

U	ni	١	versité				
			de Stra	2	:hr	1	ırn

Instrumentation for Radiation Protection

Nicolas Arbor, Stéphane Higueret, The-Duc Lê (<u>nicolas.arbor@iphc.cnrs.fr</u>)

Journées R&T CNRS/IN2P3 – 06/11/2023

 $\Rightarrow\,$ Coupling Monte Carlo calculations and real-time detection of radiation fields

Development of a 4D neutron monitoring system

Development of a drone-borne gamma spectrometry system

Neutron monitoring system

Project 1: Cross-section of Light Ions and Neutrons Measurements (CLINM)

- Master project FOOT-Xn
- ANR fundings 2023-2026 (coordinated by M. Vanstalle (IPHC))
- secondary particles from ion fragmentation (hadrontherapy / space radiations)
- parallel measurements of radiolysis effects (radiochemistry team (IPHC))

Neutron monitoring system

Project 2: β -emitters radionuclides produced by cyclotron activation (Sim β -AD)

- BPI fundings 2022-2025 (coordinated by JM. Horodynski (iRSD))
- characterization of neutron fields around cyclotrons
- calculation software for activated components inventory
- collaboration with IBA (accelerator) and TRAD (MC simulation)

Courtesy of JM. Horodynski

Neutron monitoring system

Solid Nuclear Track Detector (CR-39)

Chemical treatment

Detector reading

Tracks analysis

- Goal is to develop a 4D neutron monitoring system:
 - → sensor network (3D space)
 - real-time monitoring (1D time)
- Coupling with Monte Carlo neutron fields calculations

J. Farah, Phys. Med. Biol. 59 (2014)

AlphaRad3 (2017)

- Specially designed CMOS sensor for parallel detection of thermal and fast neutrons
- Compact and easy to use (real-time, integrated electronic, low power consumption)

AlphaRad3 (2017)

• CNAO hadrontherapy center (April 2023): test of a prototype for autonomous measurements

<u>To do list</u>:

- \rightarrow detection efficiency can be improved
- → counting (thresholds on ADC signal) can be done in the CMOS itself

AlphaBeast (2022)

- New sensor designed in 2022 (collaboration with C4PI-IPHC platform)
- 6 different diodes configurations (matrix M0-M5)
- 3 internal thresholds (counters)

LE

3.0k

WD 15.2mm

Thermal neutron detection

- ¹⁰B converter on top of the sensor
- Conversion efficiency $\approx 4\%$

Duarte et al., 2022

Reaction (energies in MeV)	Q-value [MeV]	Cross-section [b]	
${}^{3}\text{He} + {}^{1}n \rightarrow {}^{3}\text{H}(0.191) + {}^{1}p(0.573)$	0.764	5,333	
${}^{6}\text{Li} + {}^{1}\text{n} \rightarrow {}^{3}\text{H} (2.73) + {}^{4}\alpha (2.05)$	4.780	920	
${}^{10}B + {}^{1}n \rightarrow {}^{\prime}\text{Li}(1.015) + {}^{4}\alpha(1.777)$	2.792 (g.s., 6%)	3,837	
${}^{10}\text{B} + {}^{1}\text{n} \rightarrow {}^{7}\text{Li}^{*}(0.840) + {}^{4}\alpha(1.470)$	2.310 (1st exc. s., 94%)	3,837	
113 Cd + $^{1}n \rightarrow ^{114}$ Cd + $\gamma (0.56) + e_{conv.}^{-}$	9.043 [RJKcv ⁺ 13]	20,600	
$^{155}\text{Gd} + ^{1}\text{n} \rightarrow ^{156}\text{Gd} + \gamma (0.09, 0.20, 0.30) + e_{\text{conv.}}^{-}$	8.5 [KCM13]	60,600 [KCM13]	
$^{157}\text{Gd} + ^{1}\text{n} \rightarrow ^{158}\text{Gd} + \gamma (0.08, 0.18, 0.28) + e_{\text{conv.}}^{-}$	7.9 [KCM13]	253,929 [KCM13]	
$^{235}\text{U} + ^{1}\text{n} \rightarrow \text{fission fragments}$	210	583	
238 Pu + $^{1}n \rightarrow$ fission fragments	160	748	

Table 3.1: Overview of reactions and reaction products exploited for neutron detection. After [Owe12].

Alpha particle measurements

• Alpha detection from ²⁴¹Am source with various distances

$$E_{alpha} \approx 5.48 \text{ MeV} (d = 0 \text{ mm})$$

• Measurements for distance d = 35 mm ($\langle E_{alpha} \rangle \approx 1.25$ MeV)

Intrinsic alpha detection efficiency > 99% !

Fast neutron detection

• PE converter (1 mm)

 ΔE_{min} detection $\approx 100 \text{ keV}$

 \Leftrightarrow

Proton $E_{max} \approx 10 \text{ MeV}$

$$T = \frac{4Mm_n}{(M+m_n)^2} E\cos^2\theta \approx \frac{4A}{(A+1)^2} E\cos^2\theta$$

Fast neutron detection

• PE converter (1 mm)

 ΔE_{min} detection $\approx 100 \text{ keV}$

 \Leftrightarrow

$$T = \frac{4Mm_n}{(M+m_n)^2} E\cos^2\theta \approx \frac{4A}{(A+1)^2} E\cos^2\theta$$

• Icube 4 MeV Van de Graaf accelerator (Au target RBS)

AlphaBeast

Deposited energy sub-structures

• Icube 4 MeV Van de Graaf accelerator (Au target RBS)

AlphaBeast

Deposited energy sub-structures

• Icube 4 MeV Van de Graaf accelerator (Au target RBS)

AlphaBeast

• Deposited energy sub-structures

• Icube 4 MeV Van de Graaf accelerator (Au target RBS)

AlphaBeast

Deposited energy sub-structures

AlphaBeast energy calibration

• <u>1st hypothesis</u>: 100% charge collection efficiency

AlphaBeast energy calibration

- <u>2nd hypothesis</u>: charge collection inefficiency with depth (epitaxial layer)
 - \rightarrow alpha particles deposit energy in 3-4 μm
 - \rightarrow protons deposit energy at different depths (btw 0 to 15 μm)

AlphaBeast energy calibration

• <u>2nd hypothesis</u>: charge collection inefficiency with depth (epitaxial layer)

AlphaBeast settings (on-going)

System characterisation

- Measurement of 3D charge collection map using alpha/proton micro-beam facility (AIFIRA – LP2i Bordeaux)
- Detector response in mixed field (gamma, proton, neutrons, ...)
- Study of direct ²⁸Si+n reactions

AlphaBeast neutron measurements radiotherapy room (ICANS)

Applications

- Secondary neutron fields from ion beam interactions (ANR CLINM project)
- Neutron fields around cyclotrons (BPI Sim β -AD project \rightarrow technology transfer)
- Applications @ CNAO for radiation protection (BNCT → technology transfer)

Special thanks

IPHC-DeSIs team

J. Collin

C. Finck

L. Gesson

D. Husson

AM. Nourreddine

M. Vanstalle

M. Pullia

C4-PI platform

J. Baudot G. Bertolone

C. Coledani

A. Dorokhov

C. Hu

M. Kachel

R. Sefri

C. Wabnitz

CYRCE platform

N. Dick

C. Haas M. Pellicioli

J. Schuler

CRCE

C. Hofmann Y. Le Gall D. Muller

AIFIRA platform

P. Barberet

L. Daudin

S. Sorieul

T. Ferté C. Leuvrey

MEB platform

Drone-borne Gamma Spectrometry

- Development of a drone-borne system with dedicated analysis framework:
 - Iow-altitude oriented measurements (< 10 m)</p>
 - → focus on screened contamination (soil, trees, buildings, ...)

Drone-borne Gamma Spectrometry

• Various possible applications:

Brownfields

Emergency services

Former Uranium mines

Nuclear plants (dismantling)

Security

MERCURE System @ IPHC

• Drone-borne system developed at IPHC laboratory (SATT Conectus fundings)

Terremys drone

Gamma spectacular Nal (3"x3") (+IPHC GPS/acquisition)

- Analysis software for environmental radioactivity monitoring with drone
- Laboratory tests:
 - ¹³⁷Cs, ⁶⁰Co, ²⁴¹Am sources (surface, 12.2 cm depth in soil)
 - ¹³⁷Cs activity: 895 kBq (point source)
 - flight altitude: 2 meters
 - flight speed: 1 meter/second

Attenuation (air, soil) corrections

- Experimental corrections depend on various parameters: contamination distribution (3D), landscape, altitude, ...
- Useful information can be extracted directly from measurements (spectra)

 \Rightarrow Full spectrum reconstruction + machine learning

Attenuation (air, soil) corrections

- Experimental corrections depend on various parameters: contamination distribution (3D), landscape, altitude, ...
- Useful information can be extracted directly from measurements (spectra)

\Rightarrow Full spectrum reconstruction + machine learning

• « Natural » background (⁴⁰K, ²³⁸U, ²³²Th, ¹³⁷Cs) deconvolution using Monte Carlo spectra

Attenuation (air, soil) corrections

- Experimental corrections depend on various parameters: contamination distribution (3D), landscape, altitude, ...
- Useful information can be extracted directly from measurements (spectra)

 \Rightarrow Full spectrum reconstruction + machine learning

- Machine learning algorithms trained on MC database
- Estimation of most probable attenuation correction to access « true » activity

Radioactivity mapping

- Spectrum-by-spectrum calculations of ¹³⁷Cs activity
- Automatic correction of natural radioactivity, altitude and auto-attenuation in soil

Surface raw

x (m)

Radioactivity mapping

- Spectrum-by-spectrum calculations of ¹³⁷Cs activity
- Automatic correction of natural radioactivity, altitude and auto-attenuation in soil

SMARTIUM start-up

- January 2019 : MERCURE SATT maturation project (18 months)
- End 2020 : incubation phase

• End 2021 : startup creation

Embedded MC/AI solutions for radiological measurement data analysis

• Today : 3 full-time people

(CEO (J. Thomann) + 2 data scientists / physicians (G. Bourgatte, E. Wilhelm)

IPHC PhD students

• Close collaboration with IPHC-DeSIs team

SMARTIUM start-up

- Compact drone-borne system (coll. IPHC & SDIS 67)
- Automatic screening corrections (rubbles, vehicles, ...)

Questions ?

