Deep learning in GW physics

Second MaNiTou Summer School on Gravitational Waves:
A new window to the Universe

Plan of the lecture

1. Basic introduction to Deep learning.
2. Detection and point parameter estimation.
3. Bayesian parameter estimation.
4. Waveform compression.
5. Tutorial

Introduction to deep learning

Artificial Intelligence

Machine learning

Deep learning

Supervised
Learning

Regression
Classification

Unsupervised
Learning

Clustering

Feature extraction

Reinforcement
Learning

Solving dynamics
Playing games

Deep learning: introduction

Deep neural network can be viewed as a universal function approximator.
The function is represented as a computational graph, where nodes are primitive operations and edges represent numeric data.

The building block of the network is an artificial neuron, which is a real-valued signal y computed by multiplying a vector-valued input signal \mathbf{x} by a weight vector \mathbf{w}, adding a bias term \mathbf{b}, and then passing it through an activation function ϕ.

Deep learning: introduction

Classical feedforward neural network defines a map

$$
y=f(\boldsymbol{x} ; \boldsymbol{\theta})
$$

which is a composition of a simpler mappings

$$
f=f^{(d)} \circ f^{(d-1)} \circ \cdots \circ f^{(2)} \circ f^{(1)}
$$

The networks is usually represented by an acyclic graph that describes how the functions are composed together.

Each layer cam be written in the form

$$
f^{(j)}(\boldsymbol{h})=\sigma_{j}\left(\boldsymbol{W}_{j}^{\top} \boldsymbol{h}+\boldsymbol{b}_{j}\right)
$$

The network is parameterised by a set of parameters (weights and biases), which are tuned during training

$$
\boldsymbol{\theta} \equiv\left\{\boldsymbol{W}_{j}, \boldsymbol{b}_{j}\right\}_{j=1}^{d}
$$

Deep learning: cost function

In most cases the output of the network can be generalised as a distribution $p(\boldsymbol{y} \mid \boldsymbol{x} ; \boldsymbol{\theta})$ The network is trained then using maximum likelihood.

We have to find a set of parameters which will optimise the loss function

$$
\begin{aligned}
\boldsymbol{\theta}_{\mathrm{ML}} & =\underset{\theta}{\arg \max } p(\boldsymbol{Y} \mid \boldsymbol{X}, \boldsymbol{\theta}) \\
& =\underset{\theta}{\arg \max } \prod_{i=1}^{N} p\left(\boldsymbol{y}^{(i)} \mid \boldsymbol{x}^{(i)}, \boldsymbol{\theta}\right) \\
& =\underset{\theta}{\arg \max } \sum_{i=1}^{N} \log p\left(\boldsymbol{y}^{(i)} \mid \boldsymbol{x}^{(i)}, \boldsymbol{\theta}\right) \\
& =\underset{\theta}{\arg \max } \mathbb{E}_{\boldsymbol{x}, \boldsymbol{y} \sim \hat{p}_{\text {data }}} \log p(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{\theta})
\end{aligned}
$$

This means that the cost function is simply the negative log-likelihood.

$$
J(\boldsymbol{\theta})=-\mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \hat{p}_{\mathrm{data}}} \log p(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{\theta})
$$

Deep learning: stochastic gradient descent

Stochastic gradient descent is an extension of the gradient descent.
 When the training dataset is too large we use mini-batches.

$$
\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\eta \nabla_{\boldsymbol{\theta}} J_{m}(\boldsymbol{\theta})
$$

$$
\text { where } \quad J_{m}=\frac{1}{m} \sum_{i=1}^{m} J\left(\boldsymbol{x}^{(i)}, y^{(i)}, \boldsymbol{\theta}\right)
$$

There are different versions of this algorithm.
Plus extensions that involve second (Hessian) or higher order derivatives.

Deep learning: back-propagation

Back-propagation is implemented by a chain rule.

$$
\begin{gathered}
\frac{\partial J(\mathbf{W})}{\partial w_{2}}=\frac{\partial J(\mathbf{W})}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial w_{2}} \\
\longrightarrow w_{1} \\
\frac{\partial J(\mathbf{W})}{\partial w_{1}}=\frac{\partial J(\mathbf{W})}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial z_{1}} \cdot \frac{\partial z_{1}}{\partial w_{1}}
\end{gathered}
$$

Detection and point parameter estimation

Recall from the classical methods

In the classical approach we use match filtering for the detection and point parameter estimation.

We start with the simplest deep learning approach to solve similar problem.

Detection

Detection answers the question if the signal is present or not in the data.

We have to train a binary classifier.
Training dataset is composed of pairs:
simulated data with signal: $d=h+n$
label: 1
simulated data without signal: $d=n$
label: 0

Detection

We have to choose the activation function and the cost function that will be appropriate for the task.
If we have classification problem with two classes then the appropriate choice for the maximum
likelihood approach will be Bernoulli distribution.
Bernoulli distribution is the discrete probability distribution

$$
p(y \mid \boldsymbol{x} ; \boldsymbol{\theta})=\operatorname{Ber}\left(y \mid \sigma\left(\boldsymbol{w}^{\top} \boldsymbol{x}+b\right)\right)
$$

which takes the value 1 with probability p and the value 0 with probability $1-p$
where $\quad y \in\{0,1\}$
last layer
activation function:

$$
\sigma(a) \triangleq \frac{1}{1+e^{-a}}
$$

sigmoid or logistic

In this case log-likelihood is chosen to be negative binary cross entropy:

$$
J(\boldsymbol{\theta})=\frac{1}{N} \sum_{i=1}^{N} \mathbf{y}^{(i)} \log \left(f\left(\mathbf{x}^{(i)} ; \boldsymbol{\theta}\right)\right)+\left(1-\mathbf{y}^{(i)}\right) \log \left(1-f\left(\mathbf{x}^{(i)} ; \boldsymbol{\theta}\right)\right)
$$

Detection

Thus far we look at the Multilayer Perceptron, which is the most simple architecture for the feed-forward networks.

We can try different architectures which allow to

- extract features from the data
- capture sequential nature of the data.

Detection: CNN

Convolutional neural networks allow to reduce the size of the network because they use local convolutions instead of metric multiplications.

image: https://cs231n.github.io/convolutional-networks/
We get a convolution by sliding the weight matrix over the 'image' and adding up the results; in this case the weight matrix is often called a "kernel" or "filter".

$$
S(i, j)=(K * I)(i, j)=\sum_{m} \sum_{n} I(i-m, j-n) K(m, n)
$$

Detection: CNN

Input: array of values

Originally these networks were for images,
but can also be 1-dimensional.

0	0	0	0	1	1	0	1	1	1
0	1	0	0	1	0	1	0	0	1
0	1	1	0	1	0	1	1	0	0
1	0	1	0	0	0	0	0	1	0
0	1	1	1	0	0	1	0	1	1
1	1	0	1	1	1	0	1	0	1
1	0	1	1	0	0	0	0	1	1
0	1	1	0	0	0	1	0	1	1
0	0	0	1	0	0	0	1	0	1
0	0	0	1	0	1	1	0	1	1

Instead of connecting each neuron to each other one, we apply the filters (or kernels).

To convolve a filter with an image means, to slide the filter with weights over an image and compute the dot products.

Detection: CNN

dot product
Filters are sensitive to the features in the data

weights

Detection: RNN

Recurrent Neural Networks can be useful:

- for analysis of the data sequences
- when the order of the elements matter
- when the size of the data is not fixed
- when we want to connect information on different time scales.

We can express the dependency on the previous time stamps by the concept of the context.

$$
p\left(x_{t} \mid x_{1}, \ldots, x_{t-1}\right) \approx p\left(x_{t} \mid h\right)
$$

RNNs have vanishing gradient problem but there are more modern implementations which address this problem but preserve the concept.

Detection: ROC curve

Very important to correctly access the performance.
ROC (receiver operating characteristic) curve is one of the methods that can be used.
True alarm probability plotted versus false alarm probability.

How to construct ROC curve:

1) Choose y_th which will be a detection threshold.
2) Predicted y values greater than y_th will be considered as an alarm.
3) At a given y, FAP and TAP are constructed as the fraction of noise-only and signal plus noise samples, respectively, that are reported as an alarm.
4) Vary y, obtain pairs of TAP/FAP

Point parameter estimation

Instead of detection we can perform parameter estimation by using known parameters that corresponded to the signal injected in the data.

The architecture can be similar as for the detection problem except last activation function and cost function.

```
simulated data: d=h(0)+n
labels: }
```

In this case the appropriate cost function will be mean square error:

$$
J(\boldsymbol{\theta})=\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{y}^{(i)}-f\left(\mathbf{x}^{(i)} ; \boldsymbol{\theta}\right)\right)
$$

The last activation layer have to be a liner function, therefore we can choose a ReLU (Rectified Linear Unit):

$$
\sigma(a)=a^{+}=\max (0, a)
$$

Different type of errors

This was the point parameter estimation.
In addition to that the error on the estimation of the weights is incorporated in the estimation of parameter. How can we solve this problem?

Bayesian NN

BNN w/ random weights

Replace weights with the probability distributions.

Bayesian Parameter Estimation

Parameter estimation

problem:

$$
p(\theta \mid x)=\frac{p(x \mid \theta) p(\theta)}{p(x)}
$$

marginal likelihood has no exact solution

$$
p(x)=\int p(x \mid \theta) p(\theta) \mathrm{d} \theta
$$

Parameter estimation

solutions:

$$
p(\theta \mid x)=\frac{p(x \mid \theta) p(\theta)}{p(x)}
$$

- approximate inference:
- MCMC/Nested sampling
requires likelihood evaluation
we can do it, but it is slow

Parameter estimation

solutions:

$$
p(\theta \mid x)=\frac{p(x \mid \theta) p(\theta)}{p(x)}
$$

- approximate inference:
- MCMC/Nested sampling
requires likelihood evaluation
we can do it, but it is slow
- Variational inference approximate the posterior distribution with a tractable distribution

Parameter estimation

solutions:

$$
p(\theta \mid x)=\frac{p(x \mid \theta) p(\theta)}{p(x)}
$$

- simplification to the model:
- Gaussian mixture models too simple

Parameter estimation

solutions:

$$
p(\theta \mid x)=\frac{p(x \mid \theta) p(\theta)}{p(x)}
$$

- simplification to the model:
- Gaussian mixture models too simple
- Invertible models will talk about them today

Invertible transform

If x is a random variable with the $\operatorname{CDF} f(x)$, then the random variable $y=f(x)$ has a uniform distribution on $[0,1]$.

Invertible transform

Invertible transform

Change of variables for probability density function

$$
f_{Y}(y)=\frac{d}{d y} F_{Y}(y)=\frac{d}{d y} F_{Z}\left(g^{-1}(y)\right)
$$

Apply chain rule

$$
=f_{Z}\left(g^{-1}(y)\right)\left|\frac{d}{d y} g^{-1}(y)\right|
$$

Normalising flows

1. We have simple random generator

$$
q(z)=\mathcal{N}(0,1)
$$

Normalising flows

1. We have simple random generator
2. We want to sample from a more complex distribution

Normalising flows

1. We have simple random generator
2. We want to sample from a more complex distribution
3. We can estimate a bijective transformation which will allow us to do that

$$
f^{-1}(z)
$$

Change of variables equation

$$
p(y)=q\left(f^{-1}(y)\right)\left|\operatorname{det}\left(J_{f^{-1}}(y)\right)\right|
$$

Change of variables equation

$$
p(y)=q\left(f^{-1}(y)\right)\left|\operatorname{det}\left(J_{f^{-1}}(y)\right)\right|
$$

- f has to be a bijection

Change of variables equation

$$
p(y)=q\left(f^{-1}(y)\right)\left\|\operatorname{det}\left(J_{f^{-1}}(y)\right)\right\|
$$

- f has to be a bijection
- f and f^{-1} have to be differentiable
- Jacobian determinant has to be tractably invertable

Optimisation

The flow is trained by maximising the total log likelihood of the data with respect to the parameters of the transformation

$$
\arg \min _{\theta} \mathbb{E}_{\mathbf{x}}\left[-\log p_{\theta}(\mathbf{x})\right]=\mathbb{E}_{\mathbf{x}}\left[-\log p\left(f_{\theta}(\mathbf{x})\right)-\log \operatorname{det}\left|\frac{\partial f_{\theta}(\mathbf{x})}{\partial \mathbf{x}}\right|\right]
$$

Jacobian

$$
J_{f}(\mathbf{z})=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial z_{1}} & \cdots & \frac{\partial f_{1}}{\partial z_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial z_{1}} & \cdots & \frac{\partial f_{n}}{\partial z_{n}}
\end{array}\right]
$$

The calculation of determinant Jacobian will take $O(n \wedge 3)$
To make it faster we have to ensure that the Jacobian is triangular
The determinant of the triangular matrix is a product of the diagonal elements

Jacobian

Affine transformation

location-scale transformation

$$
\tau\left(z_{i} ; \mathbf{h}_{i}\right)=\alpha_{i} z_{i}+\beta_{i} \quad \mathbf{h}_{i}=\left\{\alpha_{i}, \beta_{i}\right\}
$$

Invertibility for

$$
\alpha_{i} \neq 0
$$

log-Jacobian becomes

$$
\log \left|\operatorname{det} J_{f}(\mathbf{z})\right|=\sum_{i=1}^{N} \log \left|\alpha_{i}\right|
$$

Coupling transform

(a) Forward propagation

(b) Inverse propagation

In each simple bijection, part of the input vector is updated using a function which is simple to invert, but which depends on the remainder of the input vector in a complex way.
The other part is left unchanged.

Real NVP

Coupling transformation combined with affine transformation and its invention

$$
\begin{gathered}
\begin{cases}y_{1: d} \quad=x_{1: d} \\
y_{d+1: D} & =x_{d+1: D} \odot \exp \left(s\left(x_{1: d}\right)\right)+t\left(x_{1: d}\right)\end{cases} \\
\Leftrightarrow\left\{\begin{array}{l}
x_{1: d}=y_{1: d} \\
x_{d+1: D}
\end{array}=\left(y_{d+1: D}-t\left(y_{1: d}\right)\right) \odot \exp \left(-s\left(y_{1: d}\right)\right),\right.
\end{gathered}
$$

It is easy to do the inversion. We can keep the same parameters of the function which we used on the forward pass.

What is t and s ?

Function approximation

can be parameterised by any NN :

- Fully connected
- Residual

- CNN

Jacobian

The form of Jacobian is such that we can only need the components on the diagonal.

$$
\frac{\partial y}{\partial x^{T}}=\left[\begin{array}{cc}
\mathbb{I}_{d} & 0 \\
\frac{\partial y_{d+1: D}}{\partial x_{1: d}^{T}} & \operatorname{diag}\left(\exp \left[s\left(x_{1: d}\right)\right]\right)
\end{array}\right]
$$

Function approximation

A sequence of the flows which fix one dimension at one step and vary the other dimension and repeat this process for a given number of times.

Neural Spline Flows

- Coupling transform

(a) Forward propagation

(b) Inverse propagation

Neural Spline Flows

- Coupling transform

(a) Forward propagation

(b) Inverse propagation
- Monotonic rational-quadratic spline transform

image: Duncan C. et al, Neural Spline Flows

Conditioning

- Do not have access to samples from posterior

$f^{-1}(z)$

Conditioning

- Do not have access to samples from posterior
- Have access to samples from prior +

Conditioning

- Do not have access to samples from posterior
- Have access to samples from prior +
- Can generated simulated data $x=h(\theta)+n$

$$
p(\theta)
$$

Conditioning

Condition inverted map on real data

- Do not have access to samples from posterior
- Have access to samples from prior +
- Can generated simulated data $x=h(\theta)+n$

$$
p(\theta)
$$

Therefore have access to the joint sample $p(x, \theta)=p(x \mid \theta) p(\theta)$

Conditioning

Condition inverted map on real data

- Do not have access to samples from posterior
- Have access to samples from prior +
- Can generated simulated data $x=h(\theta)+n$

$$
f^{-1}(z)
$$

Composing flows

PCA and Autoencoders

Waveform embedding

- Low frequency sensitivity -> long waveforms
- Construct reduced orthogonal basis
- Use coefficients of the waveform projection on a new basis

Waveform embedding

Decompose a matrix constructed of the set of waveforms $\mathbf{H}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\mathbf{T}}$

Waveform embedding

Decompose a matrix constructed of the set of waveforms

$\mathbf{H}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\mathbf{T}}$

Project sample simulated data on this basis

$$
v_{\alpha \mu}^{\prime}=\frac{1}{\sigma_{\mu}} \sum_{j=1}^{N} h_{\alpha j} u_{\mu j}
$$

Principle Component Analysis

PCA maps original data into a new coordinate system which maximises variance of the data

$$
y_{1}=\sum_{k=1}^{n} w_{k 1} x_{k}
$$

Principle Component Analysis

The mapping to the new basis can be expressed using the eigenvectors of the Covariance matrix

$$
C=E\left\{\mathbf{x} \mathbf{x}^{T}\right\}
$$

Eigenvalue decomposition

$$
\mathbf{C}=\mathbf{U D U}^{T}
$$

Principle Component Analysis

The vector of principle components will be

$$
\mathbf{y}=\mathbf{U}^{T} \mathbf{x}
$$

Principle Component Analysis

It has been shown that it is possible to formulate PCA in terms of Neural Networks

$$
\begin{aligned}
& \hat{\mathbf{x}}=\mathbf{W} \mathbf{W}^{T} \mathbf{x} \\
& J_{M S E}=\frac{1}{T} \sum_{j=1}^{T}\left\|\hat{\mathbf{x}}(j)-\mathbf{W} \mathbf{W}^{T} \mathbf{x}(j)\right\|^{2}
\end{aligned}
$$

Principle Component Analysis

Autoencoder

Latent space

Autoencoders is unsupervised learning technique, which solves the task of representational learning.

Learning is done by comparing reconstruction to original input.

$$
\mathcal{L}(x, \hat{x})
$$

Autoencoder

Latent space

Variations:

- Denoising autoencoders
- Contractive autoencoders
- Undercomplete autoencoders

Autoencoder

Autoencoder

$$
\mathbf{h}=f(\mathbf{x}) \quad \hat{\mathbf{x}}=g(\mathbf{h})
$$

Encoder
Decoder
h

Variational Autoencoder

Probabilistic

 representation of latent space.
Reparameterisation trick

Reparemeterization trick: used to propagate back the error

Variational Autoencoder

Variational Autoencoder

$$
p(z \mid x)=\frac{p(x \mid z) p(z)}{p(x)}<- \text { we want to estimate the latent variables } \begin{gathered}
\text { given the data }
\end{gathered}
$$

$$
p(x)=\int p(x \mid z) p(z) d z=E_{p(z)}[p(x \mid z)] \quad<- \text { intractable but }
$$

variational inference
to estimate this value

Variational Autoencoder

$$
\begin{aligned}
& \log p(x)=\log \int p(x, z) \mathrm{d} z \\
& =\log \int p(x, z) \frac{q(z \mid x)}{q(z \mid x)} \mathrm{d} z \quad \geq \mathbb{E}_{q(z \mid x)} \log \frac{p(x, z)}{q(z \mid x)} \\
& =\mathbb{E}_{q(z \mid x)} \log \frac{p(x \mid z) p(z)}{q(z \mid x)} \quad=\mathbb{E}_{q(z \mid x) \log p(x \mid z)+\mathbb{E}_{q(z \mid x)} \log \frac{p(z)}{q(z \mid x)}} \quad \text { Jensen inequality } \\
& \quad=\text { likelihood }-D_{K L}[q(z \mid x) \| p(z)]
\end{aligned}
$$

Variational Autoencoder

observe
Lets approximate $\quad p(z \mid x)$ with $\quad q(z \mid x)$
such that we set a condition that they are close to each other as possible.

We can enforce this condition by minimising Kullback-Leibler divergence

Optimisation

[^0]
Latent space

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

Practical tutorial

https://github.com/NataliaKor/tutoria//blob/main/tutorial-ML-for-GWPE.ipynb

[^0]: Image: http://ruishu.io/2018/03/14/vae/

