GRAINITA

Hervé Chanal

on behalf of the GRAiNITA R&T members : S. Barsuk, D. Breton, I. Boyarintseva, A. Boyarintsev, H. Chanal, .M. Dubovik, B. Geoffroy, C.D. Goncalves, G. Hull, M. Imre, A. Kotenko, J. Lefrançois, M. Magne, B. Mathon, S. Monteil, S. Olmo, D. Picard, D. Reynet, M-H. Schune, N. Semkiv, I. Tupitsynaand, M. Yeresko.

Journée R&T 2023 - Strasbourg 7/11/23

Introduction

GRAiNITA

- Démonstrateur de calorimètre de nouvelle génération
- Adaptés aux contraintes de FCC-ee
- Doit permettre un échantillonage fin de la cascade électromagnétique grâce à un confinement de la lumière (Inspiré par la technique de détection LiquidO^a)

Coût raisonnable

Collaboration

- ICJLab (Orsay)
- LPC (Clermont)
- ISMA (Partenaire-Ukraine)

^aA. Cabrera et al. LiquidO Commun Phys 4, 273 (2021)

Concept de GRAiNITA 1/2

Calorimètre Shashlik

Couches alternées de scintillateur et d'absorbeur

Haute granularité
Résolution énergétique limitée
 $\frac{\sigma_E}{E} \sim \frac{10\%}{\sqrt{E}}$

GRAiNITA

Mélange de grain de scintillateur et d'absorbeur dans le même volume

- Haute granularité
- Résolution énergétique attendue (simulation G4) :

 $\frac{\sigma_E}{E} \sim \frac{1\% \text{ à } 2\%}{\sqrt{E}}$

La résolution en énergie d'un calorimètre s'exprime comme :

$$\frac{\sigma_E}{E} \sim \frac{A}{\sqrt{E}} \oplus \frac{B}{E} \oplus C$$

La maîtrise du terme constant C est un des challenge du projet.

Concept de GRAiNITA 2/2

- Scintillateur : grains de haut Z et haute densité
- Liquide : indice de réfraction élevé et haute densité
- Fibres WLS pour la collection de lumière de scintillation

Deux prototypes en développement (ZnWO₄ et BGO) :

ZnWO₄

- LY = 10000 ph/MeV
- ► Z_{eff} = 61
- Densité = 7.62 g/cm³
- ▶ *n* = 2.1 2.3
- τ = 20 μs
- $\lambda_{\max}^{em} =$ 490 nm

Bi₄Ge₃O₁₂ (BGO) ► *LY* = 10000 ph/MeV

- ► Z_{eff} = 74
- Densité = 7.13 g/cm³
- ▶ *n* = 2.1
- τ = 300 ns
- $\lambda_{\max}^{em} = 480 \text{ nm}$
- SiPM pour la lecture de la lumière de scintillation

ZnWO₄

Grains produits par cristallisation spontanée (flux method - entre 700 et 1100 °C)

1ère prod.	2ème prod.	3ème prod.
40 g	170 g	1380 g
pprox 1 $-$ 3 mm	pprox 1 $-$ 2 mm	pprox 1 mm

Prix cristal/grains = 2.5

Bi₄Ge₃O₁₂ (BGO)

Grains produits par écrasement mécanique

Prix cristal/grains = 1.1

Le prototype GRAiNITA

I. CARACTÉRISATION DES CONSTITUANTS DU PROTOTYPE

Caractérisation optique des grains ZnWO₄ (ISMA)

Comparaison des caractéristiques du mono-crystal avec les grains.

Même structure monoclinique en phase wolframite qu'en monocristaux.

Spectre de luminescence

Excitation par rayons X

- Spectre similaire pour le cristal ou les grains
- Décalage de la luminescence maximale due à l'absorption/diffusion accrue des grains

Caractérisation de la scintillation des grains de ZnWO₄

La 2eme et 3eme production des grains montrent :

- Reproductibilité des mesures \rightarrow technologie de production stabilisée.
- Plus petite variance de l'amplitude du pic de l'²⁴¹Am (60 keV)
- \rightarrow meilleure homogénéité de la production de lumière.

Propriétés des fibres WLS

Spectre d'émission :

WLS fiber Estimated N.... Relative efficiency.% ZnWO₄ grains ~9 mm in the quartz cell O-2(300) 302.555064 100 313.631277 0-2(200) 104 Y-11(200) 133 50304 44 60 B-3(100) 181.404855 ZnWO, grains ~5-6 mm in the quartz cell 0-2(300) 294.391397 100 0-2(200) 304.384926 103 Y-11(200) 215.041589 73 BGO grains ~9 mm in the quartz cell 0-2(300) 326.1381617 100 0-2(200) 339.2981441 104 98 Y-11(200) 318.4178521 BGO grains ~5-6 mm in the quartz cell O-2(300) 471.9886362 100 0-2(200) 549.6132684 116 142 Y-11(200) 671.9978981

Protocole experimental

Résultats :

La fibre O2(200) est adaptée pour le ZnWO4 et le BGO

Caractérisation de la propagation de la lumière

Protocole experimental

- Petit volume de grains
- Fibre claire pour l'injection de la lumière (dépolie sur 1 cm)
- LED verte (520 nm, 20 ns, pulses à 30 Hz)

 Fibre WLS pour la collection de lumière (4 mm de distance de la fibre claire), couplée à un SiPM

Conteneur recouvert de réflecteur spéculaire (VM2000)

	Charge [pC]	RMS [pC]	Fraction de lumière capturé [%]	Temps de propagation [ns]	ΔT=0.62 ns ΔS~12 cm!
Air	71.938	15.377	100	54.89	
ZnWO ₄	60.591	14.263	84	55.51	
ZnWO ₄ +H ₂ O	67.455	14.938	94	54.91	

Une fraction importante de la lumière est capturée par les grains

 En ajoutant du liquide (n(H₂O)=1.33) la lumière collectée par les fibres augmente (la lumière capturée par les grains diminue)

II. CARACTÉRISATION DU PROTOTYPE

Étude des deux possibilités de grain (BGO et ZnWO₄)

Test en deux étapes :

- Test avec des muons cosmiques
 - Nombre de photoelectrons par MeV
 - Étude de l'uniformité de réponse
- Test en faisceau (2024)
 - Caractérisation fine de la réponse du détecteur

Puis production et caractérisation d'un détecteur plus grand (2024-28).

Muons cosmiques (Orsay)

Deux scintillateurs plastiques couplés à deux PMTs en coïncidence
4 évènement par heure, 40 MeV déposés dans le volume de grains

Signaux acquis par le banc de test

- Deux WaveCatchers 8 canaux pour la lecture du signal des 16 fibres WLS, synchronisation post-prise de données par le programme d'analyse (possible car basse fréquence des evts)
- Comptage du nombre d'impulsions (ph-e uniques) sur une échelle de temps de 25 μs (temps décroissance ZnWO₄ 20 μs)

Muons cosmiques : Résultats (Orsay)

Configurations testées :

- ZnWO₄
- ZnWO₄ + eau
- ZnWO₄ + éthylène glycol

Étude du confinement de la lumière : Signal dans les 4 canaux centraux/16 canaux

- ► LY ≈ 400 PE/40 MeV (10000 PE/GeV)
- 20 à 25 % en plus de lumière avec le liquide
- Peut être amélioré car les extrémités des fibres ne sont pas recouvertes de réflecteur

L'objectif du projet en terme de LY est atteint (10000 PE/GeV).

Banc de test muons cosmiques (Clermont Ferrand)

Objectif

Déterminer précisément la trace du muon dans le calorimètre

- Conception d'un banc de test dédié
- Possiblement utile à d'autres R&D détecteurs à l'IN2P3

Réalisation

- Utilisation d'un tracker (deux plans de timepix)
- 1 mm de résolution sur la trace à 15 cm du tracker

Banc de test muons cosmiques : Validation

Étude

 Comparaison de la distribution angulaire des muons avec un modèle :

$$l(\theta) = l_0 \cos^{2.22}(\theta) \text{ m}^{-2} \text{s}^{-1} \text{sr}^{-1}$$

 Utilisation de 7 jours de données du constructeur

Résultat

- Modèle en accord avec les données
- 0.74 muons min⁻¹ attendus pour 0.73 muons min⁻¹ obtenus

Comparaison données/modèle

Banc de test muons cosmiques : État de l'art

Réalisé

- Structure mécanique
- Lecture et refroidissement du tracker
- Circuit de lecture des scintillateurs

En cours

- Enregistrement des données sur disque
- Alignement des détecteurs

III. PULSE SHAPE DISCRIMINATION

Pulse shape discrimination 1/3

Objectif

Mesure de la fraction d'énergie électromagnétique des cascades hadroniques

Physique

Les particules hadroniques perdent une partie de leur énergie pour briser les noyaux et produisent des protons et des neutrons de basse énergie.

Idée

La manière dont l'énergie est déposée par ces particules non-relativistes (noyaux, neutrons) se reflète dans des temps de scintillation différents entre composantes EM et hadronique. La mesure de la forme temporelle des signaux peut fournir une alternative à la lumière Cerenkov (dual read-out). Exemple : pions de 250 GeV dans du BGO: deux composantes temporelles (malheureusement, nous n'avons pas accès aux données).

Preuve de concept (par la simulation):

 Caractérisation des différences d'énergies déposées entre électrons et hadrons non-relativistes (G4 simulation, fait en 2023)

Pulse shape discrimination 3/3

Preuve de concept (par la simulation):

- Mise en évidence d'une corrélation négative entre l'énergie totale déposée et les dépôts d'énergie des hadrons non-relativistes. Premier résultats prometteurs obtenus..
- Prochaine étape: produire un modèle optique (nourris par des données de test beam basse énergie).

IV. SIMULATION

Simulations G4

- Améliorer la compréhension des mesures
- Prédire les caractéristiques du détecteur

Modèle

- Génération de la position des grains : modèle des sphères dures
- 20k grains
- Caractéristiques optiques et des scintillations des éléments à affiner

Modèle G4 du prototype

Exemple de simulation ZnWO₄

Scintillation des grains

- Modèle comportemental de la scintillation
- G4 permet de définir plusieurs composantes temporelles pour la scintillation

Scintillation des grains (incident e-)

Simulation d'un muon traversant le prototype ZnWO₄ + air (avec la scintillation et les fibres WLS activées.)

Status

- Premier prototype fabriqué
- Deux options pour les grains : ZnWO₄ et le BGO
- Études sur le liquide à venir
- Performances du prototype ZnWO₄ prometteuses (production et confinement de la lumière) mesurés avec des muons cosmiques
- Banc de test muons cosmique en phase finale de développement

Prochaines étapes

- Test du prototype avec les grains de BGO
- Utilisation du banc de test à rayons cosmiques pour étudier la réponse du détecteur en fonction de l'angle et de la position des muons (fin 2023)
- → Première étape pour adresser la question de l'uniformité du détecteur et le contrôle du terme constant.
- Test en faisceau au CERN et à GANIL prévu en 2024
- PSD: création du modèle optique pour la simulation (relier les temps de scintillations aux énergies déposées) et test beam pour connaître les réponses temporelles de protons de basse énergie (20 MeV) dans les cristaux.