QC2I: *Quantum Computing for the two Infinites*

Error correction in monoqubit quantum computers

Frédéric Magniette, Bogdan Vulpescu, Yann Beaujeault-Taudière

Qubits

BITS

vs

QBITS

q=a|0> + b|1> with a and b complex

Normalization $|a|^2+|b|^2=1$

A quantum computer is a collection of qubits that

- can be measured
- can evolve with dedicated operators

Bloch Sphere representation

Qubit Measurement

- The internal state cannot be measured directly → obtain only random pure states
- Born rule: 0 with |a|² probability 1 with |b|² probability
- Projection on any axis (usually Z)
- Destructive operation: the qubit value is fixed to the measured value (wave function collapse)
- Quantum computation has to be repetead

$|0\rangle$ z θ $|\psi\rangle$ χ $|1\rangle$

Interest for HEP

- « Nature is quantum! So if we want to simulate it, we need a quantum computer » R. Feynman 1981
- Allow to simulate any quantum phenomenon with linear computational complexity
- Evolution of the quantum computer mimics the target system evolution (Hilbert space)
- Problem : Noise reduces drastically the performance of the simulations

Noise in a mono-qubit

- NISQ era (Noisy Intermediate Scale Quantum)
- Two kind of errors
 - Statistical error : variability of measurement (sigma), includes measurement and decoherence
 - Systematic error : difference on the distribution (mu and sigma)

Our work

- Considering the QC as a black-box
- Only mono-qubit (to get a start)
- Characterization of the stat. noise \rightarrow precise evaluation of the measurement needs
- Correction of the systematic errors to improve quality of computations

Quantum Machine learning approach

- ML circuit learns the target circuit but also corrects the systematic noise
- Let Γ be a mono-qubit re-uploading circuit
- T is the target circuit
- \bullet Train Γ on the result of T on a noisy QC
- Result
 - -Correcting operator (Γ)
 - Stat. error distribution from Γ sampling

Re-uploading circuit

- Mono-qubit re-uploading circuit (Yu & al 2022)
- Re-upload the data multiple times → non linearity
- Universal approximator
- Fits well in practice
- Quality depends on the circuit depth

Γ circuit training

- Noise model : angle shift + Gaussian noise
- ML circuit : re-uploader of depth 2
- Target circuit : R_x(t)

Γ performance

11

Stat Error Measurement

Stat error function for depth 2 innoise model

Γ is a corrected operator

- Γ can be used instead of the initial target circuit
- But long circuit especially for complicated functions
 - increase the stat. error (decoherence)

 \rightarrow try to find a compact correction operator

Mono-operator approach

- Characterize numerically the systematic noise
 - Evaluating error of a target circuit U
 - Calculating $K_{\ensuremath{\upsilon}},$ the correction operator for U

Charaterize the syst. error

- E generic operator equivalent to
 - -Rz(Φ)-Ry(θ)-Rz(λ)- circuit

$$E = \begin{bmatrix} e^{-i\frac{\phi+\lambda}{2}}\cos(\frac{\theta}{2}) & -e^{-i\frac{\phi-\lambda}{2}}\sin(\frac{\theta}{2}) \\ e^{i\frac{\phi-\lambda}{2}}\sin(\frac{\theta}{2}) & e^{i\frac{\phi+\lambda}{2}}\cos(\frac{\theta}{2}) \end{bmatrix}$$

- System of equations to solve
 - <0|U+E+AEU|0> = <0|U+AU|0> (A=X,Y,Z axis) equations measures on noisy qubit
- Problem : this system is really not smooth → need powerfull numerical technique

CMA-ES

- Covariance Matrix Adaptation Evolution Strategy
- Stochastic, derivative-free
- Generational adaptation of a population of points
- Elimination of worst point \rightarrow covariance matrix estimation
- Very efficient if function is cheap to compute O(dim²)

Hansen & Ostermeier, Completely Derandomized Self-Adaptation in Evolution Strategies, 2001

Non-unicity

- E is not unique
- An infinity of 3 rotation paths join 2 points on the sphere
 - \rightarrow No unicity of the system solution
 - → the noise model cannot be reverse fitted

Result RX

Error RX

- Yellow : theoritical result
- Blue : computed result
- Quality is good

Result RY

Error RY

The -1.6 RZ shift is compensated by a +1.6 RZ shift

Computing correction

- Correction operator also induces an error E_{K}
- Matrix equation to solve : $E_{\kappa}KE_{U}U=U$
- Unitarity \rightarrow 2 complex equations \rightarrow 4 real equations \rightarrow solving with CMA-ES

Hadamard operator correction

- Evaluating K_H the Hadamard operator correction \rightarrow coherent with target precision
- Could be extended to any U circuit
- Can be used as a correction in any circuit \rightarrow improve performance
- minimal impact on circuit length (3 gates overhead per U)

H_KH noisy X tensor(0.9978, dtype=torch.float64) Y tensor(-0.0383, dtype=torch.float64) Z tensor(0.0054, dtype=torch.float64)

H noiseless X tensor(1.0000, dtype=torch.float64) Y tensor(0., dtype=torch.float64) Z tensor(0., dtype=torch.float64)

Perspectives

- Extending correction to arbitrary circuit
- Finalizing and releasing the error and correction python code
- Search for a collaboration with a QC company to test the method on a real machine
- Extending the technique to multi-qubits operators (CNOT)