

GRAM

Développement de capteurs GRAnulaires, Minces et basses puissances pour la trajectométrie et le vertexing

- Scientific context and motivations
- Tasks
 - □ Task 1: Full size prototype MIMOSIS
 - □ Task 3: Generic R&D and CMOS 65 nm technology
 - □ Task 2: Tests & integrations
 - □ Task 4: spin off
- Summary

Silicon detector figure of merit for HEP

- Ultimate performances look like the ideal tracking or vertexing detector. However
 - ✓ Very antagonist requirements (e.g. Data rate and Power, time vs spatial resolution, etc.)
- Need a hierarchy and/or specialized layers
 - Governed by physics requirements and experimental conditions
 - R&D needed to improve the parameter space
- CMOS Monolithic Active Pixels Sensors (MAPS)
 - ✓ Offers the best compromise in many applications

CMOS-MAPS for charged particle detection

Main features

- Monolithic, p-type Si
 - Signal created in low doped thin epitaxial layer ~O(10) μm
 - ~ 80 e- / μ m \Rightarrow total signal ~ O(1000 e-) \Rightarrow low noise electronic
- ✓ Charge collection: diffusion of e- ⇒ N-Well diodes
 - Partial depletion ⇒Charge sharing ⇒ resolution
 - Possible full depletion ⇒Higher S/N & rad. tol.
- ✓ Continuous charge collection
 - No dead time
- Main advantages
 - ✓ Granularity
 - Pixel pitch down to 10 x 10 μ m² \Rightarrow spatial resolution down to ~ 1 μ m)
 - ✓ Material budget
 - Sensing part ~ 10-20 μ m \Rightarrow whole sensor routinely thinned down to 50 μ m
 - Signal processing integrated in the sensor
 - Compacity, flexibility, data flux
 - Flexible running conditions
 - From $\leq 0^{\circ}$ C up to 30-40°C if necessary
 - Low power dissipation (~ 150-250 mW/cm²) ⇒ material budget
 - Radiation tolerance: >~ MRad and O(10¹³⁻¹⁴ n_{eq}) ⇒f(T,pitch)
 - Industrial mass production
 - Advantages on costs, yields, fast evolution of the technology,
 - Possible frequent submissions
 - Smaller feature size, adapted epitaxial layers, doping profile to enhance depletion
- Main limitations
 - Industry addresses applications far from HEP experiments concerns
 - Different optimizations on the parameters on the technologies
 - R&D costs
 - High expertise needed (from design to tests & characterizations)
 - Long R&D needed for a given application

8 Novembre 2023

Pixel detector requirements

8 Novembre 2023

Journées R&T, A.Besson, Université de Strasbourg

GRAM organization

- Recent changes
 - ✓ Open to emerging activities (APC, IP2I)
 - Not focus exclusively on VTX Higgs factories
- Task 1: Full size prototype MIMOSIS
- Task 2: Integration
 - ✓ Stitching & bent sensors
 - ✓ Tests, characterizations
- Task 3: R & D
 - ✓ 65nm R&D
 - ✓ DRD-3 project (telescope demonstrator)
 - ✓ Architectures
 - Asynchronous read-out
 - In pixel preamplification
 - In pixel ADC
 - Timing measurement
- Task 4: applications, spin off

GRAM organization

- Recent changes
 - ✓ Open to emerging activities (APC, IP2I)
 - Not focus exclusively on VTX Higgs factories

• Task 1: Full size prototype MIMOSIS

- Task 2: Integration
 - ✓ Stitching & bent sensors
 - ✓ Tests, characterizations
- Task 3: R & D
 - ✓ 65nm R&D
 - ✓ DRD-3 project (telescope demonstrator)
 - ✓ Architectures
 - Asynchronous read-out
 - In pixel preamplification
 - In pixel ADC
 - Timing measurement
- Task 4: applications, spin off

CBM Micro Vertex Detector (MVD) / MIMOSIS requirements

		Physics parameter	Requirements]_	
Requirements	Lattar Rhydrichter Histori Care Journal Discort	Spatial resolution	~ 5 um	1	Similar
Requirements		Time resolution	~ 5 us] -	
		Material budget	0.05% X ₀		to ALPIDE
2°		Power consumption	$< 100 - 200 \text{ mW/cm}^2$		
		Operation temperature	- 40 °C to 30 °C]	
	MINAOSIS 1. Course thick	Temp gradient on sensor	< 5K		~10
	WINNOSIS-1, BOUM LINCK	Radiation tol* (non-ion)	~ 7 x 10 ¹³ n _{eq} /cm ²		×10
		Radiation tol* (ionizing)	~ 5 MRad]	ALPIDE
		Data flow (peak hit rate)	@ 7 x 10 ⁵ / (mm ² s) > 2 Gbit/s	1	~ x2
					ALPIDE
	 4 double-sided thin p 100 kHz Au+Au @ 11 AG 	lanar detector st eV and 10GHz p+Au	tations 1 @ 30 AGeV		
	• Non uniform hit densi	ty in time and sp	bace		
CBM – Experiment @ FAIR	High radiation enviro	nment, operating	in vacuum	1	
MIMOSIS chip		Parameter	۱	/alue	9

- ✓ Based on ALPIDE architecture
- ✓ Discriminator on 27x30µm² pixel
- ✓ Multiple data concentration steps
- ✓ Elastic output buffer
- ✓ 8 x 320 Mbps links (switchable)
- ✓ Triple redundant electronics

Parameter	Value
Technology	TowerJazz 180 nm
Epi layer	\sim 25 μm
Epi layer resistivity	$> 1 k \Omega cm$
Sensor thickness	<mark>60 μm</mark>
Pixel size	$26.88\mu m imes 30.24\mu m$
Matrix size	1024×504 (516096 pix)
Matrix area	\approx 4.2 cm ²
Matrix readout time	5µs (event driven)
Power consumption	$40-70 \mathrm{mW/cm^2}$

MIMOSIS = a milestone for Higgs factories (5 μ m / \leq 5 μ s)

✓ >2025

8 N

- architecture adaptable to a fast sensor for a future e⁺e⁻ collider vertex detector
- ➡ Opportunity to study different designs/options

Example: MIMOSIS (CBM-MVD) & Decision on options for sensing elements

8 Novembre 2023

Journées R&T, A.Besson, Universite de Strasbourg

Lessons learned up to now

Mimosis-1

Lab tests for all different versions (pixels, process) ~10 beam test campaigns over 2 years (2021-22) Single Event Effect studies (not covered here) 3 irradiations campaigns Large FTE effort

Putting all together: Irradiations - efficiency - resolution

- Det eff. >> 99% for 10¹⁴ n_{eq}/cm² (p-stop)
- Reasonable performances after 3x 10¹⁴ n_{eq}/cm².
- Spatial resolution in the 5-6 μm range for p-stop process
- ✓ Noise under control
 - Fake rate < 10⁻⁶ for all pixel types tested.
 - "AC pixels + p-stop process" offer a very good compromise efficiency – resolution – radiation hardness
 - Performances matches requirements

 ⇒ Working point demonstrated after iraddiation (10¹⁴ n_{eq} + 5 Mrad)

GRAM organization

- Recent changes
 - ✓ Open to emerging activities (APC, IP2I)
 - Not focus exclusively on VTX Higgs factories
- Task 1: Full size prototype MIMOSIS
- Task 2: Integration
 - ✓ Stitching & bent sensors
 - ✓ Tests, characterizations
- Task 3: R & D
 - ✓ 65nm R&D
 - ✓ DRD-3 project (telescope demonstrator)
 - ✓ Architectures
 - Asynchronous read-out
 - In pixel preamplification
 - In pixel ADC
 - Timing measurement
- Task 4: applications, spin off

8 Novembre 2023

Journées R&T, A.Besson, Université de Strasbourg

ALICE ITS3: Bent sensors & stitching (MOSS)

ALICE-ITS3/CERN drives the R&D on

Stitching + bent sensors:

- Sensor part ~15% of total material budget \checkmark
- Sensors thinned down to 50 µm
- Minimizing overlapping regions,

minimizing minimal radius around the beam pipe

- Challenges and caveats (for e^+e^- colliders)
 - Mechanics ? Bonding ? Air cooling only ? \checkmark
 - Design: Minimizing peripheral circuits (Fill factor ~90%)
 - Bent sensor performances ? Yield ? Radiation hardness ? \checkmark
 - \Rightarrow design rules constraints the minimal pitch (~22 µm)
 - ITS-3 do not have disk (chip periphery adds Z position constraint) \checkmark
 - Approach validated in a limited radius range (R> 18mm)

Questions potentially adressed by GRAM with **MIMOSIS**

1st bending tests by C4PI microtechnics

Tests & characterizations

- Nerf de la guerre
 - Demanding in resources (funds, FTE, time)
 - Large fraction of the FTEs in all activities (C4PI & physicists)
- Major challenges
 - Provide test benches / test beam DAQs
 - ✓ Stay time/cost effective, keep using what works
 - ✓ Share/support DAQs system with partners
 - Anticipate needs for the future (e.g. high bandwidth, Test beam setups, compatibility with collaborations, analog/digital outputs, small/large sensors, etc.)
 - Strategy built with C4PI (July-October 2023)
 - ✓ Be compatible with the EUDAQ system (including software, TLU)
 - Make the proximity boards compatible with all DAQS
 - Develop interface boards
 - ✓ Develop new DAQ based on FPGAs cards + ADC/interface + home made carrier cards

GRAM organization

- Recent changes
 - ✓ Open to emerging activities (APC, IP2I)
 - Not focus exclusively on VTX Higgs factories
- Task 1: Full size prototype MIMOSIS
- Task 2: Integration
 - ✓ Stitching & bent sensors
 - ✓ Tests, characterizations
- Task 3: R & D
 - ✓ 65nm R&D
 - ✓ DRD-3 project (telescope demonstrator)
 - ✓ Architectures
 - Asynchronous read-out
 - In pixel preamplification
 - In pixel ADC
 - Timing measurement
- Task 4: applications, spin off

An example of R&D: TPSCo 65 nm CMOS technology

- 65 nm feature size technology
 - Main driver: CERN EP R&D WP 1.2 & ALICE ITS-3 upgrades
 - Privileged relation between CERN with the foundry
 - Added values
 - \checkmark Larger wafers (\Rightarrow 30 cm)
 - ✓ More functionalities inside the pixel
 - Keeps pixel dimensions small \Rightarrow spatial res. \checkmark
 - ✓ Potentially faster read-out
 - Lower power consumption \checkmark
 - Synergy with Higgs factories requirements
- First submission: MLR1 (2020)
 - Validated the technology for HEP

for developing new horizons for RIs

- 2nd Submission ER1 (2022-23)
 - Dedicated to ITS3 (MOSS/MOST; stitching)

ALICE

8 Novembre 2023

Journées R&T, A.Besson, Université de Strasbourg

C4PI-Platform

- CE_65v2 (MLR1 submission)
 - prototype designed @IPHC \checkmark
 - Analog output, various designs (pitch, amplification)
 - CE_65v2 (ER1 submission)
 - $18/22 \ \mu m$ pitch, hex design \checkmark
 - 1st test beam in November 2023
- More results: PSD13, Oxford, El Bitar

Entries (normalised)

2

1.8

1.6

1.4

1.2

0.8

0.6

0.2

0

(c) Modified with gap

CE65_v1

CE_65 prototypes

WELL NWELL

DEPLETION

Variant	Process	Pitch	Matrix	Sub-matrix
CE65-A	std	$15 \mu { m m}$	64×32	AC/21, DC/21, SF/22
CE65-B	mod_gap	$15 \mu { m m}$	64×32	AC/21, DC/21, SF/22
CE65-C	mod	$15 \mu { m m}$	64×32	AC/21, DC/21, SF/22
CE65-D	std	$25 \mu { m m}$	48×32	AC/16, DC/16, SF/16

19

WG3.1: CMOS TPSCo-65 nm submissions and connexion with DRD3/DRD7

CMOS TPSCo 65nm (ALICE ITS-3 + EP R&D WP1.2)

- \checkmark Main CMOS technology supported by CERN in the coming years
- ✓ TJ 180nm probably less (or not) supported in the future
- 2 lines of submissions in CMOS TPSCo 65nm
 - ✓ Submissions dedicated to ALICE ITS-3 (ER2 & ER3) ⇒ stitching, bent sens
 - Submissions for generic R&D, supported by CERN EP R&D WP1.2 (« MLR2 and beyond)
- Generic R&D possible contributions
 - ✓ One expression of interest submitted with M1/M5 main driver (future e+ecolliders vertex detectors)
 - Targets 3 μm spatial resolution, improved time resolution (5-500 ns), controlled Power (< 50 mW/cm²), data flow (10-100 MHz/cm²) and low material budget (50 μm thickness)
 - Demonstrator to equip new generation beam telescope
 - ✓ Other projects in discussion (tracking, timing, calorimeters, link to MP DEPHY ?)
 - e.g. Fast timing (<100 ps); low power architecture, etc.

IPHC, CPPM, APC, IP2I

DRD project: Fine-pitch CMOS pixel sensors with precision timing for vertex detectors at future

Lepton-Collider experiments

DRD technology area

DRDT 3.1 - Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors.

Proposing participants

Institute	Contact	Foreseen main areas of contribution
APC Paris	M. Bomben	Simulations, testing
CERN	D. Dannheim	Testing, DAQ, ASIC design support
DESY	S. Spannagel	ASIC design, testing, DAQ, simulations
IPHC Strasbourg	A. Besson	ASIC design, testing
Oxford University	D. Hynds	Testing, simulations
Zurich University	A. Macchiolo	Testing, DAQ, simulations

GRAM organization

- Recent changes
 - ✓ Open to emerging activities (APC, IP2I)
 - Not focus exclusively on VTX Higgs factories
- Task 1: Full size prototype MIMOSIS
- Task 2: Integration
 - ✓ Stitching & bent sensors
 - ✓ Tests, characterizations

• Task 3: R & D

- ✓ 65nm R&D
- ✓ DRD-3 project (telescope demonstrator)

✓ Architectures

- Asynchronous read-out
- In pixel preamplification
- In pixel ADC
- Timing measurement
- Task 4: applications, spin off

Other R&Ds

- Generic R&D to be put in balance with GRAM scientific goals
 - \checkmark if fully generic \Rightarrow C4PI is the key player
- CMOS with Preamplification
 - Carried by C4PI & ANR APICS 2023 (J. Baudot, CPPM/IPHC/ICUBE)
 - ✓ Interest: amplification of primary charges in the sensitive layer
 ⇒ Spatial resolution, Fast time resolution & Power optimization

l evel 0

Gain implant

level1 level2 level3

ANR 4D MAPS submitted in 2023 (IPHC/APC/IP2I, Bomben)

- Asynchronous read-out
 - Carried by C4PI/ICUBE + PhD
 - Interest: low power, fast read-out architecture & increased bandwidth
 - ✓ Challenge: make it compatible wit small pitchs
- In pixel ADCs
 - ✓ with APC
 - Interest: optimize the spatial resolution vs pitch figure of merit
- Fast timing (ToF via TDC)
 - ✓ with IP2I/APC
 - ✓ Interest: ⇒ MAPS with 4D measurements

GRAM organization

- Recent changes
 - ✓ Open to emerging activities (APC, IP2I)
 - Not focus exclusively on VTX Higgs factories
- Task 1: Full size prototype MIMOSIS
- Task 2: Integration
 - ✓ Stitching & bent sensors
 - ✓ Tests, characterizations
- Task 3: R & D
 - ✓ 65nm R&D
 - ✓ DRD-3 project (telescope demonstrator)
 - ✓ Architectures
 - Asynchronous read-out
 - In pixel preamplification
 - In pixel ADC
 - Timing measurement
- Task 4: applications, spin off

Applications & spin off (few examples)

- Caveats
 - Must be mainly founded by other sources
 - FTE limitations \checkmark
 - ✓ Added value:
 - Full size chips applications, support for other IN2P3 projects
- ALP-ION R&T + C4PI
 - Monolithic Imager \checkmark
 - Ion detection in laser plasma beam environnement
 - ✓ (EMP)
- MIMOSIS chips to be provided to FOOT experiment (IPHC, INFN)
 - Hadrontherapy (nuclear fragmentation cross- \checkmark section of medium-light ions)

Hit Map 1.8E5 Protons s1 mm²

2D Profile Run 2313 A. Altingun

- MIMOSIS test beam at CYRCE (IPHC)
 - ✓ 25 MeV protons
 - ✓ Localized irradiation, Intensity measurement, DAQ & high flux/bandwidth tests

24

GRAM: Summary

- CMOS-MAPS technology:
 - ✓ After 20 years of R&D, the technology has reached a level of maturity which allows it to be widely used in HEP
 - \checkmark The technology has not yet reached its full potential
- Scientific goals:
 - Exploit fully the potential of the technology, targeting future Higgs factory (FCCee) and any applications where granularity is a leading requirement
- Strategy definition:
 - ✓ Synergies: Mid-term projects are still the way to go
 - Carried by GRAM : MIMOSIS OR carried by other MPs: ALICE ITS-3, Belle-2 upgrade (Obelix)
 - Provides invaluable milestones, maintains/develops the know-how for full size chips
 - ✓ Leading technology: 65nm TPSCo R&D
 - Supported by CERN and DRDs
- Strategy implementation:
 - ✓ Local:
 - Crucial role of C4PI (e.g. R&D strategy coordination between GRAM & C4PI, manpower)
 - Strategy for Higgs factories/ALICE-ITS3/Belle II endorsed by IPHC scientific council (2023), HCERES.
 - ✓ National:
 - GRAM extended to emerging activities (IP2I, APC) and to other applications (e.g. outer trackers)
 - Contribute to projects carried by experiments (ALICE ITS-3, Belle-II) (e.g. technical coordinator of ITS-3 @ in2p3)
 - Continue to strengthen the community targeting FCCee (e.g. ANR submitted (Bomben, APC/ IP2I/IPHC)
 - Find the right balance between generic R&D and specific requirements & mid-term vs long term
 - ✓ International:
 - DRD3/DRD7 and program of submission in 65 nm technology
 - Exploit synergies and maintain the network of partners (CERN, DESY, KEK, Zurich, etc.)

backup

The 2021 ECFA Detector R&D roadmap: Solid State detectors

The 2021 ECFA Detector Research and Development Roadmap

Prepared by the Detector R&D Roadmap Process Group of the European Committee for Future Accelerators

Detector R&D Roadmap: themes (DRDTs)

DRDT 3.1 - Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors.

Developments of Monolithic Active Pixel Sensors (MAPS) should achieve very high spatial resolution and very low mass aiming to also perform in high fluence environments. To achieve low mass in vertex and tracking detectors, thin and large area sensors will be crucial. For tracking and calorimetry applications MAPS arrays of very large areas, but reduced granularity are required for which cost and power aspects are critical R&D drivers. Passive CMOS designs are to be explored, as a complement to standard sensors

DRDT 3.2 - Develop solid state sensors with 4D-capabilities for tracking and calorimetry.

Understanding of the ultimate limit of precision timing in sensors, with and without internal multiplication, requires extensive research together with the developments to increase radiation tolerance and achieve 100%-fill factors. New semiconductor and technology processes with faster signal development and low noise readout properties should also be investigated.

Ball park performance targets MCMOS

Three main time scales/phases to define program up to: 2027-28, 2029-2035, >2035

		Tracking VD/CT	Timing Layer + Calorimeter
gets*	Heavy lon	<mark>ultralight low power tracker</mark> pitch Ю - 30 <u>µm</u> @ О(100) MHz/cm², О(1) <u>µs</u>	0(20) <u>ps</u> (TL)
ince tar sable	<u>Flavour</u> collider	ultralight low power tracker pitch 10 - 30 µm @ 0(100) MHz/cm², 0(1) ns	0(20) <u>ps</u> in (TL)
aneric performs Indatory/desire	Lepton collider	e-e : ultralight low power tracker pitch down to ≲10 µm, @ O(100) MHz/cm ² timing driven by power timing driven by power dissipation µ-µ : O(20) <u>ps</u> rates and irradiation tbc	O(10) <u>ps</u> in TL O(< 50) <u>ps</u> in calorimeter driven by power power dissipation
Ball park ge ma	pp collider	HL-LHC: 25-50 μm @ 0(5) GHz/cm ² 5x10 ¹⁵ to 5x10 ¹⁶ neg/cm ² , 250 - 500 <u>MRad</u> timing 0(<50) ps timing 0(<50) ps FCC- <u>hh</u> : < 10 - 20 μm @ 30 GHz/cm ² 4D tracking	HL-LHC: pitch O(<1) mm O(20) <u>ps</u> in TL, NIEL 5x10 ¹⁵ FCC- <u>hh</u> ; 5D calorimeter
*		4D tracking O(<10) <u>ps</u> up to O(10 ¹⁸) to O(10 ¹⁸) <u>neg</u> /cm ² , up to O(50) <u>GRad</u>	0(<10) <u>ps</u> up to 0(10 ¹⁶) <u>neq</u> /cm ² , up to 0(50) <u>GRad</u> 0(50) <u>GRad</u>
ranges represe	entative, ex. for VD and L1 with more	stringent constraints to be achieved in VU	

WG3.1: CMOS TPSCo-65 nm submissions and connexion with DRD3/DRD7

CMOS TPSCo 65nm (ALICE ITS-3 + EP R&D WP1.2)

- Offers attractive perspectives w.r.t. TJ180nm
 - Stitching (12 inches wafers)
 - Potentially smaller pitch, faster, less power consumption, etc.
- \checkmark Main CMOS technology supported by CERN in the coming years
- IPHC & CPPM already in the consortium participating to the technology validation
- ✓ TJ 180nm probably less (or not) supported in the future

2 lines of submissions in CMOS TPSCo 65nm

- ✓ Submissions dedicated to ALICE ITS-3 (ER2 & ER3) ⇒ stitching, bent sensors
- ✓ Submissions for generic R&D, supported by CERN EP R&D WP1.2 (« MLR2 » and beyond)
- Generic R&D possible contributions
 - One expression of interest submitted with M1/M5 main driver (future e+ecolliders vertex detectors)
 - Goal: gather groups to reach a critical size

 Targets 3 μm spatial resolution, improved time resolution (5-500 ns), controlled Power (< 50 mW/cm²), data flow (10-100 MHz/cm²) and low material budget (50 μm thickness)

- Demonstrator to equip new generation beam telescope
- Proposing Institutes: CERN, DESY, IPHC, APC, etc.
- Open to other participations
- ✓ Other projects in discussion (tracking, timing, calorimeters, link to MP DEPHY ?)
 - e.g. Fast timing (<100 ps); low power architecture, etc.

DRD project: Fine-pitch CMOS pixel sensors with precision timing for vertex detectors at future Lepton-Collider experiments

DRD technology area

 DRDT 3.1 - Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors.

Proposing participants

Institute	Contact	Foreseen main areas of contribution
APC Paris	M. Bomben	Simulations, testing
CERN	D. Dannheim	Testing, DAQ, ASIC design support
DESY	S. Spannagel	ASIC design, testing, DAQ, simulations
IPHC Strasbourg	A. Besson	ASIC design, testing
Oxford University	D. Hynds	Testing, simulations
Zurich University	A. Macchiolo	Testing, DAQ, simulations

The MVD @ CBM

8 Novembre 2023

Journées R&T, A.Besson, Université de Strasbourg

Process modifications

P-well Deep P-well	Pixel implant Electrode size	Deep P-well
P-type epitaxial la	ayer	
P+ backside		

Pic from: Munker, Vertex 2018, Status of silicon detector R&D at CLIC Carlos, TREDI 2019, Results of the Malta CMOS pixel detector prototype for the ATLAS Pixel ITK

Pic from: Munker, Vertex 2018, Status of silicon detector R&D at CLIC Carlos, TREDI 2019, Results of the Malta CMOS pixel detector prototype for the ATLAS Pixel ITK

- standard process (3 available wafers)
- continuous n-layer (blanket) (3 wafers)
- additional p-implant (3 wafers)
- gap in n-layer (3 wafers)

Journées R&T, A.Besson, Université de Strasbourg

Synergies

_								
	ECFA recog experiment	gnizes the need for th designs and detector	e experin r technolo	nental and the gies at future	oretical commu Higgs factories	nities involved in ph to gather. ECFA su	iysics studies, I <mark>pports a</mark>	к.
·	series of w	orkshops with the a	im to sha i	re challenges	and expertise	, to explore syner	gies in their	
	efforts and	to respond conerent	ly to this p	priority in the E	uropean Strate	gy for Particle Phys	ics (ESPP).	
					. ,			
(Goal: bring i	the entire e ⁺ e ⁻ Higgs i	factory eff	fort together, f	oster cooperatio	on across various p	rojects;	
(collaborative	e research programm	es are to	emerge				
						i k		
				a de la companya de l				
				5 S	and and and		*	
				20 10 10 10 10 10 10 10 10 10 10 10 10 10	\$ \$ S S S S	8 8 8	. 0	
				10 20 mg	5 5 5 5 0		(o)	
			4	2 0 2 4 6	र र ५ २ ४ थ	3 * & C & & Q	4	
			DRDT	< 2030	2030-2035	2035-2040-2045 >2045		
						2040	-	
		Position precision	5.1, 5.4					
		Low X/X _o	5.1,5.4					
		Low power	5.1,5.4					
	Vertex	High rates	5.1, 5.4	••••				
	detector ²⁾	Large area wafers ³⁾	3.1,3.4					
		Ultrafast timing ⁴⁾	5.2			• • • • •	•	
		Radiation tolerance NIEL	3.3		•			
		Radiation tolerance TID	3.3					
		Position precision	3.1,3.4					
		Low X/X _o	3.1,3.4				- I	
		Low power	5.1, 5.4				-	
	Tracker ⁵⁾	High rates	3.1,3.4					
		Large area waters ³⁾	5.1,5.4				_	
		Ultrafast timing ⁴	5.2				-	
		Radiation tolerance NIEL	5.5					
_			3.3					
		Position precision	3.1,3.4					
		Low X/X _o	5.1, 5.4					
		Low power	5.1, 5.4		••••	• • •		
	Time of flight ⁷⁾	High rates	5.1, 5.4					
		Large area waters ^o	5.1,5.4 Z 2					
		Dediation tolerance NIEL	J.C 7 7	-				
		Padiation tolerance NIEL	5.5 z z					
		natiation tolerance HD	5.5					

. Jakobs, FCC Physics Workshop, Feb 2022

MVD Physics goals

CBM @ FAIR (GSI)

[uuu] X

10

0-

-10-

20

- Fixed target experiment to study the QCD phase diagram in the high baryon density region
- Micro-Vertex Detector (MVD)
 - ✓ High precision reconstruction of secondary vertices
 - e.g. charm mesons ~ 100 μm flying distance

Average Hit-Density, Au-Au 10 AGeV

Sensor 2

Sensor 0

-10

Space inhomogeneity

0

10

3

Sensor

30 kHz collision rate

Sensor 4

 High rate, high irradiation, non homogenous in time and space

Sensor 6

20

 $[1/mm^{2}]$

12

0.8

0.6

0.4

0.2

30 0 X [mm]

Time fluctuations

8 Novembre 2023

Journées R&T, A.Besson, Université de Strasbourg

Mimosis-1 Verification tools example

- Large and complex designs need
 - A hierarchy in the work flow to keep submission on schedule
 - Verification tools that can be run in a reasonnable time
 - ✓ Knowledge of these tools is crucial
- Example Power-grid problem observed in MIMOSIS-1
 - ✓ Threshold shifts
 - ✓ Problem fixed quickly

F. Morel DRD7 kick-off meeting

8 Novembre 2023

Journées R&T, A.Besson, Université de Strasbourg

MIMOSIS-2 first tests

• 9 chips diced and tested (from different wafers/process)

- MIMOSIS-2 does not work properly
 - Unexpected issues on the design (e.g. frequency limitation for some standard cells, reset)
 - ✓ Ongoing discussions with the foundry (NDA)
- Status:
 - The CBM-MVD collaboration worked hard the last 4 months to identify the sources of the problems.
 - The sources of all the identified problems has been understood.
 - the critical issues can probably be corrected by resubmitting with only 2 modified metal masks
 - The current version of MIMOSIS-2 will not allow to fully characterize its performances but it validates the additional features with respect to MIMOSIS-1 (on-chip clustering, triplication).

MIMOSIS-2: Action plans

- Focused Ion Beam correction on few chips (FIB)
 - The Focused Ion Beam process is a circuitry modification protocol that will allow to modify 2 x 2 columns.
 - It confirmed the problems identification
 - It validated the clustering and the triplication.
- Lessons learned
 - ✓ Unexpected issues which could have occurred in MIMOSIS-1
 - ✓ Analog simulation tools for the digital part provided valuable input
 - verification process improvement
 - MIMOSIS-2 played its role (validation of the final design, verification process optimization)
 - A possible compromise is to resubmit a fabrication with less options :
 - ✓ MIMOSIS 2.1 ?
 - Less different splits/process, less wafers, perhaps only AC matrix) to optimize costs vs delay vs tests.
 - Submitting a version closer to the final sensor design (e.g. only one pixel type on the whole matrix) might offer some added value to be estimated.
- Plans
 - Validate all corrections (in particular thanks to chips corrected with FIBs)
 - Final decision about to be taken in the coming month

896 pix

128 pix

Particle ID & Timing

Power vs fast timing vs pixel size

Brie	f consid	leratior	ns about	electronics:	power
Name	Sensor	node	Pixel size	Temporal precision [ps]	Power [W/c
ETROC	LGAD	65	1.3 x 1.3 mm²	~ 40	0.3
ALTIROC	LGAD	130	1.3 x 1.3 mm²	~ 40	0.4
TDCpic	PiN	130	300 x 300 μm²	~ 120	0.45 (matrix 2 (periphe
TIMEPIX4	PIN, 3D	65	55 x 55 μm²	~ 200	0.8
TimeSpot1	3D	28	55 x 55 μm²	~ 30 ps	5-10
FASTPIX	monolithic	180	20 x 20 μm²	~ 130	40
miniCACTUS	monolithic	150	0.5 x 1 mm ²	~ 90	0.15 – 0.3
MonPicoAD	monolithic	130 SiGe	$25 \times 25 \ \mu m^2$	~ 36	40
Monolith	LGAD monolithic	130 SiGe	25 x 25 μm²	~ 25	40

.....

Nicolo Cartiglia, INFN, Torino, VCI2022, 25/02/22

Price to pay: additionnal cooling system (addtionnal material)

Timing & 4-D tracking

- Time resolution Δt
 - Bunch separation (3 μs / 1 μs / 20 ns @ FCCee)
 - ✓ Background rejection ? (1-10 ns range)
 - ✓ Particle ID (10-100 ps)
- Usual drawbacks to go faster
 - ✓ Power consumption
 - ✓ Active Cooling & geometrical acceptance due to services
 - ✓ In pixel circuitry ⇒ larger pixels (or multipixels)
 - ✓ Fill factor, dead time
 - ✓ PID Restricted to low momentum particles (~< few GeV/c)</p>
- Still
 - ✓ Forward region not covered by a central gazeous detector (TPC)
 - ✓ Added value for intermediate radii (e.g. LLPs ?)
- Specialized layers
 - ✓ Doesn't compromise the other requirements (material budget and granularity)
 - Probably not in the most inner layers

Particle ID and time resolution DRD4 & 1/3

More details here:

https://indico.cern.ch/event/1202105/contributions/5402790/attachments/2662086/4612032/FCC-DRD4.pdf

- Goal:
 - ✓ K/ π , π /e⁻ separation, etc. ⇒ Interest to push beyond 10 ps resolution
 - ✓ Even more important for the physics program @ Z peak

Material budget

Journées R&T, A.Besson, Université de Strasbourg

8 Novembre 2023

Journées R&T, A.Besson, Université de Strasbourg

ALICE ITS3: Bent sensors & stitching

- ALICE-ITS3/CERN drives the R&D on Stitching + bent sensors:
 - ✓ Sensor part ~15% of total material budget
 - \checkmark Sensors thinned down to 50 μm
 - ✓ Minimizing overlapping regions,
 - minimizing minimal radius around the beam pipe
 - Challenges and caveats (for e⁺e⁻ colliders)
 - ✓ Mechanics ? Bonding ? Air cooling only ?
 - ✓ Design: Minimizing peripheral circuits (Fill factor ~90%)
 - ✓ Bent sensor performances ? Yield
 - \Rightarrow design rules constraints the minimal pitch (~22 $\mu m)$
 - ITS-3 do not have disk (chip periphery adds Z position constraint)
 - ✓ Approach validated in a limited radius range (R> 18mm)

8 Novembre 2023

ALICE ITS3 tests

A. Kluge on behalf of the ALICE collaboration 22 February, 2022 VCI

ERG DUOCEL_AR 0.06 kg/dm³ 0.033 W/m·K

Layers 2+1

Carbon fiber foam spacer

Fig. 10: Inefficiency as a function of threshold for different rows and incident angles with partially logarithmic scale $(10^{-1} \text{ to } 10^{-5})$ to show fully efficient rows. Each data point corresponds to at least 8k tracks.

Bent sensors in test beam

Integation and cooling studies

Inteconnexion tests (superALPIDE)

On going experiments pave the road for Higgs factory detectors (many other examples)

8 Novembre 2023

C4PI: What have we already done?

Kapton-dummy-SuperAlpide bending Procedure done several times

Mezza-Luna bending Procedure done twice without damages

Challenge 1: the spatial resolution

Spatial resolution in Higgs factories

Typical targets:

- ✓ σ_{sp} ~3 µm for the vertex layers
- \checkmark σ_{sp} ~5-10 µm for the outer tracker layers
- Resolution in each layer depends on
 - \checkmark Pitch
 - In conflict with the functionnalities inside the pixel
 - Favored by small feature size technology
 - Charge deposition
 - Sensitive layer thickness
 - Charge sharing (SNR vs resolution)
 - Depletion:
 - Staggered pixels
 - Charge encoding

Elongated clusters: low pT tagging

Detector optimization and simulations

Optimization of the detector

- Example: Shall we target 18 or 22 μ m pitch ?
- Caveat: One can not decouple detector optimization and algorithm optimization

Example of detector optimization: CLD vertex/tracker

Jeremy Andrea, Auguste Besson, Ziad El Bitar, Gaelle Sadowski (PhD) (IPHC, CNRS, Strasbourg)

Master the full simulation chain (key4hep) for detector optimisation

Power, Architecture & designs

Power challenges

- Power is in conflict with all other parameters
- Baseline:
 - ✓ Air flow cooling only to minimize material budget
 - ✓ Up to ~ 20 mW/cm²
 - what is the limit ? ~50 mW/cm² or even more ?
- Driving parameters:
 - ✓ # channels, Time resolution / data flux
 - ✓ Surface (VXD ~ 3500 cm²; tracker O(10 m²)
 - ✓ Power Pulsing (ILC/CLIC) ⇒ Constraints more relaxed w.r.t. FCCee
- The « Power paradox »
 - ✓ Small radius ⇒ Higher hit density and Power/cm² but small fraction of total power
 - ✓ Higher radius ⇒ less hit density but higher total power/layer
- Power sharing
 - ✓ Analog part: O(25-50%) ⇒ density of pixels, charge collection speed
 - ✓ Digital part: O(25-50%) ⇒ data flux, freq.
 - ✓ Output→DAQ: maximum flux. (25%)
- Architecture optimization is important
 - Priority encoder (limited by flux)
 - ✓ Asynchronous might be adapted (tot, etc.)
 - ✓ Etc.
- Technology feature size
 - ✓ e.g. 180nm to 65 nm: ~50% Power reduction
- Air extraction:
 - \checkmark In conflict with disks and forward acceptance
 - (≠ALICE ITS2/3, Belle-2, STAR-HFT)

Power Analog $(mW/chip)$	49.22
Power Bias $(mW/chip)$	4.5
Power PriorityEncoder (mW/chip)	4.219
Power DigitalPeriphery (mW/chip)	64.27
Power PLL (mW/chip)	18.5
Power Serializer With Data (mW/chip)	86.06
Power Serializer With No Data (mW/chip)	0
Power LVDS (mW/chip)	56.4

MIMOSIS like architecture, 180 nm

Higgs factories

Future e⁺e⁻ collider: global and local context

Tracking/vertexing detectors in future e⁺e⁻ colliders

Collider		-C	CLIC		FCCee		CEP	PC .
Bunch separation (ns)	330,	/550	0.5		20/990/3000		25/6	80
Power Pulsing	Y	es	yes		no		nc)
beamstrahlung	hi	gh	high		low		lov	v
Detector concept	SiD	ILD	CLICdet	CLD	IDEA	Lar	Baseline	IDEA
B Field (T)	5	3.5	4	2	2	2	3	2
Vertex	Si-Pixel	Si-Pixel	Si-Pixel	Si-Pixel	Si-Pixel	Si-Pixel	Si-Pixel	Si-Pixel
Vertex Rmin (mm)	16	16	31	12	12	12	16	16
Tracker	Si-strips	ТРС	Si-Pixel	Si-Pixel (+RICH ?)	DC/Si- strips	DC/Si- strips or Si- Pixels	TPC or Strips	DC/Si- strips
Tracker Rmax (m)	1.25	1.8	1.5	2.2	2.0	2.0	1.8	2.1
Disks layers	4 + 4	2 + 5	6 + 7	3 + 7	3 (150 mrad)		2+6	

CLICdet

(From D. Dannheim)

Large similarities between the concepts but also significant differences

ersité de Strasbourg

• <u>R&D:</u> ⇒Keep excellent spatial resolution, low material budget, moderate Power consumption and push towards better time resolution (BX)

Tracker requirements

Expected performances

Physics

- Momentum resolution
- ➡ Tracking efficiency
- Track separation, low fake tracks
- ➡ Etc.
- Material budget vs intrinsic resolution
 - ✓ Typically σ_{sp} ~5-10 µm/layer ; material ~1-2% X₀/layer ; Power ~< 100 mW/cm²
 - Low momentum vs high momentum
- 2 main options:
 - ✓ All silicon (CLD, CLICdet, SiD)
 - Few high resolution layers
 - Possibly timing capabilities
 - Silicon + Gazeous detector
 - TPC (ILD) / Drift Chamber (IDEA)
 - dEdx/dNdx capabilities,
 - More hits, overall less materials
 - TPC: Ion back flow issue for circular colliders
- PID Strategy to be included (RICH, timing, dEdx, etc.)

Vertex/tracking detector comments

- Particle ID has to be included in the tracker concept

 dEdx and/or dNdx and/or fast timing
- Inner and outer radius are key factors
- Forward acceptance (e.g. asymmetry measurements)
 - Limited by MDI constraints, beam pipe, luminosity measurements, etc.
 - 30 mrad acceptance (FCCee)
- B-field
 - ✓ Limited to 2 T in circular machine (@ Z-pole)
- Beam time structure
 - Power pulsing only for linears
- Beam related Background
 - Beamstrahlung (incoherent e⁺e⁻ pairs)
 - Occupancy driver for linears
 - Less severe for circular (⇔Rmin reduction ~10mm))
 - ✓ Synchrotron radiation (mainly circulars)
 - Possible shielding (increase beampipe material budget)
- VTX Geometry
 - Probably 5-6 layers VTX (R < 60 mm)
 - Robustness (standalone tracking)
 - low momentum tracking
 - Track seeding @ different radii
 - e.g. FIPs, highly ionizining particles, LLPs, etc.
 - « long barrel » (sticking the first measurement point to the beam pipe)

VTX/Tracking detector is highly connected to the MDI and the whole detector concept

September 2023

Future e⁺e⁻ colliders (« Higgs factories »)

Snowmass summary (summer 2022): <u>https://snowmass21.org/energy/start</u>

Proposals emerging from this Snowmass for a US based collider

Next Milestone: European Strategy Update for particle physics (~2026-27)

- Coming decade: Detector R&D programs through DRDs
- Other proposals considered (e.g. new concepts, ILC hosted outside Japan, etc.)

Journées R&T, A.Besson, Université de Strasbourg

e⁺e⁻ collider beam parameters

Linear	IL	С		CLIC	
Parameter	250 GeV	500 GeV	380 GeV	1.5 TeV	3 TeV
Luminosity L (10 ³⁴ cm ⁻² sec ⁻¹)	1.35	1.8	1.5	3.7	5.9
L > 99% of Vs (10 ³⁴ cm ⁻² sec ⁻¹)	1.0	1.0	0.9	1.4	2.0
Repetition frequency (Hz)	5	5	50	50	50
Bunch separation (ns)	554	554	0.5	0.5	0.5 🔺
Number of bunches per train	1312	1312	352	312	312
Beam size at IP σ _x /σ _y (nm)	515/7.7	474/5.9	150/2.9	~60/1.5	~40/1
Beam size at IP σ _z (μm) ILC: Crossing angle 14 m CLIC: Crossing angle 20 m	300 rad, e ⁻ polari rad, e ⁻ polari	300 zation ±80 zation +8	70 0%, e* pol 0%	44 arization <u>:</u>	44 ±30%
Beam size at IP σ ₂ (μm) ILC: Crossing angle 14 m CLIC: Crossing angle 20 m Very small beams + high energy => beamstrahlung	300 rad, e ⁻ polari rad, e ⁻ polari	300 zation ±80 zation ±8 Very s at CLI requir	70 0%, e* pol 0% small bur C drives t rements f	44 arization <u>:</u> nch separ timing for detec	44 ±30% ration

Circular	FCC-ee			CEPC			
	z	Higgs	ttbar	Z (2T)	Higgs		
√S [GeV]	91.2	240	365	91.2	240		
Luminosity / IP (10 ³⁴ cm ⁻² s ⁻¹)	230	8.5	1.7	32	1.5		
no. of bunches / beam	16640	393	48	12000	242		
Bunch separation (ns)	20	994	3000	25	680		
Beam size at IP σ_x/σ_y (µm/nm)	6.4/28	14/36	38/68	6.0/40	20.9/60		
Bunch length (SR/BS) (mm) Beam size at IP σ_z (mm)	3.5/12.1	3.3/5.3	2.0/2.5	8.5	4.4		
Beam transverse polarisation => beam energy can be measured to very high accuracy (~50 keV) At Z-peak, very high luminosities and very high e ⁺ e ⁻ cross section (40 nb) ⇒ Statistical accuracies at 10 ⁻⁴ -10 ⁻⁵ level ⇒ drives detector performance requirements							
 ⇒ Small systematic errors required to match ⇒ This also drives requirement on data rates (physics rates 100 kHz) ⇒ Triggerless readout likely still possible 							

Beam-induced background, from beamstrahlung + synchrotron radiation

Most significant at 365 GeV

4 September, 2019

Mitigated through MDI design and detector design

Modified from Lucie Linssen, ESPPU, 2019

6

(slide from Mogens Dam/Lucie Linssen)

200 or 100 ms (5 or 10 Hz) 4 train duration = 727 (baseline) or 961 (Luggrade) µs

Bunch spacing = 554 (baseline) or 366 (Lupgrade) ns

1 train = 1314 (baseline) or 2625 (Lupgrade) bunches

ournées R&T, A.Besson, Université de Strasbourg

FCCee Collider parameters

Working point	Z, years 1-2	Z, later	WW, years 1-2	WW, later	ZH	tī	
$\sqrt{s} \; (\text{GeV})$	88, 91,	94	157, 163		240	340 - 350 365	
Lumi/IP $(10^{34} \text{cm}^{-2} \text{s}^{-1})$	70	140	10	20	5.0	0.75	1.20
Lumi/year (ab^{-1})	34	68	4.8	9.6	2.4	0.36	0.58
Run time (year)	2	2	2	0	3	1	4
					$1.4510^{6}{ m HZ}$	1.910^{6}	tī
Number of events	610^{12} Z		$2.410^8{ m WW}$		+	+330k l	HZ
					$45k WW \rightarrow H$	+80k WW	$\to H$

Updated luminosity parameters (2023):

Table 1 The baseline FCC-ee operation model with four interaction points, showing the centre-of-mass energies, instantaneous luminosities for each IP, integrated luminosity per year summed over 4 IPs corresponding to 185 days of physics per year and 75% efficiency, in the order Z, WW, ZH, tt̄. The luminosity is assumed to be half the design value for machine commissioning and optimisation during the first two years at the Z pole, the first two years at the WW threshold, and the first year at the tt̄ threshold. (Should the order of the sequence be modified to either Z, ZH, WW, tt̄ or ZH, WW, Z, tt̄, the ZH stage would start with two years at half the design luminosity followed by two years at design luminosity, while the WW stage would run afterwards for only one year but at design luminosity.) The luminosity at the Z pole (the WW threshold) is distributed as follows: 40 ab⁻¹ at 88 GeV, 125 ab⁻¹ at 91.2 GeV, and 40 ab⁻¹ at 94 GeV (5 ab⁻¹ at 157.5 GeV, and 5 ab⁻¹ at 162.5 GeV). The number of WW events include all \sqrt{s} values from 157.5 GeV up.

parameter	Z	ww	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1390	147	29	5.4
no. bunches/beam	16640	2000	393	48
bunch intensity [1011]	1.7	1.5	1.5	2.3
SR energy loss / turn [GeV]	0.036	0.34	1.72	9.21
total RF voltage [GV]	0.1	0.44	2.0	10.9
long. damping time [turns]	1281	235	70	20
horizontal beta* [m]	0.15	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horiz. geometric emittance [nm]	0.27	0.28	0.63	1.46
vert. geom. emittance [pm]	1.0	1.7	1.3	2.9
bunch length with SR / BS [mm]	3.5 / 12.1	3.0 / 6.0	3.3 / 5.3	2.0 / 2.5
luminosity per IP [1034 cm-2s-1]	230	28	8.5	1.55
beam lifetime rad Bhabha / BS [min]	68 / >200	49 / >1000	38 / 18	40 / 18

~	~	~	
2	()	1	1