Tracking with MAPS

Stefania Maria Beolé

CPPM Marseille, 27 March 2023

Charged particle tracker

• GOALS

- Reconstruct charged particles trajectories = "tracks"
- measure position of primary and secondary vertices
- identify particles
- Traditional silicon sensor technologies:
 - microstrips
 - hybrid pixels
 - drift detectors

New stringent requirement for future colliders:

- Peak luminosity: 5-7.5 x 10³⁴ cm⁻²s⁻¹
- Average pile-up (PU) in pp: up to ~200
- Collision rates for ions: 50kHz
- Total Ionizing Dose (TID) up to 1 Grad
- Particle fluence up to 2 x 10^{16} n_{eq}cm⁻² in the vertex region
- Solutions:
 - improved traditional technologies
 - new tecnologies
 - CMOS sensors
 - 4D sensors

- Challenging requirements:
 - excellent pointing resolution
 - position resolution < 5micrometers
 - material budget < 1% X/X0
 - distance from IP of the first layer ~ few cm
 - high data rates
 - radiation tolerant

Charged particle tracker: goals

Measure trajectory of charged particles

- Measure several points along the track and fit curves to the points (helix in a magnetic field)
- Extrapolate tracks to the point of origin
 - Determine positions of primary vertices and identify interesting collision vertex: VFRTFXING
 - Find secondary vertices from decay of long-lived particles
- Use the track curvature to determine the particle momentum: PID

Charged particle tracker: goals

Measure trajectory of charged particles

- Measure several points along the track and fit curves to the points (helix in a magnetic field)
- Extrapolate tracks to the point of origin
 - Determine positions of primary vertices and identify interesting collision vertex: VERTEXING
 - Find secondary vertices from decay of long-lived particles
- Use the track curvature to determine the particle momentum: PID

proton-proton collisions at LHC

26/03/23

lead-lead collisions at LHC

Tracker requirements

ALICE ITS1

- Single point resolution
- Double track resolution
- Efficiency (100%)
- As little material as possible
 - Multiple scattering
 - Photon conversion
- Time resolution (4D tracking)
- Radiation hardness

- 6 Layers, three technologies (keep occupancy ~constant ~2%)
 - SPD: Silicon Pixels (0.2 m², 9.8 Mchannels)
 - SDD: Silicon Drift (1.3 m², 133 kchannels)
 - SSD: Double-sided Strip Strip (4.9 m², 2.6 Mchannels)

Vertexing

- Pixel detector are used to provide vertex position (fast response online determination)
 - Tracklets instead of tracks
- Vertex is used as seed for tracking
- Tracks are used to refine vertex position measurement after tracking

Secondary Vertex reconstruction

Particle	Decay Channel	c τ (μm)
D ⁰	K ⁻ π ⁺ (3.8%)	123
D ⁺	K ⁻ π ⁺ π ⁺ (9.5%)	312
	K ⁺ K [−] π ⁺ (5.2%)	150
	p K [−] π ⁺ (5.0%)	60

27/03/23

New generation trackers: CMOS sensors

New ITS (ITS2) Design Objectives

ALICE

- Improve impact parameter resolution by factor ~3 in r ϕ and factor ~5 in z at $p_T = 500$ MeV/c
 - Get closer to Interaction Point: 39 mm -> 23 mm
 - Reduce material budget: 1.14% X₀ -> 0.35% X₀ (inner layers)
 - Reduce pixel size: 50 x 425 μm² -> ~30 x 30 μm²
- Improve tracking efficiency and p_T resolution at low p_T
 - Increase number of track points: 6 -> 7 layers
- Fast readout
 - Readout of Pb-Pb collisions at 50 kHz (ITS1: 1 kHz) and p-p at 400 kHz

ALPIDE: CMOS monolithic active pixel sensor

MAPS: sensor and electronics on the same substrate

Exploits commercial CMOS imaging sensor process to detect charge particles

A few modifications needed: DEEP P-WELL to shield CMOS circuitry and avoid loss of efficiency

main advantages:

- thin sensor (all in 1 layer, thinned down to $<50\mu m$)
- easy integration
- low noise
- low power

ALPIDE Monolithic Pixel Sensor

CMOS Pixel Sensor – Tower Semiconductor 180nm CMOS Imaging Sensor (CIS) Process

ALPIDE Key Features

- In-pixel: Amplification, Discrimination, multi event buffer
- In-matrix zero suppression: priority encoding
- Ultra-low power < 40mW/cm² (< 140mW full chip)
- Detection efficiency > 99%
- Spatial resolution $\sim 5\mu m$
- Low fake-hit rate: << 10⁻⁶/pixel/event (10⁻⁸/pixel/event measured during commissioning)
- Radiation tolerance: >270 krad (TID), > 1.7 10^{13} 1MeV/n_{eq} (NIEL)

Same chip used in ALICE2 for ITS and Muon Forward Tracker (MFT)

13

ALPIDE and other developments

ALPIDE: Tower Semiconductor 180nm CMOS Imaging ALICE Sensor (CIS) Process

- R&D effort within the ALICE collaboration
 - excellent collaboration with foundry
 - more than 70k chips produced and tested
 - ALICE ITS pioneers large area trackers built of MAPS (EIC, ALICE 3, FCC?)
- in parallel studies to optimise process to reach full depletion and improve time response and radiation hardness up to 10¹⁵ 1MeV/n_{eq} :
 - More details: NIM A871 (2017)
 https://doi.org/10.1016/j.nima.2017.07.04
 6
 - Now being further pursued: MALTA, CLICpix, FastPix, ...

ITS2 Inner Barrel

The largest MAPS pixel detector (so far) ALICE 7 Layers (3 inner / 2 middle / 2 outer) from R = 22 mm to R = 400 mm **Outer Barrel (OB)** 192 Staves (48 IL / 54 ML / 90 OL) = ML + OLUltra-lightweight support structure Outer Layers (OL) and cooling • 10 m² active silicon area, 12.5 x 10⁹ pixels Middle Layers (ML) nner Barre Outer Barrel Beam pipe Inner Barrel (IB) Layer # n. of Staves

Tiling up

A long and complex journey....

On-Surface Commissioning

S.Beolé

On-Surface Commissioning results

- Cosmics tracks reconstructed
- IB: fake-hit rate of 10⁻¹⁰ / pixel / event
 - Achieved by masking fraction of 10⁻⁸ pixels
- OB: fake-hit rate of 10⁻⁸ / pixel / event
 - Achieved by masking noisy pixels common to all runs

ITS installation

Outer Barrel Bottom being inserted on the rails inside the TPC

ITS Outer Barrel surrounding the beam pipe, MFT in the back

• Installation challenges

Precise positioning around the beam pipe (nominal clearance ~ 2 mm)

1.2 mm nominal clearance

- Manipulating from 4 m distance
- Difficult to see actual position by eye
- precise mating of top and bottom barrel halves (clearance between adjacent staves ~ 1.2 mm)
- Dry-installation tests on the surface to test and exercise procedures
- Use of 3D scans, surveys and cameras

OB stave edge clearance when fully mated

ITS Inner Barrel Bottom and Outer Barrel

26/03/23

Detector Control System

- DCS ready to control detector in all phases of operation:
 - Controls and configures pixel chips and entire infrastructure

Vision_1: TOP

ITS_DCS

* 🗱 »» ITS_DCS ««

CAEN_INFRA ITSCaV ▶ 🎲 ITS_DCS_RUN ITS SAFE

🔅 ITS

16:03 11-02-22

ITS Auxiliary Monitoring Zone inframe BB power A09

L3/L4

0/11/12

A12/A13

L5/L6 PP1 crate

Main view

- Error recovery during a run to continue running with minimal data loss
- Detector functionality implemented in C++ _ library (pixel chips, readout cards, regulator boards)
- GUI, FSM and alarms in Siemens WinCC OA
- fully integrated into ALICE DCS
- Routinely used during commissioning and Pilot Beams

🛕 🚯 📀 🎟 🖬 🔜 🎍

- 0

-CAEN FSM

۱

ITSComms

-Cooling FSM

Calibration

The Challenge:

- Online calibration of **12.5 billion channels**
- Threshold scan of full detector: > 50 TB of event data
- Several scans to be run sequentially
 - Threshold tuning (adjust thresholds to target)
 - Threshold scan (measure actual thresholds)

Procedure:

- DCS performs actual scans: configure and trigger test injections
- Scan runs in parallel but independently on all staves
- Distributed analysis on event processing nodes
- full procedure takes less than 30 minutes

Results:

- Scan with online analysis successfully run on full detector
- before tuning: settings used in surface commissioning, detector already fully efficient
- After tuning: Thresholds very stable on all the chips: RMS of threshold distribution compatible with what we had during production
- ENC noise ~ 5e⁻

Data Taking Preparation

- Last part of commissioning phase devoted to prepare and test settings optimized for pp with 200 kHz framing rate (instead of 45 kHz for Pb-Pb) to achieve better time resolution reducing pile-up
 - successfully tested tested in pp Pilot Beam (2022)
- Extensive test runs with emulated Pb-Pb and pp events (injected into the detector front-end) to test detector, processing chain under realistic load

RUN 3 readiness

S.Beolé

LHC22s period 18th November 2022 16:52:47.893

-

PbPb collision November 2022

S

and the state of the

161 -05 -02-16

ded de la ser

國法社

Impact parameter in pp (preliminary)

Analysis conditions:

Collisions with at least 6 reconstructed tracks Tracks with 7 clusters only, with a $p_T > 0.2$ GeV/c

S.Beolé

Can we improve further?

ALICE 2.1: ITS3 the "all silicon" detector

ITS2 Layer 0: X/X0=0.35%

ITS2 Inner Barrel

ITS3 only silicon: X/X0=0.05%

ITS3 mechanical mockup

• GOAL for ALICE ITS3:

- improve determination of primary and secondary vertices at high rate
- go closer to interaction point
- reduce material budget X/X_0 0.35%→0.05%

• "SILICON ONLY" TRACKER?

- exploit stitching → large area sensors
- thin and bend \rightarrow sigle sensor half layers

• TECHNOLOGY CHOICE:

- 65 nm TPSCo (Tower & Partners Semiconductor): 300mm wafers and stitching available
- 65 nm \rightarrow lower power consumption
- 7 metal layers

26/03/23

ITS3 expected performance

10^{3} **ITS2** standalone ITS2+TPC ITS2 standalone (full MC) 0 ITS3 standalone rø pointing resolution [µm] ITS3+TPC ITS3 standalone (full MC) 10² 0 10¹ 100 0.05 0.1 0.2 0.3 0.5 2 3 5 10 20 30 1 Transverse momentum [GeV/c]

pointing resolution

Improvement of a factor 2 over all momenta

tracking efficiency

Large Improvement for low transverse momenta

Ongoing R&D: Thinning and Bending of CMOS sensors

Bending of 180nm small size MAPS ٠

- 50 µm thick ITS2 chip (ALPIDE) bent to 22 mm showed excellent efficiency in the beam test in 2020
- Development of tools to bend large area ۲ silicon sensors

https://doi.org/10.1016/j.nima.2021.166280

Ongoing R&D: technology validation

- First test submission (MLR1) for 65nm in December 2020
- Main goals:
 - Learn technology features
 - Characterize charge collection
 - Validate radiation tolerance
- Each reticle (12×16 mm²):
 - 10 transistor test structures (3×1.5 mm²)
 - 60 chips (1.5×1.5 mm²)
 - Analogue blocks
 - Digital blocks
 - Pixel prototype chips: APTS, CE65, DPTS
- Testing since September 2021:
 - huge effort shared among many institutes
 - laboratory tests with ⁵⁵Fe source
 - beam tests @ PS, SPS, Desy, MAMI

APTS:

- 6×6 pixel matrix
- Direct analogue readout of central 4×4 submatrix
- Two types of output drivers:
- 1. Traditional source follower (APTS-SF)
- 2. Very fast OpAmp (APTS-OA)
- 4 pitches: 10, 15, 20, 25 μm

CE65:

- 2 matrix sizes, 15 or 25 μ m pitch
- Rolling shutter readout (50 μs integration time)
- 3 in-pixel architectures:
 - 1. AC-coupled amplifier
 - 2. DC-coupled amplifier
 - 3. Source follower

DPTS:

- 32×32 pixel matrix
- Asynchronous digital readout
- Time-over-Threshold information
- Pitch: 15×15 μm²

AREA: 1.5×1.5 mm²

Chosen results for DPTS: radiation hardness

Detection efficiency and FHR for different irradiation levels

Pitch: 15×15 μm²

DPTS Timing resolution

Sketch of the beam test telescope

- Two DPTS are sandwiched between reference planes made of ALPIDE chips.
- Two scintillators (S2 and S3), operated in coincidence, and one featuring a 1mm hole (S1), operated in anti-coincidence, are used for triggering.
- The trigger can also be provided by one of the two DPTS
- Beam: 5.4 GeV/c electrons

- Time residuals distributions of two DPTSs with no corrections (blue) and with readout scheme and time walk corrections applied (orange)
- FE parameters not optimised for timing performance(I_{bias}=10nA): more results coming soon

APTS OpAmp

- Analog output test structure with OpAmp to start test the timing performance of the technology
- First results from June 2022 beam test available:
 - timing performance
 - efficiency

26/03/23

- **CFD Time stamp** $t = t_{10\%\text{CFD}}$
- Time difference $\Delta t = t_{\text{OPAMP1}} t_{\text{OPAMP0}}$ distribution is fitted with Gaussian function
 - Fitted with $\pm 1.5\sigma$ range (solid line)
- Efficiency on both OPAMP plane with 5.5 mV (150e) threshold: ~99%
- Time resolution: $77 \pm 5 \, \text{ps}$ without time walk/jitter correction

Ongoing R&D: Mechanical support and cooling

Mechanics:

Engineering models of ITS3 are being • produced

Equipped with dummy silicon

- Used to study:
 - support structures
 - bending
 - integration
 - resulting geometry
- Very successful integration of EM1 and EM2
- Off-shape distortions are identyfied and mitigation will be implemented in EM3

35

A-SIDE

C-SIDE

@CERN

Ongoing R&D: Mechanical support and cooling

Cooling:

- Models including heating elements are being developed
- In a custom wind tunnel, thermal and mechanical properties are studied

A silicon only experiment?

Large future silicon based experimental set-ups

LHC timeline after RUN 4: рр, рА?, Run 5 TOF AA Tracker Superconducting RICH magnet system Mùon absorber Letter of intent for ALICE 3 Muon chambers Vertex FCT Detector **ECal**

ALICE3

рр, pA?,

AA

Run 6

Ambition to design a new experiment to continue with a rich heavy-ion programme at the HL-LHC" mentioned in the Update of the European strategy for particle physics

arXiv:2211.02491

ALICE 3: tracker + vertex detector

Letter of intent for ALICE 3

LICCION (8)

GOALS:

- Tracking and PID over large acceptance
- Excellent vertexing
- Continuous readout

REQUIREMENTS

- Tracker: low power, large surface 60 m² (challenges: yield, fill factor)
 - Monolithic CMOS sensors with timing (4D tracking)
- Vertex detector: very close to IP (challenges: high rate, high radiation load)
 - Retractable detector (iris tracker) $R_{in} \approx 5$ mm
 - Wafer-scale monolithic CMOS sensors

Vertex Detector

Conceptual study

- wafer-sized, bent MAPS (leveraging on ITS3 activities)
- rotary petals for secondary vacuum (thin Be walls to minimise material)
- feed-throughs for power, cooling, data
- R&D challenges on mechanics, cooling, radiation tolerance

Tracking: Outer tracker

• Relative pr resolution $\propto \frac{\sqrt{x/X_0}}{B \cdot L} \rightarrow ~1\%$ up to $\eta = 4$

- critically depends on integrated magnetic field and overall material budget
- Layout: ~11 tracking layers (barrel + disks)
 - MAPS modules on water-cooled carbon-fibre cold plate
 - $\sigma_{\text{pos}} \sim 10 \ \mu\text{m} \rightarrow 50 \ \mu\text{m}$ pixel pitch
 - timing resolution ~100 ns (→ reduce mismatch probability)
 - material ~1 % X₀ / layer \rightarrow overall X/X_0 =10%
- R&D challenges on
 - powering scheme (\rightarrow material)
 - industrialisation

Total silicon surface ~60 m²

41

ALICE 3 time of flight with silicon sensors?

Innovative detector concept

- Compact and lightweight all-silicon tracker
- Retractable vertex detector
- Extensive particle identification
- □ Large acceptance
- Superconducting magnet system
- Continuous read-out and online processing
 - outer TOF at R \approx 85 cm

TOF

- inner TOF at R \approx 19 cm
- forward TOF at $z \approx 405$ cm

Separation power $\propto L/\sigma_{TOF}$

- distance and time resolution crucial
- $\boldsymbol{\cdot}$ larger radius results in lower p_T bound

2 barrel + 1 forward TOF layers 45 m² in total

Silicon timing sensors ($\sigma_{TOF} \approx 20$ ps)

Material budget: 1-3% X/X0 Power consumption: <50mW/cm²

Challenges

- Fast collection (100s of ps) and low capacitance at the same time
- Low power consumption
- 20 ps resolution obtained experimentally recently by Monolith project (<u>https://arxiv.org/abs/2301.12244</u>), not yet in reach for the other developments...

Vol. 979, Nov. 2020

Advantages:

- Potentially 100% efficiency
- Excellent radiation hardness demonstrated for several processes
- Cost-effectiveness—on chip digitization, time-tagging and data pre-processing

TIMING WITH MONOLITHIC SENSORS: OPPORTUNITIES AND CHALLENGES

G. lacobucci et al., 2019 **JINST 14 P11008**

T. Kugathasan et al., Nucl. Inst. Meth. A

Several monolithic projects targeting enhanced timing resolution

MAPS in SPACE

Monolithic Active Pixel Sensors: first use in space

S.Beolé

Limadou HEPD02 on the CSES2 mission

Advantages:

- reduces systematic uncertainties on tracking: down to 4um single-hit resolution
- no multi-hit degeneracy
- Extremely low material budget: 50um thin, control and read-out based on ultra-thin (180 um) flexible printed circuits
- Cheaper than standard microstrips
- Monolithic: in-pixel FE electronics: unmatchable S/N ratio (10⁻⁸ fake hits per trigger)

Challenges for use in space

- Tradeoff for mechanical supports: avoid multiple scattering but withstand launch acceleration and vibrations
- Limited power budget
- Heat dissipation
- Digital readout: limited information about charge

Monolithic Active Pixel Sensors: first use in space

full QM HEPD-02 tracker dry assembly test

S.Beolé

BACK UP SLIDES

ALPIDE: Standard process: sensitive epitaxial layer not depleted

- Signal charge is collected from the non-depleted layer, diffusion dominated and prone to trapping after irradiation
- Planar vs spherical junction
 - Planar junction: depletion thickness proportional to square root of reverse bias.
 - Spherical junction : depletion thickness proportional only to cubic root of reverse bias, inner radius R1 to be kept small for low capacitance
- Deep well and substrate limit extension of the depletion: to fix this -> pixel design/process modification, see next slide.

Tower Semiconductor 180nm

ULITIMA 2023 – S. Beolé

Sensor optimization (1): DEPLETED MAPS

https://doi.org/10.1016/j.nima.2017.07.046 (180nm)

- GOAL: create planar junction using deep low dose n-type implant and deplete the epitaxial layer
- initial interest from ATLAS followed by many others: MALTA/TJ MONOPIX development (Bonn, CPPM, IRFU and CERN)

Sensor optimization (1): results

https://doi.org/10.1016/j.nima.2019.162404

However:

- efficiency loss at ~ 10¹⁵ 1 MeV n_{eq}/cm² on the pixel edges and corners due to a too weak lateral field
- Lateral electric field not sufficient to push the deposited charge towards the small central electrode.
- Efficiency decreases in pixel corners
- Effect amplified by radiation damage

Sensor optimization (2): improvement of the lateral field

3D TCAD simulation M. Munker et al. PIXEL2018 https://iopscience.iop.org/article/10.1088/1748-0221/14/05/C05013

• Additional deep p-type implant or gap in the low dose n-type implant improves lateral field near the pixel boundary and accelerates the signal charge to the collection electrode.

3D TCAD simulation M. Munker et al. PIXEL2018 https://iopscience.iop.org/article/10.1088/1748-0221/14/05/C05013

Sensor optimization (2): results

- Full detection efficiency at $10^{15} n_{eq}/cm^2$
- better sensor timing

H. Pernegger et al., Hiroshima 2019,M. Dyndal et al 2020 JINST 15 P0200

3D TCAD simulation M. Munker et al. PIXEL2018 https://iopscience.iop.org/article/10.1088/1748-0221/14/05/C05013

Optimization example: CLICTD

- CLICTD 180 nm monolithic sensor: modified 180nm CMOS imaging process with small-collection electrode
- Target: CLIC tracker
 - a matrix of 16 x 128 detection channels
 - size of 300 μm x 30 μm. In column channels are segmented into eight sub-pixels
 - Simultaneous time and energy measurement per channel
- Exploring
 - large parameter space of sensor-design modifications:
 segmentation in the low dose n-type implant along the column
 - Reduced charge sharing leads to higher concentration of charge in one pixel cell -> Improved efficiency at high thresholds
 - substrate materials (epitaxial, high resistivity Cz)
 - thicknesses (40-300 μ m)

54

FASTPIX

Simulated hexagonal unit cell – electrostatic potential:

- Hexagonal design reduces the number of neighbors and charge sharing → higher efficiency
- Hexagonal design minimizes the edge regions while maintaining area for circuitry → faster charge collection
- Optimisations important not only for timing, but also for efficiency and radiation tolerance

Preliminary test-beam results showed MIP time resolution of approximately 120-130 ps

Seed-pixel time residuals after timewalk correction for the inner region of the 10 μ m (**a**) and 20 μ m (**b**) pitch matrix.

More news on most recent results in Justus Braach's presentation later on this afternoon

<u>J. Braach et al. Instruments 6 (2022) 13</u>

ULITIMA 2023 – S. Beolé

Tower Semiconductor 180nm