
Embedded Recurrent Neural Networks on FPGAs for
Real-Time Computation of the Energy Deposited in the

ATLAS Liquid Argon Calorimeter
(AIDAQ)

R&T Meeting
8/11/2023

Georges Aad
CPPM

Introduction

● LHC upgrade during the long shutdown starting 2026 leading to the
HL-LHC
○ Increase the instantaneous luminosity by a factor 5 to 7
○ 140 to 200 simultaneous p-p collisions (pileup)

● ATLAS will be upgraded to cope with the HL-LHC conditions
○ Increase the first-level trigger rate from 100 kHz to 1MHz
○ New readout electronics for the liquid Argon calorimeter

2

The ATLAS Liquid Argon Calorimeter

● Measures the energy of electromagnetically interacting particles mainly
electrons and photons

● Trigger capabilities at the first level of triggering (implemented in hardware)
○ Very fast online processing of ~ 300 Tb/s of data
○ Use of FPGA technology for data processing

3

● Electronic signal with amplitude
corresponding to the deposited
energy in the calorimeter

● Shaped and sampled at 40 MHz
● Samples used to compute the

deposited energy

180000 channels

LAr Upgrade
● Full electronics of the readout path will be exchanged

○ New on-detector electronics that will digitize the signal at 40 MHz and
send it to the backend

○ New off-detector electronics to compute the energy at 40 MHz

4

Phase 1 electronics
Trigger path

Phase 2 electronics
Trigger path +
readout path

LASP board
Off-detector board

responsible of energy
computation

CERN-LHCC-2017-020

https://cds.cern.ch/record/2285584/

LASP Firmware
● LASP board containing 2 processing units based on INTEL FPGAs

○ Demonstrator board available with stratix 10 FPGAs
■ baseline for the firmware development shown in this talk

○ Final board will be equipped with Agilex FPGAs
● One FPGA should process 384 channels

○ About 125 ns allocated latency for energy computation

5

Compute energy at 40 MHz
Assign the energy to the
correct bunch crossing

(collision time)

Energy reconstruction

● Legacy energy reconstruction using an optimal
filtering algorithm with max finder (OFMAX)
○ Optimal filtering to reconstruct the pulse and

determine its amplitude (∝ energy)
○ Max finder to determine the correct time

(bunch crossing)
● Not robust in case of distorted shapes due to

pileup

6

Energy from Optimal-Filter (OF)

 n = 5 in this talk

 Pulse Samples

Pre-set coefficients (fit of the peak)

Relatively
isolated pulse

Overlapping pulses
Distorted pulse shape

Energy reconstruction with NNs

7

Two neural networks types tested:
Convolutional Neural Networks (CNNs) (Dresden)

and
Recursive Neural Networks (RNNs) (CPPM)

This talk will cover only RNNs

RNN structure

● Sequence of RNN cells each taking as
input an ADC sample at a given BCID
○ 4 samples on the pulse
○ N samples in the past to correct for

pileup
● Two general parameters control the

size of the network
○ Sequence length (number of samples)
○ NN units (internal dimension of the

NNs in the cell)
● Several cell structures tested

○ Vanilla RNN, GRU, LSTM

8

Sliding windows architecture
Computation on a moving slice of the data

in fixed intervals
Takes into account a limited set in the past

(1 sample in the past in this example)

Comput Softw Big Sci 5, 19 (2021)

https://link.springer.com/article/10.1007/s41781-021-00066-y

RNN Performance

● Compare energy resolution between RNNs and OFMax
○ RNNs with increased size
○ Keep size under control to fit FPGAs

● Second peak in resolution due to overlapping events
● Use Std. Dev. as metric (although the shape is not very gaussian)

9

Number of units (u) Sequence length (seq)

RNN Performance

● Compare energy resolution between RNNs and OFMax
○ RNNs with increased size
○ Keep size under control to fit FPGAs

● Second peak in resolution due to overlapping events
● Use Std. Dev. as metric (although the shape is not very gaussian)

10

Vanilla RNN LSTM

Performance as Function of Time Gap

● Clear drop in OFMax performance
in overlapping region
○ Time gap of less than ~ 20 BC

● Neural networks recover the
performance in this region
○ Depending on the sequence

length that is used

11

Overlapping signals region

OFMAX

Vanilla RNN LSTM

RNN Performance vs RNN Cell Type

● Checking performance of Vanilla-RNN, GRU and LSTM
○ Increased NN size by increasing sequence length and number of units

● Network size probed by number of multiplications (MAC units)
○ Dashed lines in the plots

● Vanilla-RNN can reach the same performance of GRU and LSTM with
much less required MACs
○ Best adapted to fit in FPGAs

12

Optimized NN Architecture

● Long sequences (20-30) needed to
efficiently correct for pileup

● Number of cells scales with the sequence
length
○ RNN cells needs significant processing

resources
○ # MACs ∝ s✕n2

■ s=sequence length, n=units
● Use dense layer to acquire pileup correction

○ # MACs ∝ s✕n
○ Init RNN with dense output

13

Units: 30
Sequence length: 20

Dense used for past sample, RNN for samples on the pulse

RNN Quantization
● RNNs need quantization to fit on FPGAs

○ Full floating point arithmetics takes a lot of FPGA resources
○ Need to use fixed points representations with small number of bits

● Quantize weights post training (PTQ)
○ Reduced resolution due to truncation/rounding
○ Can reach float precision with 16 bits

● Quantized Aware Training (using qKeras)
○ Optimize weights that are already quantized
○ Can reach float precision with 8 bits

14

● Stratix 10 considerations
○ One floating point

multiplication per DSP
○ Two fixed point multiplication

with 18x19 bits
● Agilex considerations

○ Additional DSP mode with four
9x9 bits multiplications

● Reduced number of bits allow to
use more multiplications
○ Also matters for additions and

timing closer

RNN Performance (Summary)
● Small RNNs (sequence length 5) can outperform OFMax overall

○ But not in all regions (details not discussed here)
● Need to go to larger sequence length (20-30)

○ Much more resources in FPGA
● Can reduce NN resources by using a dense layer to init the RNN

○ Solution adapted for the LAr usecase: no drop in performance
● Important to consider QAT to reduce the number of bits

○ Reach same performance with lower number of bits
○ Can have a large effect on FPGA implementation

15

Region with overlap Region without overlap

Firmware Implementation

● Implemented on Stratix 10 FPGA
○ Reference 1SG280HU1F50E2VG
○ Implementation on Agilex will follow

● Challenges:
○ 384 channels per FPGA
○ 125 ns latency

● Preliminary implementation in HLS
shows that LSTM is too large to fit
○ Stick to Vanilla RNN
○ Start with small RNN with 8 units

and sequence length of 5
■ 491 parameters, 480 MAC units

16

● Added support for both Vanilla RNNs and LSTMs on INTEL FPGAs to
HLS4ML for wider usage

LASP demonstrator board built at CPPM

https://github.com/fastmachinelearning/hls4ml/pull/575

HLS optimisations

● Optimisation needed to fit RNNs within resource and latency limitations
○ Impossible to fit 384 NNs in the FPGAs, need to serialize (time multiplexing)
○ Need to go to high frequency

● Several optimisations are performed
○ Activation functions in LUT (only for LSTM)
○ Number of bits in fixed point representation (18x19 to match Stratix 10 DSP)
○ Rounding and truncation in arithmetic operations
○ Implementation of vector/matrix multiplication (Dot product)

17

● Dot product implementations
○ Naive C++: let HLS do it all
○ ACC37: accumulate (sum) in

DSPs by chaining them
○ ACC19: ACC in ALUT

@100 MHz

Etienne Fortin, PhD thesis (2022)

JINST 18 (2023) P05017

https://www.theses.fr/s207837
https://iopscience.iop.org/article/10.1088/1748-0221/18/05/P05017

Rounding vs Truncation

● Compromise between resolution
and resource usage and latency
○ Truncation of IO and Internal types

leads to important reduction of
latency with small impact on
energy resolution

○ Weight type rounded in software
■ No impact on latency

● Use truncation for internal (I)
operations

18

Internal type (I)
IO type (D)
Weight type (W)

VHDL implementation of Vanilla RNN

● HLS does not allow to reach the target frequency
and resource usage
○ Increase of the RNN ALM resources and reduction

of FMax as we add networks to the FPGA
● Move to VHDL for the final fine tuning
● Force placement of the RNN components

○ Allow to better tackle timing violations and improve
FMax

● Use incremental compilation
○ Keep networks with no timing violations and

recompile only the rest

19

HLS placement

VHDL forced placement

Optimized placement of RNN cells

First cells in the middle and connected to
all cells (common computations done only
in first cell and propagated to the others

Dense layer next to last cell

RNN firmware results
● HLS allows fast development and optimisation of the firmware

○ Multiple developments and firmware optimisations done in a short time
○ However less control on hardware specific implementation

● VHDL is needed to fine tune the design and fit the LAr requirements
● Vanilla RNN firmware produced and fit the requirements with Stratix 10

○ Better performance expected with the Agilex FPGA
○ However still need to test it within the full LASP firmware

20

N networks
x

multiplexing

ALM DSP FMax latency

target 384
channels

30%* 70%* - 125 ns

“Naive” HLS
(no multiplexing)

384x1 226% 529% - 322 ns

HLS optimized 37x10 90% 100% 393 MHz 277 ns

VHDL optimized 28x14 18% 66% 561 MHz 116 ns

*based on experience with the phase I upgrade

Testing on hardware
● VHDL implementation tested on Startix

10 DevKit
● Test firmware to inject input and

weights and collect the output is built
○ Data extraction using a JTAG-UART

connection with a NIOS
● Data match firmware simulation bit-by-bit
● Firmware resolution < 0.1% as expected

from simulation

21

Conclusion

● Neural networks outperform the optimal filtering algorithm for the
energy reconstruction in the ATLAS LAr Calorimeter
○ Particularly in the region with overlap between multiple pulses

● Several optimisations carried out to improve the RNN performance
while keeping minimal resource usage
○ Next step is to quantify the effect on object (electrons, photons)

reconstruction and physics performance

● Small Vanilla RNN implemented on Stratix 10 FPGAs
● HLS implementation allowed fast prototyping but did not fit resource

and latency requirements
● Final implementation done in VHDL

○ Fits requirements and successfully tested on hardware
● Next steps is to implement larger networks in Agilex FPGAs

○ Then integrate the NNs in the full LASP firmware

22

Backup

23

RNN structure

● Two architectures used
○ Single cell and Sliding windows
○ 4 samples corresponding to the

signal pulse are used
■ + several in the past to correct

for pileup
● Two types of RNNs

○ Vanilla RNN and LSTM
● Sliding window retained

24

Single cell architecture
Continuous computation with a single cell
Takes into account full past info (from the

beginning of run)

Sliding windows architecture
Computation on a moving slice of the

data in fixed intervals
Takes into account a limited set in the
past (1 sample in the past in this talk)

Comput Softw Big Sci 5, 19 (2021)

https://link.springer.com/article/10.1007/s41781-021-00066-y

RNN configuration

25

Dot product implementations

26

Naive C++ implementation

ACC37 implementation

ACC19 implementation

DSP

27

Pileup noise

28

