
Second MaNiTou Summer School on Gravitational Waves:
A new window to the Universe

1
Natalia Korsakova

Laboratoire
AstroParticule & Cosmologie

Deep learning in GW physics

1. Basic introduction to Deep learning.

2. Detection and point parameter estimation.

3. Bayesian parameter estimation.

4. Waveform compression.

5. Tutorial

2

Plan of the lecture

Introduction to
deep learning

3

Artificial Intelligence

Machine learning

Deep learning

4

Supervised
Learning

Unsupervised
Learning

Reinforcement
Learning

Regression

Classification

Clustering

Feature extraction

Solving dynamics

Playing games

… … …

5

6

Deep learning: introduction

�

b+

nX

i=1

wixi

!
= ŷ

x1

x2

xn

...
...

w1

w2

wn

X

b

ŷ

inputs weights
bias

non-linearity
output

Deep neural network can be viewed as a universal function approximator.

The function is represented as a computational graph, where nodes are primitive operations and edges represent numeric data.

The building block of the network is an artificial neuron,
which is a real-valued signal y computed by multiplying
a vector-valued input signal x
by a weight vector w,
adding a bias term b, and then passing it through an
activation function .�

Image: Kevin Patrick Murphy, Probabilistic Machine Learning: An Introduction

Deep learning: introduction

Classical feedforward neural network defines a map

y = f(x;✓)

The networks is usually represented by an acyclic graph
that describes how the functions are composed
together.

which is a composition of a simpler mappings

f = f (d) � f (d�1) � · · · � f (2) � f (1)

Each layer cam be written in the form f (j)(h) = �j

⇣
W>

j h+ bj
⌘

The network is parameterised by a set of parameters (weights and biases), which are tuned during
training

x1

xn

...

inputs

...

...

outputs
hidden layer i

ŷ1

ŷ2

...

...

...

✓ ⌘ {W j , bj}dj=1

In most cases the output of the network can be generalised as a distribution

Deep learning: cost function

p(y | x;✓)
The network is trained then using maximum likelihood.

J(✓) = �Ex,y⇠p̂data log p(y | x,✓)

We have to find a set of parameters which will optimise the loss function

This means that the cost function is simply the negative log-likelihood.

✓ML = argmax
✓

p(Y |X,✓)

= argmax
✓

NY

i=1

p
⇣
y(i)|x(i),✓

⌘

= argmax
✓

NX

i=1

log p
⇣
y(i)|x(i),✓

⌘

= argmax
✓

Ex,y⇠p̂data log p(y|x,✓)

Deep learning: stochastic gradient descent

Image: Goodfellow et al (2016)

Stochastic gradient descent is an extension of the gradient descent.
When the training dataset is too large we use mini-batches.

✓ ✓ � ⌘r✓Jm(✓)

Jm =
1

m

mX

i=1

J
⇣
x(i), y(i),✓

⌘
where

There are different versions of this algorithm.
Plus extensions that involve second (Hessian) or higher order
derivatives.

Back-propagation is implemented by a chain rule.

z1 ŷ1
w1 w2

@J(W)

@w2
=

@J(W)

@ŷ
· @ŷ

@w2

@J(W)

@w1
=

@J(W)

@ŷ
· @ŷ

@z1
· @z1
@w1

10

Deep learning: back-propagation

Detection and
point parameter estimation

11

12

Recall from the classical methods

In the classical approach we use match filtering for the detection
and point parameter estimation.

We start with the simplest deep learning approach to solve similar problem.

13

Detection answers the question if the signal is present or not
in the data.

Detection

We have to train a binary classifier.

Training dataset is composed of pairs:

simulated data with signal: d = h + n

label: 1

simulated data without signal: d = n

label: 0

14

If we have classification problem with two classes then the appropriate choice for the maximum
 likelihood approach will be Bernoulli distribution.

Detection

We have to choose the activation function and the cost function that will be appropriate for the task.

Bernoulli distribution is the discrete probability distribution
which takes the value 1 with probability p

and the value 0 with probability 1 − p p(y | x;✓) = Ber
�
y | �

�
w>x+ b

��

where y 2 {0, 1}

last layer
activation function: �(a) , 1

1 + e�a
sigmoid or logistic

In this case log-likelihood is chosen to be negative binary cross entropy:

J(✓) =
1

N

NX

i=1

y(i) log
⇣
f
⇣
x(i);✓

⌘⌘
+

⇣
1� y(i)

⌘
log

⇣
1� f

⇣
x(i);✓

⌘⌘ y

f()
where

label

predicted value

15

Detection

Thus far we look at the Multilayer Perceptron,
which is the most simple architecture for the feed-forward networks.

We can try different architectures which allow to
- extract features from the data
- capture sequential nature of the data.

16

Detection: CNN

Convolutional neural networks allow to reduce the size of the network because they use local convolutions
instead of metric multiplications.

We get a convolution by sliding the weight matrix over the ‘image’ and adding up the results;
in this case the weight matrix is often called a “kernel” or “filter”.

image: https://cs231n.github.io/convolutional-networks/

S(i, j) = (K ⇤ I)(i, j) =
X

m

X

n

I(i�m, j � n)K(m,n)

0 0 0 0 1 1 0 1 1 1

0 1 0 0 1 0 1 0 0 1

0 1 1 0 1 0 1 1 0 0

1 0 1 0 0 0 0 0 1 0

0 1 1 1 0 0 1 0 1 1

1 1 0 1 1 1 0 1 0 1

1 0 1 1 0 0 0 0 1 1

0 1 1 0 0 0 1 0 1 1

0 0 0 1 0 0 0 1 0 1

0 0 0 1 0 1 1 0 1 1

Input: array of values
Originally these networks were for images,
but can also be 1-dimensional.

Detection: CNN

Instead of connecting each neuron to each other one,
we apply the filters (or kernels).

To convolve a filter with an image means,
to slide the filter with weights over an image
and compute the dot products.

0 0 0 0 1

0 1 0 0 1

1 0 1 0 0

0 0 0 1 1

0 0 0 1 1

weights

3

*

dot product

1 1 0

0 1 0

1 0 1

N filters
with different weights

input

Filters are sensitive to the features in the data

Detection: CNN

19

Detection: RNN

Recurrent Neural Networks can be useful:
- for analysis of the data sequences
- when the order of the elements matter
- when the size of the data is not fixed
- when we want to connect information on different time scales.

We can express the dependency on the previous time
stamps by the concept of the context.

p (xt | x1, . . . , xt�1) ⇡ p (xt | h)

RNNs have vanishing gradient problem but there are more modern
implementations which address this problem but preserve the concept.

image: Deepmind lectures

20

Detection: ROC curve

Very important to correctly access the performance.

ROC (receiver operating characteristic) curve is one of the methods that can be used.

True alarm probability plotted versus false alarm probability.

How to construct ROC curve:
1) Choose y_th which will be a detection threshold.
2) Predicted y values greater than y_th will be considered as
an alarm.
3) At a given y , FAP and TAP are constructed as the fraction
of noise-only and signal plus noise samples, respectively, that
are reported as an alarm.
4) Vary y , obtain pairs of TAP/FAP

FAP

TAP

image: wikipedia

21

Instead of detection we can perform parameter estimation by using known parameters that
corresponded to the signal injected in the data.

In this case the appropriate cost function will be mean square error:

Point parameter estimation

simulated data: d = h(✓) + n

labels: ✓

The last activation layer have to be a liner function,
therefore we can choose a ReLU (Rectified Linear Unit):

The architecture can be similar as for the detection
problem except last activation function and cost
function.

J(✓) =
1

N

NX

i=1

⇣
y(i) � f

⇣
x(i);✓

⌘⌘

image: pytorch documentation

�(a) = a+ = max(0, a)

22

Different type of errors

This was the point parameter estimation.

In addition to that the error on the estimation of the weights is incorporated in the estimation of parameter.

How can we solve this problem?

23

Replace weights with the probability distributions.

Bayesian NN

image: https://statisfaction.wordpress.com/2020/01/20/course-on-bayesian-machine-learning-in-paris/

Bayesian Parameter Estimation

24

25

Parameter estimation

problem:
marginal likelihood
has no exact solutionp(✓ | x) = p(x | ✓)p(✓)

p(x)

p(x) =

Z
p(x | ✓)p(✓)d✓

26

Parameter estimation

 solutions:

• approximate inference:
 - MCMC/Nested sampling
 requires likelihood evaluation
 we can do it, but it is slow

p(✓ | x) = p(x | ✓)p(✓)
p(x)

27

Parameter estimation

• approximate inference:
 - MCMC/Nested sampling
 requires likelihood evaluation
 we can do it, but it is slow

 - Variational inference
 approximate the posterior distribution
 with a tractable distribution

 solutions: solutions:

p(✓ | x) = p(x | ✓)p(✓)
p(x)

28

Parameter estimation

 solutions: solutions:

p(✓ | x) = p(x | ✓)p(✓)
p(x)

• simplification to the model:
 - Gaussian mixture models
 too simple

29

Parameter estimation

 solutions: solutions:

p(✓ | x) = p(x | ✓)p(✓)
p(x)

• simplification to the model:
 - Gaussian mixture models
 too simple

 - Invertible models
 will talk about them today

30

Invertible transform

If x is a random variable with the CDF f(x),
then the random variable y = f(x) has a uniform distribution on [0,1].

31

Invertible transform

32

Invertible transform

Change of variables for probability density function

Apply chain rule

fY (y) =
d

dy
FY (y) =

d

dy
FZ

�
g�1(y)

�

= fZ
�
g�1(y)

� ����
d

dy
g�1(y)

����

33

Normalising flows

1. We have simple random generator

q(z) = N (0, 1)

34

Normalising flows

q(z) = N (0, 1)

1. We have simple random generator
2. We want to sample from a more complex distribution

p(y)

35

Normalising flows

q(z) = N (0, 1)

1. We have simple random generator
2. We want to sample from a more complex distribution
3. We can estimate a bijective transformation which will allow us to do that

p(y)f(y)

f�1(z)

36

Change of variables equation

p(y) = q(f�1(y))
��det

�
Jf�1(y)

���

37

Change of variables equation

• has to be a bijection

p(y) = q(f�1(y))
��det

�
Jf�1(y)

���

f

38

Change of variables equation

• has to be a bijection

• and have to be differentiable

• Jacobian determinant has to be tractably invertable

p(y) = q(f�1(y))
��det

�
Jf�1(y)

���

f

f f�1

39

Optimisation

The flow is trained by maximising the total log likelihood of the data
with respect to the parameters of the transformation

40

Jacobian

Jf (z) =

2

64

@f1
@z1

. . . @f1
@zn

...
. . .

...
@fn
@z1

. . . @fn
@zn

3

75

The calculation of determinant Jacobian will take O(n^3)
To make it faster we have to ensure that the Jacobian is triangular
The determinant of the triangular matrix is a product of the diagonal elements

41

Jacobian

42

Affine transformation

⌧(zi;hi) = ↵izi + �i hi = {↵i,�i}
location-scale transformation

Invertibility for ↵i 6= 0

log|detJf (z)| =
NX

i=1

log|↵i|

log-Jacobian becomes

43

Coupling transform

In each simple bijection,
part of the input vector
is updated using a function
which is simple to invert,
but which depends on the
remainder of the input vector
in a complex way.
The other part is left unchanged.

44

Real NVP

Coupling transformation combined with affine
transformation and its invention

https://arxiv.org/abs/1605.08803

What is t and s?

It is easy to do the inversion.
We can keep the same parameters
of the function which we used on
the forward pass.

https://arxiv.org/abs/1605.08803

45

Function approximation

can be parameterised by any NN:
- Fully connected
- Residual
- CNN
- …

�

b+

nX

i=1

wixi

!
= ŷ

x1

x2

xn

...
...

w1

w2

wn

X

b

ŷ

inputs weights
bias

non-linearity
output

46

Jacobian

The form of Jacobian is such that we can only need the components on the diagonal.

47

Function approximation

A sequence of the flows which fix one
dimension at one step and vary
the other dimension and repeat this
process for a given number of times.

48

Neural Spline Flows

• Coupling transform

49

Neural Spline Flows

• Coupling transform

image: Duncan C. et al, Neural Spline Flows

• Monotonic rational-quadratic
 spline transform

50

Conditioning

• Do not have access to samples from posterior

f�1(z)q(z) = N (0, 1)

f(y)

51

Conditioning

• Do not have access to samples from posterior
• Have access to samples from prior +

q(z) = N (0, 1)

f(y)

p(✓)

52

Conditioning

q(z) = N (0, 1)

f(y)

p(✓)

• Do not have access to samples from posterior
• Have access to samples from prior +
• Can generated simulated data x = h(✓) + n

53

Conditioning

• Do not have access to samples from posterior
• Have access to samples from prior +
• Can generated simulated data

Condition inverted map
on real data

q(z) = N (0, 1)

x = h(✓) + n

f(y)

p(✓)

Therefore have access to the joint sample p(x, ✓) = p(x | ✓)p(✓)

54

Conditioning

• Do not have access to samples from posterior
• Have access to samples from prior +
• Can generated simulated data

Condition inverted map
on real data

f�1(z)q(z) = N (0, 1)

p(✓|x)

x̂

x = h(✓) + n

f(y)

55

Composing flows

xz0 z1 zkzk�1. . .

f1(z0)

z0 ⇠ p0(z0)

fk+1(zk)

PCA and Autoencoders

56

57

Waveform embedding

• Low frequency sensitivity -> long waveforms
• Construct reduced orthogonal basis
• Use coefficients of the waveform projection on a new basis

58

Waveform embedding

Decompose a matrix constructed of the set of waveforms

H = V⌃U
T

59

Waveform embedding

Decompose a matrix constructed of the set of waveforms

H = V⌃U
T

Project sample simulated data on this basis

v0↵µ =
1

�µ

NX

j=1

h↵juµj

x1

x2
PCA maps original data
into a new coordinate system
which maximises variance of the data

y1 =
nX

k=1

wk1xk

x1

x2

60

Principle Component Analysis

The mapping to the new basis can be
expressed using the eigenvectors of the
Covariance matrix

C = E{xxT }
Eigenvalue decomposition

C = UDUT

x2

x1

61

Principle Component Analysis

y1
The vector of principle components
will be

y = UTx

y2

62

Principle Component Analysis

It has been shown that it is possible to formulate PCA in terms of Neural Networks

x̂ = WWTx

JMSE =
1

T

TX

j=1

||x̂(j)�WWTx(j)||2

63

Principle Component Analysis

x x̂

h

W1,b1 W2,b2

h = �(W1x+ b1)

y = W2h+ b2

64

Principle Component Analysis

x

Input
Layer

Output
Layer

Hidden
Layer

x̂

Autoencoders is unsupervised learning
technique, which solves the task of
representational learning.

Latent space

Learning is done by comparing
reconstruction to original input.

L (x, x̂)

65

Autoencoder

Variations:
 - Denoising autoencoders
 - Contractive autoencoders
 - Undercomplete autoencoders

66

Autoencoder

x

Input
Layer

Output
Layer

Hidden
Layer

x̂

Latent space

Image: https://www.jeremyjordan.me/autoencoders/ 67

Autoencoder

Encoder Decoder

x x̂

h

h = f(x) x̂ = g(h)

68

Autoencoder

x x̂

Encoder Decoder

q�(z|x) p✓(x|z)

z

mean

variance

sample
latent
variable

Probabilistic
representation
of latent space.

Auto-Encoding Variational Bayes, Diederik P Kingma, Max Welling https://arxiv.org/abs/1312.611469

Variational Autoencoder

https://arxiv.org/abs/1312.6114

70

Reparameterisation trick

Reparemeterization trick: used to propagate back the error

⇠ q(z|x)

⇠ N (0, 1)

z = µ+ � ⇤ ✏z z

µ � ✏� µ

Image: https://www.jeremyjordan.me/variational-autoencoders/
71

Variational Autoencoder

p(z|x) = p(x|z)p(z)
p(x)

x

z

observe

<— we want to estimate the latent variables
 given the data

p(x) =

Z
p(x|z)p(z)dz = Ep(z) [p(x|z)]

72

Variational Autoencoder

<— intractable but
 we apply
 variational inference
 to estimate this value

logp(x) = log

Z
p(x, z)dz

= log

Z
p(x, z)

q(z|x)
q(z|x)dz � Eq(z|x)log

p(x, z)

q(z|x) dz

= Eq(z|x)log
p(x|z)p(z)
q(z|x)

= Eq(z|x)logp(x|z) + Eq(z|x)log
p(z)

q(z|x)

= likelihood�DKL[q(z|x)||p(z)]

Introduce tractable q(z|x)

ELBO — evidence lower bound

Jensen inequality

Variational Autoencoder

73

x

z

observe

Lets approximate with

such that we set a condition that they are close to each other
as possible.

p(z|x) q(z|x)

We can enforce this condition by minimising Kullback–Leibler divergence

74

Variational Autoencoder

Image: http://ruishu.io/2018/03/14/vae/

75

Optimisation

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
76

Latent space

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

Practical tutorial

77

https://github.com/NataliaKor/tutorial/blob/main/tutorial-ML-for-GWPE.ipynb

https://github.com/NataliaKor/tutorial/blob/main/tutorial-ML-for-GWPE.ipynb

