
Julius Hrivna , ĲCLab
Journées R&T
Strasbourg, 6-8/Nov/2023

Hybri Databases & Multilanguage Frameworks
Two ways
to prevent technology loc -up an
to profit from multiple technologies in their fields of strength.

➢ Databases
○ Current status of the HEP storage
○ Graph databases
○ Hybrid solutions
○ Real-life examples
○ Graph & Hybrid Databases for HEP

➢ Languages
○ Ideal Multilanguage Application
○ JVM Multilanguage Environment
○ GraalVM
○ Plurality World
○ Future of programming

1

Vera C Rubin Observatory
ATLAS

Graph & Hybri Databases

2

Our Data - status
➢ Traditional data structures in HEP & Astronomy:

○ tuples, tables, datagrams
○ trees
○ nested tuples (trees of tuples)
○ relational (SQL-like)
○ files

➢ Schema-based or schema-less
➢ But many of HEP data are graph-like & schema-less

○ Entities with relations
➢ Not handled by standard tree-ntuple storage

○ Relations should be added and interpreted outside storage
➢ Not well covered by relational (SQL) databases

○ We need to add new relations, not covered by schema
➢ Difficult to manage by Object Oriented (OO) databases or serialisation

○ Problem to distinguish essential relations from volatile ones

3

Graph Databases
➢ Graph databases have existed for a long time

○ Matured only recently thanks to Big Data & AI (Graph NN)
○ Very good implementations & (de-facto) standards available
○ Rapid evolution

➢ Moving essential structure from code to data
○ Together with migration from imperative to declarative semantics
○ Things don’t happen, but exist
○ Structured data with relations facilitates Declarative Analyses

➢ Data elements appear in a Context
○ Which simplifies understanding, analyses and processing

➢ The difference between SQL and Graph database is similar as
between Fortran and C++/Java

○ On one side, a rigid system, which can be very optimized
○ On the other side, a flexible dynamical system, which allows expressing

of complex structures
➢ Graph database is a synthesis of OO and SQL databases

○ Expressing web of objects without fragility of OO world
○ Capturing only essential relations, not an object dump

➢ Storing Graphs in a database
➢ Graph = (Vertexes, Edges), G = (V, E)
➢ Vertices and Edges have properties

4

Graph Databases - APIs
All three methods can be use to access the same database

(e.g. using C her for query an Gremlin for traversal).

➢ Direct manipulation of Vertices and Edges
○ Always available from all languages
○ Doesn’t use full graph expression power

➢ Cypher (or GQL)
○ Pure declarative
○ Inspired by SQL and OQL

■ But applied to schema-less database
○ Available to all languages via JDBC-like API

■ Semantic mismatch, passed as String
■ There is a wall between coder and database, with a thin tunnel, only Strings can pass

○ Coming from Neo4J
■ Accepted as a standard
■ Neo4J can be also used with Gremlin

➢ Gremlin
○ Functional syntax
○ Originated from Groovy, but available to many languages supporting functional programming Integrated in the

language
○ Supported by the generic Tinkerbox framework
○ Well integrated in the host language

MATCH (a:run)-[:has]->(b:dataset)
 WHERE a.rnumber = 98765
 RETURN b.name

g.V().has('run', 'rnumber', 98765)
 .out(‘has’)
 .values(‘name’)

5

Standards & Choices
➢ De-facto standard language/api: Gremlin

○ Gremlin is a functional, data-flow language to traverse a property graph. Every
Gremlin traversal is composed of a sequence of (potentially nested) steps. A step
performs an atomic operation on the data stream. Every step is either a map-step
(transforming the objects in the stream), a filter-step (removing objects from the
stream), or a sideEffect-step (computing statistics about the stream).

○ Gremlin supports transactional & non-transactional processing in declarative or
imperative manner.

○ Gremlin can be expressed in all languages supporting function composition &
nesting.

➢ Commonly used framework: TinkerPop
➢ Leading implementation: JanusGraph

○ Supported storage backends: Cassandra, HBase, Google Cloud, Oracle BerkeleyDB
○ Supported graph data analytics: Spark, Giraph, Hadoop
○ Supported searches: Elastic Search, Solr, Lucene
○ Growing popularity of Neo4J

➢ Possible visualisation: visj.org
○ Many others exist

6

Gremlin Synt

add a vertex ‘experiment’ with the name ‘ATLAS’
g.addV('experiment').property('ename', 'ATLAS')
add edges ‘owns’ from all vertices ‘project’ to vertex ‘experiment’ ‘ATLAS’
g.V().hasLabel('project')
 .addE('owns')
 .from(g.V()
 .hasLabel('experiment')
 .has('ename', 'ATLAS'))

show datasets with more events or number of events in an interval
g.V().has(“run”, “number”, 358031)
 .out() # dataset
 .has(“nevents”, gt(7180136))
 .values(“name”, “nevents”)
g.V().has(“run”, “number”, 358031)
 .out() # dataset
 .has(“nevents”, inside(7180136, 90026772))
 .values(“name, “nevents”)

➢ Functional syntax
➢ Functional & navigational semantics
➢ Very intuitive, no special syntax needed

(using existing functional syntax), easy
integration.

➢ Database just accessed as objects with
structure and relations.

○ Nested collections with links.
➢ Can use functional API (streams) and

Lambda.
➢ No semantic mismatch.

○ Using one language.
➢ Came from Groovy

○ Groovy = Java + syntactic sugar, useful for
scripting + suitable for functional code.

➢ Gremlin clients exist for many languages
○ Java, Groovy, Python C#, JS, C++, Clojure, Elixir, Go,

Kotlin, Haskell, PHP, Ruby, Rust, Scala,...

➢ Both search and traversal steps.
➢ Search steps can be boosted by indexes.
➢ Functions can be loaded on server for faster

execution.

Functional synt with additional navigational semantics !

7

Performance
➢ Requests in general in three phases

○ First search of the initial entry point (event, dataset, run,...)
■ Could be optimised

● Natural order
● Indexes
● Elastic Search
● Spark
● More hierarchical navigation

○ Then navigation on the graph
■ Very fast

○ And finally accumulation of results
➢ Data can still be accessed directly, without Graph Database API

○ So with the same performance as non-GraphDB
○ Navigational step (instead of sub-search) can only speed it up

➢ In general:
○ Very fast retrieval
○ Slower import

■ Because import creates structures
■ Which are used in retrieval (simpler & faster)

○ Very slow deletion

8

Performance Example
gremlin> el(358031, 775206623, g).profile()
==>Traversal Metrics
Step Count Traversers Time (ms) % Dur
===
JanusGraphStep([],[~label.eq(event), enumber.eq... 1 1 204.805 75.74
 _condition=(~label = event AND enumber = 775206623)
 _isFitted=true
 _query=multiKSQ[1]@2147483647
 _index=event:enumber:u
 _orders=[]
 _isOrdered=true
 optimization 4.614
 optimization 130.444
 backend-query 1 7.742
 _query=event:enumber:u:multiKSQ[1]@2147483647
JanusGraphVertexStep(IN,[keeps],vertex) 1 1 25.560 9.45
 _condition=type[keeps]
 _isFitted=true
 _vertices=1
 _query=org.janusgraph.diskstorage.keycolumnvalue.SliceQuery@b3a55b7f
 _orders=[]
 _isOrdered=true
 optimization 11.927
 backend-query 1 3.103
 _query=org.janusgraph.diskstorage.keycolumnvalue.SliceQuery@b3a55b7f
JanusGraphVertexStep(IN,[fills],vertex) 1 1 10.388 3.84
 _condition=type[fills]
 _isFitted=true
 _vertices=1
 _query=org.janusgraph.diskstorage.keycolumnvalue.SliceQuery@b3a605c1
 _orders=[]
 _isOrdered=true
 optimization 7.661
 backend-query 1 1.442
 _query=org.janusgraph.diskstorage.keycolumnvalue.SliceQuery@b3a605c1
HasStep([rnumber.eq(358031)]) 1 1 13.129 4.86
SelectOneStep(last,e) 1 1 0.993 0.37
NoOpBarrierStep(2500) 1 1 0.159 0.06
JanusGraphPropertiesStep([guid],value) 2 2 14.800 5.47
 _condition=type[guid]
 _isFitted=true
 _vertices=1
 _query=org.janusgraph.diskstorage.keycolumnvalue.SliceQuery@b11f98a7
 _orders=[]
 _isOrdered=true
 optimization 7.478
NoOpBarrierStep(2500) 2 2 0.568 0.21
 >TOTAL - - 270.406 -

75% of the time is spen by the entry point search,
following graph traversal is very fast.

is was the first request,
the secon one will be cca 10 faster
(even on different event).

9

➢ Rather slow insert/import
➢ Very slow cleaning (memory management)
➢ Anarchical Edges creation can easily create un-managable structures
➢ Persistent and volatile data are not well separated
➢ Not very optimised for mass, parallel processing of huge homogeneous tables

○ Unknown schema, chaotic relations,...
➢ Advanced Gremlin is very powerful, but can be rather cryptic

○ Multi-dimensional functional syntax
○ Hard to understand what’s going on

■ Which parts are executed and which are navigational (on the storage)
■ Which parts are evaluated lazily

Graph databases ‘problems’

10

➢ Store unstructured (raw) data in table-like storage (SQL, NoSQL)
○ Suitable for intensive, parallel processing (Spark,...)
○ Interpretable as Datagrams-like apis

➢ Express persistent structure as a Graph
➢ Allow for ad-hoc (a’priory volatile) Graph relations

○ Possibly in separed (but connected) graphs
■ Playgrounds, Whiteboards,...

➢ Connect everything behind the common API

Hybri Solutions

11

➢ Interpret existing tabular data as Vertexes in a Graph
➢ Add additional Edges to express structures
➢ Requires full-featured rather generic implementation of

the Graph storage
○ Difficult to implement
○ Doesn’t exist
○ Most Graph implementation use tabular store as a backend, but

impose their own schema

Hybri Solutions - Graph View

Tabular storage
(SQL, NoSQL,...)

Vert
Vert

Vert
Vert

12

➢ Make an enhanced version of Vertex with additional
methods to fill it from external tabular storage

➢ Feasible, has been implemented
➢ Logical problems:

○ Consistency between (already copied) Vertex and original data
○ Search semantics

➢ Unpredictable performance
○ Don’t know where actually are data and whether will be copied or

accessed remotely

Hybri Solutions - Graph Envelope

// Create an alert vertex
v = g.addV().property('lbl', 'alert')
// Dress it as (a subtype of) Hertex (= HBase backed Vertex)
// which _is_a_ Vertex so it has all Vertex properties
h = Hertex.enhance(v)

// Create a new alert vertex (connect to HBase data later)
a = Alert.getOrCreate('ZTF19acmbwur_2458789.0311458', g, false);
// Create a new alert vertex (and connect to HBase data)
a = Alert.getOrCreate('ZTF19acmbwur_2458789.0311458', g, true);

Tabular storage
(SQL, NoSQL,...)

Vert

13

➢ Make special kind of DataLink Vertex representing relations to external
data (in any storage)

➢ Those Vertexes can be attached to any Vertex
➢ Advantage:

○ Easy to implement
○ Transparent logic
○ Works between any pair of databases with any technology

■ We can even connect to Graphs like that

Hybri Solutions - Bridges

// Create DataLink Vertexes with associated data in another database (Phoenix/SQL, Graph, HBase,...)
w1 = g.addV().property('lbl', 'datalink').property('technology', 'Phoenix').property('url', 'jdbc:phoenix:ithdp2101.cern.ch:2181').property('query', "...")
w2 = g.addV().property('lbl', 'datalink').property('technology', 'Graph').property('url', 'hbase:188.184.87.217:8182:janusgraph').property('query', "...")
w3 = g.addV().property('lbl', 'datalink').property('technology', 'HBase').property('url', '134.158.74.54:2183:ztf:schema').property('query', "...")
// Connect DataLink to any Vertex
theVertex.addEdge('externalData').to(w)
// Get associated data
externalData = Lomikel.getDataLink(w)

Vert

DataLin
Vert

Tabular storage
(SQL, NoSQL,...)

14

Real-life amples

15

n /LSST

➢ Observatoire Vera C.Rubin for Legacy
Survey of Space and Time (LSST)

➢ Looking for changing/moving objects
➢ Camera 8.4 m, 3.2 Gpixel in Chili
➢ 10 millions alertes, 20 TB nightly
➢ 500 PB in 10 years (3 PB of alerts)
➢ Alertes send over the world via

network of ‘brokers’
➢ Commissioning in 2023, production in

2024

16

n /LSST

➢ Using Apache Spark & Big Data / NoSQL
○ Hadoop & JanusGraph for storage

➢ Fink is one of the official LSST brokers

17

n Science Portal (J.Peloton)

n Science Portal (J.Peloton)

➢ All coming alert data are stored in HBase tables
➢ The alert data structure is created in the

JanusGraph
○ Contains also the most important attributes
○ Has datalinks to HBase data

n /LSST

// Get data (from HBase) attached in 'candidate's

g.V().has('lbl', 'source').

 has('objectId', 'ZTF18abimyys').out().

 has('lbl', 'alert').out().

 has('lbl', 'candidate').out().

 has('lbl', 'datalink').

 each {

 println(FinkBrowser.getDataLink(it))

 }

20

n /LSST

// Create a new personal Graph.

graph1 = Lomikel.myGraph()

// Get the entry point to the Graph traversal.

g1 = graph1.traversal()

// GremlinRecipies is a class with various useful Gremlin methods.

gr = new GremlinRecipies(g)

// Get 'source' Vertexes from the main Graph (automatically available as 'g') and

// clone them in the private Graph 'g1'.

g.V().has('lbl', 'source').each {source ->

 gr.gimme(source, g1, -1, -1)

 }

// Get GremlinRecipies for the private graph 'g1'.

gr1 = new GremlinRecipies(g1)

// Find all pairs of 'candidate' Vertexes, where difference between their 'rb'

// fields is bigger or equal to 0.01.

// Connect them with the Edge 'distance' having a 'difference' property equal to

// the difference between 'rt' fields.

gr1.structurise(g1.V().has('lbl', 'candidate'), 'rb[0]-rb[1]', 'rb', 0.01, 'distance', 'difference', …)

// Get some statistics about newly created Edges.

g1.E().hasLabel('distance').values('difference').union(min(), max(), sum(), mean(), count())

Search for ‘interesting’ relations an store them in Graph as Edges for later analyses.
Do it in your private subgraph.

g

g1
distance

21

➢ One of the four experiments at LHC in CERN
➢ 38 pays
➢ 25 milliards of events stored with speed of 1 GB/s, ATLAS

Grid contains 200 PB
➢ 400 sw developers
➢ 6 millions lines of code
➢ In C++, Python, Java, F90, ...

Event Ind /ATLAS

22

Event Ind /ATLAS

➢ Index of all ATLAS data (real and simulated)
○ Contains more than 360 * 10^9 entries

➢ Front-end for the analyses of data
➢ Migration from Run 2 implementation to new Run 3 implementation

○ Using Hadoop HBase and Phoenix (SQL layer)
➢ About 2000 accesses per day
➢ JanusGraph for

○ Relations between objects (overlaps between datasets,...)
○ Virtual collections 23

Event Ind /ATLAS
// Get a dataset
dataset = g.V().has('lbl', 'dataset').
 has('project', 'mc16_13TeV').
 has('streamname', 'Py8EG_SSM_Wprime500_Zprime250').
 has('prodstep', 'merge').
 has('datatype', 'EVNT').
 has('runno', 801122).
 has('version', 'e8307_e7400').next()

// Import a dataset content (from Phoenix/HBase)
Event.getOrCreate(dataset, null, 3154, g, true).each{event -> println(event.connect())}

// Create new collection of events
eventsCollection = g.addV('ecollection')
 .property('name','MyEvents')

// Find all events satisfying certain conditions
// and connect them to the event collection
g.V().has('lbl', 'event')
 .has(...some selection...)
 .collect {
 eventsCollection.addEdge('contains', it)
 };

// Find the overlap between two datasets
// (i.e. overlap Edge between dataset Vertexes)
g.V().has(‘lbl’, 'dataset').
 has('name', 'data18_13TeV.00358031.physics_Main.deriv.DAOD_HIGG2D1.f961_m2015_p3597').
 out('overlap').
 has('dataset', 'name', 'data18_13TeV.00358031.physics_Main.deriv.DAOD_HIGG1D1.f961_m2015_p3583')

24

Graph Databases for Functional Programming
➢ Relations (edges) can be considered as functions

○ Navigation as a function execution
○ From the user point of view, there is no difference in creating new object or navigating to it

■ Both operation can be ‘lazy’

➢ Functional processing and graph navigation (“Graph Oriented Programming”) can work very
well together

○ Using the same functional syntax
○ Both are realisation of Categories

■ Vertex == object, Edge == morphism
■ Functional program can be modeled as a Graphs
■ Graph data can be navigated using functions

○ Data ready for parallel access
➢ Very well implemented by Gremlin

Extending parallel-ready functional model from code to data !

25

Graph Databases for Deep Learning
➢ Neural Network itself is a Graph

○ Using Graph Database to describe NN itself
➢ In many cases, Neural Network handles Graph data (objects with relations)

○ They can operate either on individual nodes (Node-focused tasks)
○ Or on the whole graph (Graph-focused tasks)

➢ GraphNN can be seen as a generalisation of ConvolutionalNN
○ Non-geometric

➢ Possibility to impose constraints/knowledge to NN
○ Inductive Bias
○ Semantic Induction

Graph Neural Networks create a Natural environment for Deep Learning !
26

Future H erGraphs
➢ Coming from AI
➢ Generalisation of Graph paradigme
➢ One Edge can connect multiple Vertices
➢ Can create rich structures

○ Covers all structures we already
➢ Can serve sophisticated algorithms
➢ No Open Source toolkit yet

27

V
VV

V
V

V

V

V

V

V

V

V

E

E
E

Graph & Hybri Databases for HEP
➢ A lot of ongoing HEP effort to make execution more structured and parallel

○ Parallel programming
○ Functional programming

➢ Less effort (so far) to structure the data
○ More structured data => simpler and faster access

➢ Graph Database advantages
○ More transparent code

■ Stable data structure is handled in the storage layer

○ Suitable for Functional Style and Parallelism
○ Suitable for Deep Learning
○ Suitable for Declarative Analyses
○ Can help with Analysis Preservation
○ Language & Framework neutral

➢ Hybrid Storage advantages
○ Expressiveness and flexibility of Graph Databases
○ With performance and simplicity of tabular storage
○ Under transparent interface

28

Multilanguage Environments

29

do something

script Ideal Multilanguage Appllication

read

DB

manage

show storeprocess

Use the best tools an languages for each tas .
Transparent interfaces (no stu).

Data sharing (no pr ies).
It works ! - We are (alm t) there ! 30

What is
the general multilanguage technology status

?

31

JVM Languages

➢ Groovy (Apache): very high level scripting
language, used in Graph DB

➢ Scala (Apache): functional language, used in
Spark

➢ Kotlin (Google): for Android
➢ Clojure: Lisp-like
➢ BeanShell: interpreted/scripted Java

➢ Languages completely interoperable with Java (loaded into the same runtime or
compiled into standard class-files)

➢ Fully inter-operable
➢ We can freely mix code from all those languages (even via inheritance)
➢ Can be used in a scripting interpreted way or compiled
➢ Successful new features from those languages are being incorporated in Java

itself (e.g. functional syntax from Scala)
#!/usr/bin/env groovy
// converting SQL into XML with Groovy
// either run as a shell script or compiled
// —---
sql = Sql.newInstance("jdbc:mysql://localhost/Tuples",
 "org.gjt.mm.mysql.Driver")
xml = new MarkupBuilder(new File("Tuples.xml"))
xml.tagSet() {
 sql.eachRow("select * from tuple where run > 2") {
 row -> xml.tag(Run:row.run, Event:row.event)
 }
 }

32

Manage Languages

➢ Languages from different origin, made interoperable by re-implementation (or via
specific bridges)

○ Go, Haskel, JavaScript, Lisp, OCaml, Pascal, PHP, Python, R, Rexx, Ruby, Scheme, Smalltalk,
Tcl,...

➢ More than 100 languages available in some way

33

C-Worl
➢ Direct compilation to native code

○ Sometimes by pre-compiling to C
➢ Lack of high level management (reflection, introspection)

○ Often implemented on top with in-house solutions
■ Which generates incompatibilities

➢ Often considered as faster and smaller
○ But even when it’s true, there is a cost

■ Lack of functionality
■ Non-reproducibility
■ Non-portability
■ Very complex implementation of higher-level concepts

➢ Can be only connected via direct JNI or JNA
○ As they are running in an unmanaged environment

➢ Co-existence between managed JVM languages and low-level C-languages is difficult,
proprietary or too primitive

○ No generic approach (so far)

34

Revolution ?
(Holy Grail ?)

35

GraalVM

➢ Universal VM
○ Non-JVM languages are at the same level as JVM languages (=> full interoperability)
○ All languages running in the same VM (traditional multi-language environment runs multiple languages

side-by-side with frequent conversions of data)
○ GraalVM is faster and smaller than OpenJVM (GraalVM is written in Java, OpenJVM is written in C++)
○ Full interoperability between OpenJVM and GraalVM (program compiled for one can be run in another)
○ Can be embedded in external applications (Oracle, Apache, MySQL,...)

➢ Can build native executables and libraries (using AOT (Ahead Of Time) compiler instead of JIT)
○ Fully interoperable with native applications
○ Smaller footprint, faster startup, sometimes faster execution
○ Losing some dynamical features

New Manage Environment
Supporting both JVM an C-base languages

To run in VM or natively

36

GraalVM

➢ Polyglot (J)DK & (J)VM
➢ By Oracle

○ Big effort
○ Also included in OracleDB
○ Already used in industry (Twitter,...)

➢ CE (Community Edition): GPL licence (or less) - as Java
○ Components have the same licences as the original implementations (eg. Python as Python)

➢ EE (Enterprise Edition): better performance, security, support,...
➢ GraalVM JIT is included in OpenJDK (project Galahad):

java -XX:+UnlockExperimentalVMOptions -XX:+UseJVMCICompiler
○ So trivial to try
○ Native Image compiler will follow

➢ New release every 3 months
○ rel22 supporting JDK 11,17
○ rel23-dev supporting JDK 17,20

➢ Linux, MS, MacOSX
➢ Uses new Java modularity features (since Java 9)

○ As the pluggable JIT compiler
➢ Similar project in the past: NestedVM - failed in 2009 37

http://nestedvm.ibex.org/

Supporte Languages

exe, so

class, jar

Multiple languages are running in the
same space/environment.

X
Traditional mult -language pgms run multiple

languages side-by-side.

➢ Growing number of supported languages (CUDA,
WebAssembly,...)

➢ New Tools (debuggers, profilers, monitors,...)
➢ Integration in other applications and toolkits

38

Tools
➢ Growing number of supported languages (CUDA,

WebAssembly,...)
➢ New Tools (debuggers, profilers, monitors,...)
➢ Integration in other applications and toolkits

Tools understan your language.

Unlike tools for pre-compile languages.

39

Integration
➢ Growing number of supported languages (CUDA,

WebAssembly,...)
➢ New Tools (debuggers, profilers, monitors,...)
➢ Integration in other applications and toolkits

Allows, for ample,
using MySQL with Python instea of SQL.

40

$ javac Hello.java
$ time java Hello
Hello !
0,10s user 0,03s system 131% cpu 0,097 total
$ native-image Hello
==
GraalVM Native Image: Generating 'hello'...
==
[1/7] Initializing... (4.1s @ 0.21GB)
 Version info: 'GraalVM 22.0.0.2 Java 11 CE'
[2/7] Performing analysis... [*******] (12.7s @ 0.47GB)
 2,563 (82.60%) of 3,103 classes reachable
 3,211 (60.36%) of 5,320 fields reachable
 11,648 (72.43%) of 16,082 methods reachable
 27 classes, 0 fields, and 135 methods registered for reflection
 57 classes, 58 fields, and 51 methods registered for JNI access
[3/7] Building universe... (0.8s @ 0.62GB)
[4/7] Parsing methods... [*] (0.8s @ 0.84GB)
[5/7] Inlining methods... [****] (1.2s @ 0.75GB)
[6/7] Compiling methods... [***] (9.3s @ 1.19GB)
[7/7] Creating image... (1.1s @ 1.45GB)
 3.69MB (35.06%) for code area: 6,949 compilation units
 5.86MB (55.66%) for image heap: 1,543 classes and 80,509 objects
 999.26KB (9.28%) for other data
 10.52MB in total
--
Top 10 packages in code area: Top 10 object types in image heap:
 606.25KB java.util 1.64MB byte[] for general heap data
 282.31KB java.lang 715.44KB java.lang.String
 222.52KB java.util.regex 548.99KB java.lang.Class
 219.55KB java.text 451.55KB byte[] for java.lang.String
 193.17KB com.oracle.svm.jni 363.75KB java.util.HashMap$Node
 149.73KB java.util.concurrent 192.00KB java.util.HashMap$Node[]
 117.92KB java.math 139.81KB java.lang.String[]
 103.60KB com.oracle.svm.core.reflect 139.04KB char[]
 97.83KB sun.text.normalizer 130.59KB java.util.concurrent.ConcurrentHashMap$Node
 88.78KB com.oracle.svm.core.genscavenge 103.92KB sun.util.locale.LocaleObjectCache$CacheEntry
 ... 111 additional packages ... 723 additional object types
 (use GraalVM Dashboard to see all)
--
 1.6s (5.1% of total time) in 17 GCs | Peak RSS: 2.54GB | CPU load: 3.33
--

Produced artifacts:
 hello (executable)
 hello.build_artifacts.txt
==
Finished generating 'hello' in 31.1s.
$ time hello
Hello !
0,00s user 0,00s system 89% cpu 0,002 total

Native Image Example
${graalvm_dir}/bin/native-image \
--delay-class-initialization-to-runtime=\
io.grpc.netty.shaded.io.netty.handler.ssl.OpenSsl \
--initialize-at-build-time=\
org.apache.log4j.Level,\
org.apache.log4j.Layout,\
org.apache.log4j.PatternLayout,\
org.apache.log4j.Logger,\
org.apache.log4j.helpers.LogLoorg.apache.log4j.Level,\
org.apache.log4j.Priority,\
org.apache.log4j.LogManager,\
org.apache.log4j.helpers.Loader,\
org.apache.log4j.helpers.LogLog,\
org.apache.log4j.Category,\
org.apache.log4j.spi.RootLogger,\
org.apache.log4j.spi.LoggingEvent,\
org.slf4j.LoggerFactory,\
org.slf4j.impl.Log4jLoggerAdapter,\
org.slf4j.impl.StaticLoggerBinder,\
java.beans.Introspector,\
com.sun.beans.Introspector,\
com.sun.beans.introspect.ClassInfo \
--report-unsupported-elements-at-runtime \
-H:Name=GroovyEL.exe \
-H:Path=../bin \
-jar ../lib/GroovyEL.exe.jar

Basi Example

Real-life
 Example

41

Polyglot Examples (1)
➢ Objects are never copied
➢ Conversion (into client physical format) at the latest possible time
➢ All tools are available for all languages
➢ Several ways of calling foreign language:

○ Load as a script and execute
○ Compile as a class and use
○ Generate Native Image and call

// C calling JS
poly_create_context(thd, &ctx);
poly_context_eval(thd, ctx, “js”, “foo”, “function() {return 42;}”, &func);
poly_value_execute(thd, func, NULL, 0, &answer);
poly_value_fits_in_int32(thd, answer, &fits);
poly_value_as_int32(thd, answer, &result);
return result;

// Java calling Python
Value clazz = context.eval(Source.newBuilder("python", new File("mycode.py")).build());
Value instance = clazz.newInstance(1234);
System.out.println(instance.invokeMember("pyMethod", new int[]{1, 2, 3}));

// Java calling JS
Context context = Context.create();
Value v = context.eval(“js”, “function() {return 42;}”);
Value answer = v.execute();
return answer.asInt();

// Java calling C
Context context = Context.create();
File file = new File(“polyglot”); // c-pgm compiled with GraalVM
Source source = Source.newBuilder(“llvm”, file).build();
Value cpart = polyglot.eval(source);
cpart.execute();

42

Polyglot Examples (2)

// C++ calls Java

// C++
int main() {
 graal_isolate_t *isolate = NULL;
 graal_isolatethread_t *thread = NULL;
 graal_create_isolate(NULL, &isolate, &thread);
 printf("Result> %d\n",ceilingPowerOfTwo(thread, 14));
 }

// Java
public class MyMath {
 @CEntryPoint (name = "ceilingPowerOfTwo")
 public static int ceilingPowerOfTwo(IsolateThread thread, int x) {
 return IntMath.ceilingPowerOfTwo(x);
 }
 }

// JS calls CUDA
const DeviceArray = Polyglot.eval('grcuda', string='DeviceArray')
const in_arr = DeviceArray('float', 1000)
const out_arr = DeviceArray('float', 1000)
// set arrays ...
const code = '__global__ void inc_kernel(...) ...'
const buildkernel = Polyglot.eval('grcuda', string='buildkernel')
const incKernel = buildkernel(code, 'inc_kernel', 'pointer, pointer, uint64')
incKernel(160, 256)(out_arr, in_arr, N)

➢ Interaction with LLVM languages requires
more boiler-plate code

➢ It’s simpler to compile JVM code into Native
Image than to interface JVM with LLVM

➢ C++ calling Java is simpler than Java
calling C++

// JS calls C++

// JS
loadSource(“llvm”, “cpppart”);
Value getSumOfArrayFn = polyglotCtx.getBindings(“llvm”).getMember(“getSumOfArray”);
int sum = getSumOfArrayFn.execute(sqrNumbers, sqrNumbers.length).asInt();

// C++
extern “C” getSumOfArray(int array[], int size) {
 int i, sum = 0;
 for (i = 0; i < size; i++) {
 sum += array[i];
 }
 return sum;
 }

43

Where it is already useful Now
➢ Good news: It really works and it works well
➢ For JVM languages:

○ Just using GraalVM JIT (included in OpenJVM) makes it faster (better optimisation)
○ Compiling with GraalVM compiler make better bytecode
○ Creating Native Image may improve performance
○ Allows better integration with other languages
○ For Scala:

■ GraalVM JIT is able to optimize Scala much more than OpenJVM JIT (factor > 2)
➢ For Python:

○ Full interoperability with JVM languages
○ Speed, especially when compiled to Native Image
○ Better interoperability with C/C++ when compiled to Native Image

➢ For C/C++:
○ Can replace C/C++ code with code in better languages or integrate existing components written in better

languages
■ By compiling them into Native Image or connecting with Truffle multi-language environment

○ Integration in frameworks written in other languages
○ Possibility to run in Managed Environment (so easy debugging)
○ Sometimes performance gain just by re-building using GraalVM (without modification)

Can rewrite just one part of the system in another (more suitable) language,
An compile into native ecutable.

44

Intrinsi Limitations
➢ It may be complicated to configure

○ It many cases, native image generation should be configured/tuned
○ One can/should configure/tune for performance

➢ Some (Java) applications may need JVM even when compiled into native executable
○ When they (mis)use reflection and construct classes at run-time

■ For example log4J
○ But after all, we may consider JVM just as another native library (which it is)

➢ We may gain speed for small applications, not so often for large complex ones
○ Not surprising, Java is often fast for real-life applications

➢ By compiling into native executable, we lose flexibility and portability
➢ Truffle languages (Python, Ruby, JS,...) are not at the same level of inter-operability as direct JVM

languages
➢ Co-existence of LLVM languages (C, C++, Rust) with JVM languages is not as straightforward as

between two JVM languages
○ Different memory & object models
○ Values, objects, names should be converted
○ Heavy communication across LLVM-JVM border may slow down execution
○ In that case, it may be more useful to compile JVM languages into native image
○ But it’s probably as far as one can go in integrating JVM & C languages

45

External Complications
➢ Language specific build systems

○ Very elaborated make files
➢ Language specific deployment systems

○ Silently installing dependencies
■ Pip, conda, node, …

➢ Specific bridges between languages
○ Often, internal implementation uses other languages

■ Python packages often contains C code, …
➢ Language versions

○ It’s impossible to support all language versions and dialects
■ Python 2 vs 3, …

➢ Complex project specific environments

Long list of projects which have already been porte /migrate /interface .
e m t popular & least proprietary ones.

46

Future of Programming
➢ The Frameworks will consist of various components …

○ Third-party black-boxes
○ Written by AI
○ Legacy boxes

➢ Sometimes, we may not even know (or care) what is the
implementation language

○ This already works in the classical JVM
➢ Languages will be used for their strong points (Scala for parallelism,

JavaScript for Graphics,...)
○ We may stop creating proprietary languages (ADL, Root,...)

➢ Seamless (plug-in) …
➢ It’s important to really separate data from algorithms and logic (finally)

Can rewrite just one part of the system in another (more suitable) language,
An compile into native ecutable.

ChatGPT-generate

program using Java &

C++ connecte by

GraalVM

47

