

DEPHY - DÉveloppements Pixels HYbrides et monolithiques radio-tolérant -

Journee R&T, IPHC 08/11/2023

Marlon Barbero CPPM, Aix-Marseille Université, CNRS / IN2P3, France

Pixels pour HEP au CPPM

Projets

Concept VTX pour **Belle-II** upgrade

Aix*Marseille

université

RTICULES DE MARSEI

CPPN

		DRDT	< 2030	2030-2035	2035- 2040-2045	>2045
	Position precision	3.1,3.4	• • •			
	Low X/X _o	5.1,5.4				
	Low power	3.1,3.4	- 🔶 🍝 🍎	• • •		
Vertex	High rates	3.1,3.4	• • •	.	• • • • •	• •
detector ²⁾	Large area wafers ³⁾	3.1,3.4) 🔶 🍈 🍎 🌰			
	Ultrafast timing ⁴⁾	3.2				
	Radiation tolerance NIEL	3.3				
	Radiation tolerance TID	3.3		• •		
	Position precision	3.1,3.4				
	Low X/X _o	3.1,3.4				
	Low power	3.1,3.4		ěě ě	• • • • •	
	High rates	3.1,3.4		T T	•	
Trackers	Large area wafers ³⁾	3.1,3.4				
	Ultrafast timing4)	3.2		• •		
	Radiation tolerance NIEL	3.3				
	Radiation tolerance TID	3.3		•		

Journées R&T, IPHC 08/11/23, Projet DEPHY

Layout ITkPix-v1

Le projet DEPHY

- Un projet porté par le CPPM et l'IPHC, porteur <u>M. Barbero / CPPM</u> (soutien <u>J. Baudot / IPHC</u>)
- Une thématique générale:
 - Détecteurs pixels de traces et de vertex dans les technologies pertinentes pour de futurs projets qui se caractérisent en premier lieu par:
 - Taux de comptage / taux d'occupation importants.
 - **Résistance aux radiations** moyennes à élevées.
- 2 Work Packages:
 - Les Pixels Hybrides: Exploration de technologies mettant en œuvre des nœuds de process avancés -e.g. 28 nm- (RS: Barbero / RT: Menouni)
 - Les Pixels Monolithiques: Exploration de la technologie Depleted MAPS dans deux directions principales, exploitation des développements actuels / potentiel des nouvelles technologies (RS: Baudot / RT: Pangaud)

WP1: **Pixels hybrides** pour ([/] futurs projets

FCC-hh:

Grande densité de pileup (~1000 PU)

- → Résolution: ~8 μ m / 10 ps
- → Niveau de radiation: 40 GRad et 10^{18} n_{eq}.cm⁻²
- \rightarrow Taux de hit: 30 GHz/cm²
- → Liens rapides: 50-100 Gbps
- → Très grand challenge pour le sensor et pour l'ASIC! (mais très long terme aussi)

Autres projets qui nécessitent grande R&D (des étapes intermédiaires!)

Electron Ion Collider:

- \rightarrow BNL, mise en route en 2031
- → Détecteurs 4D basés sur AC-LGADs
- → Résolution temporelle: <u>30 ps</u>
- → Résolution spatiale: 15-150 µm (selon placement)

Electron Collider:

- \rightarrow ILC / CLIC / FCC-ee
- → Pixel size $25 \times 25 \ \mu m^2$
- → Résolution temporelle ~ns
- → Applications de timing de précision au niveau de la ps sont étudiées.

ATLAS et CMS upgrades:

- → Remplacement des couches internes après 5 ans au HL-LHC → opportunité!
- → Résolution temporelle de qques 10aines de ps pour booster les performances.

Pixels hybrides en 28 nm

- Pour futurs projets, conception en 28 nm préconisée et soutenue par le CERN.
- But de notre projet:
- Qualifications sous TID:
 - Compatibilité avec niveau de doses typiques des prochains projets?
 - Evolution des délais avec le TID?
 - Modélisation des effets (comme a été fait en technologie TSMC 65 nm) → simulations analogiques et numériques TID-compatibles!
- Etudes des effets singuliers:
 - Circuits prototypes pour l'étude des effets SEU / SET.
- R&D autour de pixels hybrides de tailles 25×25 μm².
 - Qualification du process en termes de performances pour les circuits analogiques, basse consommation et bas bruit.
 - Matrice d'amplificateurs de charge rapides
 - Etudes des architectures

Aix*Marseille

- Mini@sics of 2×1 mm² soumise décembre 22 .
- <u>Structures implémentées</u>:
 - Structures de tests pour étude de tolérance aux effets TID.
 - Ring Oscillateurs pour étude de résistance TID des cellules digitales de la technologie.
 - Structures de tests SET.
 - Matrice de pixels analogiques: Amplificateurs de charges rapides.

Ring Oscillateur

• Etudes des effets de la TID sur les performances des cellules digitales standard de la librairie.

- Timing des cellules combinatoires.
- Evolution des courants de fuite, alimentation statique.

• <u>96 blocs RO mis en place</u>:

- Tailles des transistors (7T, 9T, 12T) →
 étude sur tailles des cellules
- Driving (Do, D2, D4) → effet du driving sur la résistance TID
- SVT, LVT, HVT → étude vs. seuil transistor
- Design implémenté par méthodologie digitale

Basic cells	Frequency (MHz)
INVD0	154
INVD2	222
NAND0	118
NAND2	143
NOR0	111
NOR2	139

Etude des SET

- Mitigation contre SEE: important challenge des prochaines générations de ASICs pixel (dans un contexte d'augmentation de la luminosité).
- Propagation de Single Event Transients (par logique combinatoire) et la sensibilité aux SET augmente dans les nouveaux process.

<u>But du projet</u>:

- Des structures de test pour étudier cette problématique
- Mesure de la X-section
- Mesure du pulse SET (resolution <20ps)
- Etudie en fonction de tailles std des cellules
- Peut permettre de définir délais nécessaire de cellules tripliquées avec mitigation temporelle

- <u>Chaque sous bloc contient</u>: 3 cibles + input de calibration + 96 cellules délai (13ps /cellules) + shift register pour propager les données.
- **<u>31 SET sous-blocs implémentées</u>**: 24 avec cibles SVT (7T, 9T, 12T... taille des cellules), 7 avec cibles LVT ou HVT (options seuils...).
- De plus, ce bloc est la 1ere pièce de ce qui serait nécessaire pour implémenter un TDC pour un futur pixel FE.

Amplificateur de charges rapide

- <u>But du projet</u>:
 - Limites en résolution temporelle dans FE analogique?
 - Effets d'alimentations, polarisation ... bande passante, bruit, etc...
- Design et test d'une matrice de 36×12 pixels
- Résolution temporelle:

 $\sigma_{total}^{2} = \sigma_{jitter}^{2} + \sigma_{timewalk}^{2} + \sigma_{Landau}^{2} + \sigma_{TDC}^{2}$

- On étudie ici la minimalisation du jitter qui demande:
 - Petit bruit du CSA
 - Grand signal en sortie
 - − Petit temps de montée \rightarrow grande bande passante

Implementation FE:

Voltage noise $\sigma_{rs} jitter = \frac{\sigma_{noise}}{\frac{dV}{dt}} = \frac{t_r}{\left(\frac{S}{N}\right)}$

- Polarisation CSA: 2-20µA ; MOM input capacite → test pour diff. input capa ; CSA + discri + 6b DACs
- Pixel de tailles $20 \times 12 \ \mu m^2$

Input charge (Ke-)

Matrice 36×12 pixels

Test transistors / Outils de test

• Intégration...

Utilisation d'un **banc de test (réadaptable aux nouveaux besoins)** basée sur BeagleBone DAQ board

Aix⁺Marseille

CPPN

WP2: Pixels depMAPS

- **<u>R&D exploratoire</u>**: Exploration de la technologie TJ-65 nm
 - Court terme
 - vérifier les performances de bases
 - Évaluer l'adéquation avec objectifs DEPHY
 - Moyen terme
 - Prototype(s) dédié(s) pour
 - Taux de comptage élevés (>> 100 MHz/cm²)
 - Résolution temporelle vers 100 ps
 - Radiotolérance >>10¹⁵ n_{eq}/cm^2

Applications de la R&D avancée:

- Court terme: LF150 et TJ180
 - Finaliser le travail sur LF-Monopix2
 - Validation des performances de TJ-Monopix2
 - Adapter TJ-Monopix2 pour un démonstrateur Belle II: OBELIX-v1
- Moyen terme:
 - Autres applications de la technologie TJ180 (amplification de charges) ANR APICS

R&D exploratoire: TJ-65nm Ring Oscillators

Lov	v V _T	Super Low V _T		
Size Min	Size+	Size Min	Size+	
INV0_LVT	INV4_LVT	INV4_SLVT	INV8_SLVT	
NOR1_LVT_A	NOR4_LVT_A	NOR4_SLVT_A	NOR8_SLVT_A	
NOR1_LVT_B	NOR4_LVT_B	NOR4_SLVT_B	NOR8_SLVT_B	
NAND0_LVT_A	NAND4_LVT_A	NAND4_SLVT_A	NAND4_SLVT_A	
NAND0_LVT_B	NAND4_LVT_B	NAND4_SLVT_B	NAND4_SLVT_B	
DFF1_LVT	DFF4_LVT	DFF1_SLVT	DFF4_SLVT	

Un MLR1 soumis en décembre 2020, retour à l'été 2021. Cadre du CERN WP1.2 EP R&D

IN2P3

- Le CPPM a contribué avec une série de Ring Oscillators dont le but est l'étude de la tenue aux radiations ionisantes des cellules standards des librairies digitales de la technologie.
 - Le chip contient 48 ring oscillators basés sur différentes cellules standards. Ceux-ci diffèrent par le type de cellule, des longueurs de transistor variées, plusieurs seuils de transistors et deux stratégies d'injection.
 - 2 banques de 24 lignes pour tester deux configs:
 - Banque "Functional" pour laquelle l'oscillation est enclenchée pendant l'irradiation
 - Banque "Static": pour laquelle il n'y a pas d'oscillation pendant l'irradiation

٠

٠

Résumé des tests

- Des tests en température ont été menés en utilisant une chambre climatique régulée entre -40 et 80°C. La tension Vddd était également ajustée entre 0.9 et 1.3V. Chaque RO a montré une décroissance de sa fréquence alors que la température augmentée (5-10 % over 70°C) → ceci permet de calibrer les RO pendant l'irradiation et la phase d'annealing.
- 2 puces ont été irradiées (T° ambiante) jusqu'à des doses de 830 et 520 MRad resp. (dose rate de 20kRad/mn, banques fonctionnelles oscillantes). Des dégradations en fréquence similaires ont été observées pour les deux puces avec des différences entre les différents types de RO (e.g: les plus petits transistors sont plus affectés).
- Plusieurs semaines d'annealing à différentes températures (-20, 25 et 80°C) ont été menées suite aux irradiations. Une absence de récupération à froid, une légère récupération à température ambiante et un reverse annealing ont été observés.

Freq relative vs TID

<u>Conclusion pour TJ65 dans DEPHY</u>:

- Comme attendu, la température a un impact sur les fréquences (décroissance quand la température augmente). L'effet a pu être quantifié par les mesures et corrigé en partie par une méthode simple (linear rescaling).
- L'étude de la tenue aux radiations de la technologie TJ65 (TPSCo 65) des ring oscillators a montré des résultats très intéressants. La dégradation des fréquences est limitée (12 à 25% pour une dose totale de 830 MRad) quelque-soit le type de Ring Oscillator. La taille des cellules est un paramètre important (les cellules petites sont plus affectées que les grandes).
- Ces résultats ouvrent des **perspectives d'utilisation positives des cellules digitales de cette technologie dans des environnements avec des hauts niveaux de radiation**.
- Cette année une nouvelle production de wafers en Engineering Run (ER1) a eu lieu avec un niveau de métallisation différent du précédent . Des irradiations sont prévues en début d'année prochaine pour comparaison entre les deux types de métallisation.

<u>Perspectives pour DEPHY en 2024</u>:

- Redesign, pour prendre en compte changements prévus au niveau process et étendre l'étude à plus de cellules de la librairies.
- Tester les RO sous irradiation pour voir si changements de process prévus n'impactent pas les performances.

2×1 cm², 340×56 pixels, 50×150 μm² Amélioration de la FE Analogique / Digitale, taille pixels réduite, meilleur layout

2×2 cm², 512×512 pixels, 33×33 μm²

Travail sur implants pour une bonne collection de charges après irradiation, bas seuil

LF-Monopix 2 – Mesures des performance de chaque sous-matrice

Bonn/CERN/CPPM/IRFU collaboration

Setup de test

6 sous-matrices

- 3 variants de CSA
- 2 valeurs de Capacité de FeedBack.
- 2 variants de Discriminateur.
- 2 sortes de Reset logique.

Sous-matrice 3.1

- TDAC tuning at 2300e- Vth = 0.76V
- Dispersion with TDAC=7 => 711e-
- Dispersion with TDACs tuned => 85 e-
- ENC = 110e-

Sous-matrice 3.2

- TDAC tuning at 2300e- Vth = 0.76V
- Dispersion with TDAC=7 => 707e-
- Dispersion with TDACs tuned => 82 e-
- > ENC = 107e-

AIX

Aix*Marseille

Résultats des performances de chaque sous-matrices

Résultats présentés en conférence PIXEL_2022, décembre 2022, Santa Fe NM

ENC 139

123

110 107 138

132

TDACs tur	nina :						
		No tuned – TDACs = 7			Tuned		
	Vth	mean thres	disp	ENC	mean thres	disp	
SubArray_1	0,79	1922	356	150	2032	62	
SubArray_2	0,78	1969	435	137	2035	86	
SubArray_3.1	0,76	2339	711	110	2119	85	
SubArray_3.2	0,76	2313	707	110	2124	82	
SubArray_4.1	0,77	2428	784	148	2077	158	
SubArray_4.2	0,79	2184	398	148	2061	72	

Mise à part la sous-matrice 4.1, la dispersion de seuil après un TDACs tuning se situe entre 62 et 86e-, valeur visée 80e-.

La valeur de bruit ENC se situe entre 107 et 139 e- pour toutes les sous-matrices, valeur visée entre 100 et 150e-

Souil mini ·						
Seuli IIIII .	Vth (V)	Min thres e-	disp e-	ENC e-	bad pixel	% bad pixel
SubArray_1	0,775	1520	81	143	17/2720	0.625
SubArray_2	0,777	1437	113	127	21/2720	0.772
SubArray_3.1	0,744	1113	74	113	38/8160	0.466
SubArray_3.2	0,743	1048	72	110	15/2720	0.551
SubArray_4.1	0,768	1881	170	138	10/1360	0.735
SubArray_4.2	0,779	1611	92	136	8/1360	0.588

Les sous-matrices 3.1 and 3.2 donnent les meilleures performances en terme de seuil mini, structure avec CSA V1, Feedback cap 5fF, Discri Unidir

Conclusion : Les performances de la technologie sont très positives (bruit, seuil, tenue aux radiations), mais un applicatif clair n'a pas été démontré pour le moment → travail pour le moment en cours de finalisation (puis mise en veille probable).

Sub-array	Column	CSA	Feedback cap.	Discriminator	Logic
1	0 - 7	V3	$1.5\mathrm{fF}$	Bidirectional tuning	Falling
2	8 - 15	V2	$1.5\mathrm{fF}$	Bidirectional tuning	Falling
3-1	16 - 39	V1	5 f	unidirectional tuning	Falling
3-2	40 - 47	V1	5 f	unidirectional tuning	Rising
4-1	48 - 51	V1	$5\mathrm{fF}$	Bidirectional tuning	Falling
4-2	55 - 52	V1	$1.5\mathrm{fF}$	Bidirectional tuning	Falling

	LF-Monopix1	LF-Monopix2
Pixel size	50 × 250 μm2	50 × 150 μm2
Cd	~ 400 fF (estimated)	250 – 300 <u>fF</u> (estimated)
Analog Power/pixel (CSA + <u>Discri</u> .)	15 μΑ + 5 μΑ = 20 μΑ	10 μΑ + 2 μΑ = 12 μΑ
Noise	~200 e ⁻	100 ~ 150 e ⁻
LE/TE time stamp	8-bit	6-bit
<u>ToT</u> @ 6 ke-		200 – 250 ns
Max. ToT		400 ns
p-p (<u>rms</u>) <u>thres</u> . dispersion	(~ 100 e ⁻)	800 e ⁻ (80 e ⁻)
Min. threshold	1500 e ⁻	1000 e ⁻
In-time threshold	~ 2000 e ⁻	1500 e ⁻

TJ Monopix2 – Mesures délai HitOr et éfficacité de détection

100.000

99.375

98.750

98.125

97.500

96.875

96.250

95.625

95.000

60

98.92% within 25 ns (ATLAS BX frequency) Corrected scintillator-HitOr delay

AIX?

Aix*Marseille

université

CPP

Efficacité de détection, mesures effectuées en test beam

- Faisceau électron 5GeV DESY
- Seuil ajusté à 250 e-
- Uniformité de détection > 99.9 %
- Pas de perte de détection sur les bords des pixels **Standard FE: 99.95% Cascode FE: 99.94%**

TEST-BEAM PERFORMANCE OF DMAPS IN 150 NM AND 180 NM CMOS TECHNOLOGY

HV Cascode FE: 99.92%

Excellente détection des hits en test beam (> 99.9%)!
Plus de 98% des hits dans 25ns

→ TJ-Monopix2: prototype sur lequel est basé le design d'OBELIX pour le projet d'upgrade du détecteur de vertex de Belle-II

Design d'OBELIX

- Optimized BELle II pIXel sensor
- Conception basée sur TJ-Monopix2 / TJ 180nm
- Taille de puce optimisée pour avoir <u>4 capteurs contigus</u>
- 2 modules exploratoires: time stamping à 5ns pour hit rate <10MHz et sortie rapide hitOR pour trigger, faible granularité.
- <u>Matrice de Pixels</u>:
 - Basée sur TJ-Monopix2
 - TID ~10 MRad/an et NIEL ~5.10¹³ n_{eq} .cm⁻².an⁻¹
 - Faible puissance (~200 mW/cm²)
- Nouvelle périphérie numérique:
 - Nouvelle EoC adaptée au trigger Belle II 30KHz & avec une latence de 5-10µs
 - Clk principal à 160MHz, sortie unique à 320Mb/s
 - Numérisation du signal : ToT (7 bits, 20 MHz)
 - Protocole de contrôle RD53B
- <u>Power pads</u>:
 - Ajout d'un régulateur de puissance
 - Intégration système simple

TJ-Monopix2 : Etude du FE analogique pour OBELIX

Question: Peut on améliorer le Front-End analogique (/ TJ-Monopix-2)?

- Etude et simulation du FE analogique (TJ-Monopix2: Normal FE et Cascode FE)
- Possibilité de réduire de 35% de consommation en modifiant certains paramètres de polarisation du préamplificateur (IBIAS, ITHR) ainsi que la taille du transistor d'entrée

- Des résultats des simulations montrent que la marge du seuil du discriminateur (**IDISC**) n'est probablement pas assez grande

- Amélioration du seuil en modifiant les DACs qui le génèrent ou bien l'architecture du discriminateur (travail en cours...)

Journées R&T, IPHC 08/11/23, Projet DEPHY

OBELIX-v1: Blocs numériques

Division du digital top d'OBELIX par modules

• Institutions participantes actuelles:

- Division du design digital :
 <u>4 parties principales</u>
- **OSCU sync & clk divider** : diviseur numérique clk, synchronisation du circuit et clk diviseur, conversion au format RxDat, <u>fonction principale</u> : diviseur d'horloge, synchronisation Rx_data SIPO (**CPPM**)
- **2**CRU unité de contrôle : Interface RD53B de mise en œuvre, <u>fonctions</u> <u>principales</u> : décodeur de commande, configuration globale du registre (CPPM)
- **3TRU Unité de déclenchement** : gestion des données de pixels à partir de la matrice-EOC et gestion du trigger pour déclencher la sortie (**HEPHY**)
- TXU TX Unit: Mise en forme des données de sortie et génération de la sortie séquentielle, <u>fonctions principales</u> : tramage de données, sérialiseur (CPPM & HEPHY)

OBELIX-v1: Chemin des données

Les horloges dans OBELIX-v1

Etat des lieux de la conception digitale de OBELIX-v1

Design en cours de développement. Nous travaillons à l'implémentation physique → But : Soumission tôt en 2024

- <u>Soumission dec 2022 (délais → problème de restricted NDA)</u>:
 - Designs basés sur des cellules "boites noires" fournies dans le restricted design kit.
 - Echanges fréquents avec IMEC pour corriger erreurs DRC (grosse perte de temps)
- <u>Le prototype 28nm a été reçu en Juin 23</u>.
- Test setup en préparation
 - Adaptation du setup basé sur board beaglebone
- <u>Prévisionnel</u>:
 - Tests fonctionnels en Q4 2023 puis tests sous irradiation (TID et SEE) en Q1 2024.
 - − La signature d'un 3-way NDA a eu lieu \rightarrow facilitation des prochains designs.
 - Utilisation du CERN PDK dans le futur.
 - <u>Soumission prévue en Q3 2024</u>:
 - Focalisation sur la matrice de pixels
 - Prévoyons de bonder la puce à un senseur
- Projets DRD:
 - High precision timing / techniques 4D et 5D \rightarrow DRD 7.3
 - Environnements extrêmes / Durcissement des advanced CMOS nodes → DRD 7.4
- Et soutien EU AIDAinnova

• <u>28nm, niveau TRL 4</u> vérification fonctionnelle au laboratoire

- Avancées des projets Depleted MAPS:
 - Tests des soumissions TJ65: RO (TID)
 - Finalisation du travail sur LF150 en cours (LF-Monopix2)
 - Tests de TJ-Monopix2 en TJ180
 - Basé sur le prototype TJ-Monopix2, implication forte sur le design d'OBELIX en TJ180 pour le projet de jouvence Belle II VTX
 - Etudes du FE analogique
 - Implication forte sur le design de la partie digitale
 - En cours de finalisation → soumission prévue début 2024
 - <u>TJ65, niveau TRL 4</u> vérification fonctionnelle au laboratoire

• <u>TJ180, niveau TRL 5</u> vérification en environnement représentatif

- <u>A suivre en 2024</u>:
 - Renforcement activités TJ65
 - Continuation de notre forte implication sur OBELIX_v1 en TJ180 (test des protos, travail sur v2 ...)
 - ANR APICS (CPPM / ICUBE / IPHC) étude amplification de charge dans le sensor
- <u>Cadre</u>:
 - DRD3.1 / DRD 7.6
 - AIDAinnova / CERN strategic R&D WP1.2 / Belle II upgrade VTX