

GRIT

Marlène Assié, IJCLab on behalf of the GRIT collaboration

Astrophysique nucléaire

Astrophysique nucléaire **Appariement (nn et np)** Pairing Z=50 evolution 🟪 r-process N=82 J=1, S=0 T=0, J=1,...,2j rp process **Clustering exotiques** np pairing ap process z (fm) 0 Novae nucleo. N=50 Hot CNO Pygmées x (fm) Peaux de neutrons Phénomènes collectifs Z=8 Clustering N=20Haloes

Astrophysique nucléaire

Clustering exotiques

Phénomènes collectifs

Les réactions directes : un outil performant pour étudier la structure des noyaux

REACTIONS DIRECTES = transfert, diffusion élastique/inélastique ...

Cinématique directe

Détection de la particule légère à l'avant (dans un petit angle) --> spectromètre avec une très bonne résolution en énergie

 Cinématique inverse: Faisceaux d'ions radioactifs sur cible d'ions légers (H, He, Li)

Détection de :

la **particule légère** de recul sur 4π

- + des gammas de décroissance
- + éventuellement le résidu lourd

--> coincidence triple

--> Technologie basée sur les **détecteurs Siliciums** couplés avec d'autres détecteurs

Design conceptuel de GRIT

REACTIONS DIRECTES = transfert, diffusion élastique/inélastique ...

Cinématique inverse: Faisceaux d'ions radioactifs sur cible d'ions légers (H, He, Li)

Détection de :

la **particule légère** de recul sur **4π**

- + des gammas de décroissance
- + éventuellement le résidu lourd

-> coincidence triple

--> Technologie basée sur les détecteurs Siliciums couplés avec d'autres détecteurs

Regime d'énergie du faisceau : quelques MeV/u → quelques dizaines de MeV/u

Les défis du projet GRIT (Granularity Resolution Identification Transparency)

Boule de détecteurs Silicium double face (DSSD)

--> précision sur l'angle <0.1° avec 128X + 128Y (1^{er} étage)

Couronne avant : 8 trapèzes (3 étages : 0.5+1.5+1.5mm)

Couronne arrière : 8 trapèzes (2 étages : 0.5+1.5mm)

90 deg : Détecteurs carrés (2 à 3 étages : 0.5+1.5 mm)

o 2 annulaires : 1 étage à l'arr, 2-3 étages à l'avant

Résolution en énergie : 35 (1^{er} étage) à <100 keV (si 2 étages)

• 1^{er} étage : 500 um DSSD, pitch < 0.8 mm

• 2^{eme} &3^{eme} étage : **1.5 mm DSSD** pitch ~5mm

épaisseur des détecteurs & résolution!

Les défis du projet GRIT (Granularity Resolution Identification Transparency)

Boule de détecteurs Silicium double face (DSSD)

--> précision sur l'angle <0.1° avec 128X + 128Y (1^{er} étage)

Couronne avant : 8 trapèzes (3 étages : 0.5+1.5+1.5mm)

Couronne arrière : 8 trapèzes (2 étages : 0.5+1.5mm)

o 90 deg : Détecteurs carrés (2 à 3 étages : 0.5+1.5 mm)

o 2 annulaires : 1 étage à l'arr, 2-3 étages à l'avant

Résolution en énergie : 35 (1^{er} étage) à <100 keV (si 2 étages)

• 1^{er} étage : 500 um DSSD, pitch < 0.8 mm

• 2^{eme} &3^{eme} étage : **1.5 mm DSSD** pitch ~5mm

Identification des particules légères :

	ToF	PSA		∆ E-E	
0.5	5 2	Nem;	9-182		1000 MeV

Les défis du projet GRIT (Granularity Resolution Identification Transparency)

Boule de détecteurs Silicium double face (DSSD)

--> précision sur l'angle <0.1° avec 128X + 128Y (1^{er} étage)

Couronne avant : 8 trapèzes (3 étages : 0.5+1.5+1.5mm)

Couronne arrière : 8 trapèzes (2 étages : 0.5+1.5mm)

o 90 deg : Détecteurs carrés (2 à 3 étages : 0.5+1.5 mm)

o 2 annulaires : 1 étage à l'arr, 2-3 étages à l'avant

Résolution en énergie : 35 (1er étage) à <100 keV (si 2 étages)

• 1^{er} étage : 500 um DSSD, pitch < 0.8 mm

• 2^{eme} &3^{eme} étage : **1.5 mm DSSD** pitch ~5mm

Identification des particules légères :

	ToF	PSA		∆ E-E	
0.5	2	New;	9-182		1000 MeV

Transparence aux rayonnements gamma:

Minimum de matière entre la cible et les détecteurs gamma :

- → positionnement des cartes électroniques dans les zones mortes
- → géométrie très compacte et optimisée : impression métal 3D

+ Intégration de cibles spéciales (cryogéniques, tritium, sans fenêtre)

Faible taille des FEE
+ Intégration mécatronique

Boule de détecteurs Silicium double face (DSSD)

--> précision sur l'angle <0.1° avec 128X + 128Y (1^{er} étage)

Couronne avant : 8 trapèzes (3 étages : 0.5+1.5+1.5mm)

Couronne arrière : 8 trapèzes (2 étages : 0.5+1.5mm)

o 90 deg : Détecteurs carrés (2 à 3 étages : 0.5+1.5 mm)

o 2 annulaires : 1 étage à l'arr, 2-3 étages à l'avant

Résolution en énergie : 35 (1^{er} étage) à <100 keV (si 2 étages)

1^{er} étage : 500 um DSSD, pitch < 0.8 mm

• 2^{eme} &3^{eme} étage : **1.5 mm DSSD** pitch ~5mm

Identification des particules légères :

	ToF	PSA		∆ E-E	
0.5	2	Nem;	9-182		1000 MeV

Transparence aux rayonnements gamma:

Minimum de matière entre la cible et les détecteurs gamma :

- → positionnement des cartes électroniques dans les zones mortes
- → géométrie très compacte et optimisée : impression métal 3D

+ Intégration de cibles spéciales (cryogéniques, tritium, sans fenêtre)

2019-2021

2023-2025

2026-2028

MUGAST-AGATA-VAMOS @GANIL

PP: M. Assié

GRIT à l'arrière **Transparence**

détecteurs

Compact

Cibles cryo ancienne électronique

MUGAST-EXOGAM-LISE @GANIL

PP: V. Girard-Alcindor

GRIT-@ SPES

- détecteurs GRIT 4π
- Transparence
- Compact
- Cibles cryo
- **PSA**
- nouvelle électronique

Identification des particules dans GRIT

- J. Duenas et al, NIMA 2012
- J. Duenas et al, NIMA 2013
- B. Genolini et al, NIMA 2013
- J. Duenas et al, NIMA 2014
- D. Mengoni et al, NIMA 2014
- M. Assié et al, EPJA 2015
- M. Assié et al, NIMA 2017
- JJ Dormard et al, NIMA 2021

- Nombreuses études de R&D sur l'identification des particules par PSA:
- Identification des particules légères Z=1 et Z=2 : validée !
 - Siliciums de type **nTD**
 - Meilleure observable : amplitude du signal de courant Imax ou Temps au-dessus d'un seuil à 10% après filtre de Haar
 - Seuil bas en énergie : 2 MeV

Identification des particules dans GRIT

- J. Duenas et al, NIMA 2012
- J. Duenas et al, NIMA 2013
- B. Genolini et al, NIMA 2013
- J. Duenas et al, NIMA 2014
- D. Mengoni et al, NIMA 2014
- M. Assié et al, EPJA 2015
- M. Assié et al, NIMA 2017
- JJ Dormard et al, NIMA 2021

Nombreuses études de R&D sur l'identification des particules par PSA:

- Identification des particules légères Z=1 et Z=2 : validée !
 - Siliciums de type **nTD**
 - Meilleure observable : amplitude du signal de courant Imax ou Temps au-dessus d'un seuil à 10% après filtre de Haar
 - Seuil bas en énergie : 2 MeV
- Taux d'échantillonnage minimum : 200 MSa/s
- Effet des différentes capa des pistes (longueurs): OK

Boule de détecteurs Silicium double face (DSSD)

--> précision sur l'angle <0.1° avec 128X + 128Y (1^{er} étage)

- Couronne avant : 8 trapèzes (3 étages : 0.5+1.5+1.5mm)
- Couronne arrière : 8 trapèzes (2 étages : 0.5+1.5mm)
- o 90 deg : Détecteurs carrés (2 à 3 étages : 0.5+1.5 mm)
- o 2 annulaires : 1 étage à l'arr, 2-3 étages à l'avant

Résolution en énergie : 35 (1^{er} étage) à <100 keV (si 2 étages)

- 1^{er} étage : 500 um DSSD, pitch < 0.8 mm !! nTD !!
- 2^{eme} &3^{eme} étage : **1.5 mm DSSD** pitch ~5mm **float zone**

7 nouveaux design de détecteurs « sur mesure »

- Epaisseur (1.5 mm) encore jamais réalisée
- PSA pour le 1^{er} étage (détecteurs nTD)
- --> Fabrication: Micron Semiconductors Limited

Bancs de tests

Trapèzes

○ 1^{er} étage (nTD)

- design OK pour les 2 premiers étages
- 11 reçus et testés (35 keV)

12 reçus et testés (35 keV! de résolution)

Carrés

1er étage (nTD)

- Design OK
- 2^{ème} prototype reçu
- à tester sur le banc de test

o 2ème étage (FZ)

- Design OK
- 1^{er} proto reçu, à tester

Annulaires (nTD+FZ)

- Design OK
- Discussions en cours avec
 Micron 16

Minimum de matière entre la cible et les détecteurs gamma :

- → positionnement des cartes électroniques dans les zones mortes
- → géométrie très compacte et optimisée : impression métal 3D
- Définition de la connectique interne, de la bride et de ses connecteurs
- o Test des blocs de refroidissement (imprimés 3D) :

- maquette 2 blocs : test des performances hydrauliques et thermiques

--> température uniforme mais chute de pression

--> nouveau design validé

Blocs de refroidissement Ph. Rosier, IJCLab)

Design Y. Peinaud (IJCLab)

Simulations GEANT4 de transparence aux rayons gamma

Transparence aux rayonnements gamma:

Minimum de matière entre la cible et les détecteurs gamma :

- → positionnement des cartes électroniques dans les zones mortes
- → géométrie très compacte et optimisée : impression métal 3D
- Simulations de l'absorption des rayons gammas par la mécanique (S. Bottoni, Milano)

Design Y. Peinaud (IJCLab)

Transparence aux rayonnements gamma:

Minimum de matière entre la cible et les détecteurs gamma :

- → positionnement des cartes électroniques dans les zones mortes
- → géométrie très compacte et optimisée : impression métal 3D
- Définition de la connectique interne, de la bride et de ses connecteurs
- o Test des blocs de refroidissement (imprimés 3D) :
 - maquette 2 blocs: test des performances hydrauliques et thermiques
 - --> température uniforme mais chute de pression
 - --> nouveau design validé
- Définition de la taille des cartes électroniques FEE (4x9 cm X2 cartes)

Le défi principal de GRIT : l'électronique

Tout doit tenir dans 2 cartes double face de 9x4 cm²!!!

Routage LPC Clermont, M-L Mercier

o 2 ASIC préamplis développés :

-iPACI (IJCLab): Q & I, gamme 70 MeV -250 MeV (1^{er} étage) bande passante pour I = 130 MHz

-ToT (INFN-Milano): Q, gamme > 1GeV (2^{ème} & 3^{ème} étage)

 ASIC PLAS (Valencia puis LPC Caen): mémoire analogique pour le readout

Le défi principal de GRIT : l'électronique

iPACI

JJ Dormard et al, NIMA (2021)

Enjeux principaux:

- amplification et sortie de signaux rapides de courant
- bande passante pour I de 130 MHz
- deux gammes en énergie (70 MeV-250 MeV), ENC= 10 keV
- consommation de puissance < 40 mW/voie

2 ASIC préamplis développés :
 -iPACI (IJCLab) pour le 1^{er} étage

Le défi principal de GRIT : l'électronique

Schéma conceptuel de l'électronique Front-end de GRIT x128 x128 **x4** Thin **iPACI PLAS ADC Detector** x1 **x8 x4 x4 CPLD** x32 x32 x1 x1 Thick **PLAS ADC** TOT **Detector** x2 **x4** x1 **x**1

ToT

Enjeux principaux :

S. Capra et al, NIMA (2019)

- Gamme en énergie jusqu'au GeV : procédure de fast-reset
- --> résolution (about 30 keV with alpha source!)

- -iPACI (IJCLab): pour le 1er étage
- -ToT (INFN-Milano) pour le 2ème et 3ème étage

 ASIC PLAS (Valencia puis LPC Caen): mémoire analogique pour le readout

PLAS: le concept

- Résultats pour PLAS V2 :
 - Taux d'échantillonnage 200 MSa/s
 - 32 points de pré-trig et 224 au total : taille de la trace limitée !
 - ENOB : 8.4 bits alors que d'après les tests de R&D nous avons besoin de 10 bits minimum
- --> redesign en modifiant les schémas (le bruit provient essentiellement des blocs T&H)

PLAS V3 en cours de design par : S. Drouet, G. Martinez, L. Alvado, L. Leterrier, LPC Caen

Le Back-end de GRIT

D. Etasse, B. Carniol, A. Matta (LPC Caen)

Back-up slides

Les enjeux d'une expérience-type

Rayonnements gamma

Particules chargées

Résidus lourds

Enjeux

- Intégration dans un espace restreint (23 cm de rayon)
- Transparence aux rayonnements gamma
- ▶ Identification des particles dans le Si plus possible par temps de vol : implémentation de l'analyse de la forme des signaux (PSA) pour l'identification