

Nuclear rEaCTions At storage Rings, NECTAR

B. Jurado¹, M. Sguazzin¹, J. Pibernat¹, J. A. Swartz¹, M. Grieser², J. Glorius³, Y. A. Litvinov³, R. Reifarth⁴, K. Blaum², P. Alfaurt¹, P. Ascher¹, L. Audouin⁵, C. Berthelot¹, B. Blank¹, B. Bruckner⁴, S. Dellmann⁴, I. Dillmann⁶, C. Domingo-Pardo⁷, M. Dupuis⁸, P. Erbacher⁴, M. Flayol¹, O. Forstner³, D. Freire-Fernandez², M. Gerbaux¹, J. Giovinazzo¹, S. Grevy¹, C. Griffin⁶, A. Gumberidze³, S. Heil⁴, A. Heinz⁹, D. Kurtulgil⁴, G. Leckenby⁶, S. Litvinov³, B. Lorentz³, V. Meot⁸, J. Michaud¹, S. Perard¹, U. Popp³, M. Roche¹, M.S. Sanjari³, R.S. Sidhu¹⁰, U. Spillmann³, M. Steck³, Th. Stöhlker³, B. Thomas¹, L. Thulliez⁸, M. Versteegen¹, B Wloch¹

1- LP2I (ex-CENBG), Bordeaux, France
2- MPIK, Heidelberg, Germany
3-GSI, Darmstadt, Germany
4-University of Frankfurt, Germany
5-IJCLAB, Orsay, France
6-Triumf, Vancouver, Canada
7-IFIC, Valencia, Spain
8-CEA, France
9-University of Chalmers, Sweden
10-University of Edinburgh, UK

Introduction:

Neutron-induced reactions at energies below few MeV:

Motivation:

Need for neutron-induced reaction cross sections of radioactive nuclei

Essential for astrophysics, energy production and medicine!

 \rightarrow Very difficult or even impossible to measure with standard techniques because of the radioactivity of the targets.

 \rightarrow Complicated to calculate due to the difficulty to describe the de-excitation process. Calculations can be wrong by several orders of magnitude!

Surrogate-reaction method

Decay probabilities as a function of excitation energy are precious observables to constrain models and provide much more accurate predictions for neutron-induced cross-sections of nuclei far from stability.

Setup for the study of surrogate reactions in direct kinematics

Advantages of heavy-ion storage rings

The ESR at GSI/FAIR, Darmstadt, Germany

Beam cooling → Excellent energy and position resolution of the beam, maintained after each passage through the target, negligible, E-loss & straggling effects

Use of ultra-low density in-ring gas-jet targets ~10¹³/cm².

Effective target thickness increased by ~10⁶ due to revolution frequency (at 10 A MeV)

High-quality, pure, fully-stripped beams and pure, ultra-thin, windowless targets → unique!

Circunference of ~ 108 m

Challenge: Detectors in Ultra-High Vacuum (10⁻¹⁰-10⁻¹¹ mbar)!

First surrogate reaction experiment at the ESR, 20-27 June 2022 $208Pb+p\rightarrow 208Pb^*+p'$

First surrogate reaction experiment at the ESR, telescope

First surrogate reaction experiment at the ESR, beam-like residue detector system

Preliminary results, detection of beam-like residues

PhD Thesis of Michele Sguazzin

Perspectives

Next experiment (June 2024), measure simultaneously fission, neutron and gamma-emission probabilities

Production of pockets for fission detectors (Max-Planck-Institute for Nuclear Physics, Heidelberg)

Many failures until finding the appropriate procedure for soldering the window and Making it vacuum tight!

Successful procedure: Soldering in a vacuum oven with careful selection of soldering material and oven temperature profile!

Solar cells, interesting alternative to Si detectors for heavy-ion detection

Advantages:

→Good energy and time resolution!
→More resistant to radiation damage, more robust than Si detectors!
→Low cost (about 5 Euros!) compared to 2000-3000 Euros for Si detectors!
Challenges:

- Specific electronics to cope with large capacitance.
- Ultra high vacuum compatibility of supports, cables, etc.

Jerome Pibernat, IR, LP2I Bordeaux

Development of specific preamps! Development of encapsulation procedure!

Perspectives

Construction of a dedicated reaction chamber for the ESR, significant increase of detection efficiencies for target residues and fission fragments!

Acknowledgements

CMIS

This work is supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (ERC-Advanced grant NECTAR, grant agreement No 884715). NECTAR: Nuclear rEaCTions At storage Rings

Prime 80 program from CNRS, PhD thesis of M. Sguazzin

GSI Helmholtzzentrum für Schwerionenforschung

Accord de collaboration 19-80 GSI/IN2P3