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Qubits

A quantum computer is a collection of qubits that
- can be measured
- can evolve with dedicated operators

q=a|0> + b|1> 
with a and b 
complex

Normalization 
|a|2+|b|2=1
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Bloch Sphere 
representation

Pure state 

Pure state 

● Any point at the 
surface of the sphere 
is a valid qubit state

●

Evolution can be any 
path on the sphere 
surface (unitary 
matrix)
Combination of axis 
rotations
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● The internal state cannot be measured 
directly → obtain only random pure 
states

● Born rule: 0 with |a|2 probability                
                 1 with |b|2 probability

● Projection on any axis (usually Z)
● Destructive operation: the qubit value is 

fixed to the measured value (wave 
function collapse)

● Quantum computation has to be 
repetead

Qubit Measurement
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Interest for HEP
● « Nature is quantum! So if we want to 

simulate it, we need a quantum computer » 
R. Feynman 1981

● Allow to simulate any quantum 
phenomenon with linear computational 
complexity

● Evolution of the quantum computer mimics 
the target system evolution (Hilbert space)

● Problem : Noise reduces drastically the 
performance of the simulations
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Noise in a mono-qubit
● NISQ era (Noisy 

Intermediate Scale 
Quantum)

● Two kind of errors
– Statistical error : variability of 

measurement (sigma), 
includes measurement and 
decoherence

– Systematic error : difference on 
the distribution (mu and sigma) 

mu

Sigma
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Our work
● Considering the QC as a black-box
● Only mono-qubit (to get a start)
● Characterization of the stat. noise → precise 

evaluation of the measurement needs
● Correction of the systematic errors to improve 

quality of computations
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Quantum Machine learning 
approach

● ML circuit learns the target circuit but also 
corrects the systematic noise

● Let Γ be a mono-qubit re-uploading circuit 
● T is the target circuit
● Train Γ on the result of T on a noisy QC 
● Result

– Correcting operator (Γ)
– Stat. error distribution from Γ sampling 
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Re-uploading circuit
● Mono-qubit re-uploading circuit 

(Yu & al 2022)
● Re-upload the data multiple 

times → non linearity
● Universal approximator
● Fits well in practice
● Quality depends on the circuit 

depth
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Γ circuit training

● Noise model : angle shift + Gaussian noise 
● ML circuit : re-uploader of depth 2
● Target circuit : RX(t)

epochs

Loss
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Γ performance

Observed systematic error

Correction
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Stat Error Measurement
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Γ is a corrected operator

● Γ can be used instead 
of the initial target circuit

● But long circuit 
especially for 
complicated functions
– increase the stat. error 

(decoherence)

→try to find a compact 
correction operator 

U

U

U

Γ

Γ

Γ



Mono-operator approach
● Characterize numerically the systematic 

noise
– Evaluating error of a target circuit U

– Calculating KU, the correction operator for U

U

U E
U

Noisy operator

U K

Error correction

U E
U K E

K

Noisy qubit
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Charaterize the syst. error
● E generic operator equivalent to 

-Rz(Φ)-Ry(θ)-Rz(λ)- circuit  

● System of equations to solve
– <0|U+E+AEU|0> = <0|U+AU|0> (A=X,Y,Z axis)

      equations             measures on noisy qubit

● Problem : this system is really not smooth → 
need powerfull numerical technique
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CMA-ES
● Covariance Matrix 

Adaptation Evolution 
Strategy

● Stochastic, derivative-free
● Generational adaptation of a 

population of points 
● Elimination of worst point → 

covariance matrix estimation
● Very efficient if function is 

cheap to compute O(dim2)
Hansen & Ostermeier, 
Completely Derandomized 
Self-Adaptation in Evolution 
Strategies, 2001
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Non-unicity
● E is not unique
● An infinity of 3 

rotation paths join 2 
points on the sphere

→ No unicity of the 
system solution

→  the noise model 
cannot be reverse 
fitted 
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Result RX

● Yellow : theoritical result
● Blue : computed result
● Quality is good
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Result RY

The -1.6 RZ shift is compensated by a +1.6 RZ shift 
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Computing correction
● Correction operator also induces an error EK

● Matrix equation to solve : EKKEUU=U

● Unitarity → 2 complex equations → 4 real 
equations → solving with CMA-ES

Noiseless qubit

U

U E
U

Noisy operator

U K

Error correction

U E
U K E

K

Noisy qubit
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Hadamard operator 
correction

● Evaluating KH the Hadamard operator 
correction → coherent with target 
precision

● Could be extended to any U circuit
● Can be used as a correction in any 

circuit → improve performance
●  minimal impact on circuit length (3 

gates overhead per U)

H_KH noisy
X tensor(0.9978, dtype=torch.float64)
Y tensor(-0.0383, dtype=torch.float64)
Z tensor(0.0054, dtype=torch.float64)

H noiseless
X tensor(1.0000, dtype=torch.float64)
Y tensor(0., dtype=torch.float64)
Z tensor(0., dtype=torch.float64)

U

U

U

UK

UK

UK
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Perspectives
● Extending correction to arbitrary circuit
● Finalizing and releasing the error and 

correction python code
● Search for a collaboration with a QC 

company to test the method on a real 
machine 

● Extending the technique to multi-qubits 
operators (CNOT)
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