int
acc +=

g

i=0; 1 < 4; i++){
= hls_fpga_reg(alil*b[i] + al[7-i]l*b[7-1i]);

i=0; i < 4; i++){
tmp [i] ;

26
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Pileup noise
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