ASTROPHYSICS WITH GRAVITATIONAL WAVES

Astrid Lamberts

Astrid.lamberts@oca.eu

MaNiTou 2023

HOW TO CREATE GRAVITATIONAL WAVES?

Propagation of disturbance of spacetime

Needs: very massive objects

Speeds ~ speed of light

-> Extreme objects/phenomena: compact objects, explosions

Anything with a quadrupole moment (not spherically symmetric): binaries...

Compact binaries: black holes, neutron stars, white dwarfs and others

DIFFERENT SOURCES OF GW

Stellar objects with LVK detectors

GWs at lower frequencies: white dwarfs and supermassive black holes

A. Lamberts

Astrophysics with gravitational waves ³

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Star

Where do these distributions come from?

Astrid Lamberts

FROM STARS TO COMPACT OBJECTS

Single stars : M <8-10 Msun : White dwarf 8-10<M <~20 Msun : Neutron Star M>~20 Msun : Black holes

Many more white dwarfs than NS and BH

A. Lamberts

SINGLE STELLAR EVOLUTION

Mass: most important factor

Chemical composition (metallicity) important for BH

A. Lamberts

MASSIVE STARS : COSMIC ENGINES AND FUNDAMENTAL PHYSICS

HOW TO GET COMPACT OBJECTS TO MERGE?

Problem: $t_{merger} \propto a^4$

Initial stellar radii: already too far apart to ever merge

Most massive stars form in pairs, triples or dense groups => many interactions

A. Lamberts

Mapelli, 22 for a review

Formation channel?

GW Stellar physics

HOW TO MAKE BLACK HOLE BINARIES?

Disadvantage : Massive stars are rare Advantage : Most massive stars form in close binaries

Astrid Lamberts

PROBLEM 1 : WINDS

Astrophysics with gravitational waves ¹⁰

IMPORTANCE OF METALS (C, O, Ne, Fe...)

Few metals

Big black hole

Many metals

Small black hole

Astrid Lamberts

PROBLEM 2 : SUPERNOVA

Astrid Lamberts

X-RAY BINARIES

Mass transfer through winds (or Roche Lobe overflow)

Astrid Lamberts

Astrophysics with gravitational waves ¹³

ROCHE LOBE OVERFLOW

Roche Lobe: boundary between gravitational influence of both stars

Matter beyond RL goes to other star

Stops when stars are contained in their RL, or unstable transfer starts

Roche equipotentials

Astrid Lamberts

CRUCIAL: COMMON ENVELOPE BRINGS BINARIES CLOSER

Astrophysics with gravitational waves ¹⁵

Astrid Lamberts

PROBLEM 3 : 2ND SUPERNOVA

Astrid Lamberts

Astrophysics with gravitational waves ¹⁶

IF BLACK HOLES: ONLY GWS

Billion years of inspiral

Merger (few seconds) Tidal effects for BNS

Final remnant

Astrid Lamberts

Astrophysics with gravitational waves ¹⁷

HOW DID THE BINARY SHRINK?

Angular (AM) momentum needs to be lost

$$J_{orb} = \Omega_{orb} (M_1 a_+ M_2 a_2) \qquad \Omega_{orb} =$$

$$_{orb} = \left(\frac{G(M_1 + M_2)}{a^3}\right)^{1/2}$$

Options: mass loss through winds

Conservative mass transfer (Mtot=constant)

Binary shrinks if mass transfer from primary to secondary

Binary expands if mass transfer from primary to secondary

Non-conservative mass transfer: common envelope leads to very Important shrinking

DIFFERENT TIMESCALES

Billions of years Universe is ~14 billion years old

Tracer of past massive star formation < 5 million years Properties set by binary evolution

Astrophysics with gravitational waves ¹⁹

FORMATION CHANNEL: CLUSTER EVOLUTION

Star clusters : 10^3-10^7 stars radius < 100 pc Evolution dominated by N-body interactions

Globular clusters: old stars, very dense and massive Young star clusters: less dense and less massive -> will dissolve quickly Nuclear star clusters: Very dense, at center of galaxies

Astrid Lamberts

FORMATION CHANNEL: CLUSTER EVOLUTION

N-body interactions:

- BHs sink to center
- Mass exchanges make BH binaries
- 2nd generation mergers -> massive BHs
- Binaries can be kicked and merge outside

Astrid Lamberts

SO WHAT DO WE LEARN HERE? Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

A. Lamberts

Astrophysics with gravitational waves ²²

~80 BINARY BLACK HOLES: A POPULATION

LVC: GWTC-3 populations paper based on O3a

Astrid Lamberts

MAKING MASSIVE BHS IS HARD

Binary evolution -> low metallicity progenitor stars Not well-known stellar population

Astrid Lamberts

WHERE ARE THE LOW-METALLICITY STARS?

Less explored star formation

recent star formation?

older star formation?

Astrid Lamberts

THE CYCLE OF GAS AND METALS

Massive star formation

Supernova

Astrid Lamberts

Astrophysics with gravitational waves ²⁶

MASSIVE BLACK HOLES COME FROM GALAXIES LIKE THE MW AND FROM DWARF GALAXIES

Jm II : stars

 $1 Z_{sun}$

27

IMPORTANCE OF BH SPINS

GWs carry information on (global) spin

Hard to measure

Binary evolution: spins align (tides, accretion, common envelope...), SN can disturb

Cluster dynamics : random motions

Amplitude is hard to predict from stellar evolution

SPINS TO DISCRIMINATE FORMATION?

Spin magnitude and spin-orbit misalignment in GWTC-3

- Small but non-zero spins, long tail
- Isotropic spin distribution preferred -> cluster formation?
- overdensity for aligned spins -> binary formation?
- broader spin distribution above 30 Msun, correlated with unequal masses
- => (at least) two formation channels?
- Confirmed in more detailed stiudies

Astrid Lamberts

EXCEPTIONAL EVENTS (AFTER O3)

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

- First unequal masses (GW190412, GW190814)
- Massive BHs (GW190521)
- Lower mass gap object (GW190814)
- BNS masses differ from MW (GW190425)
- NSBH (GW200105-GW200115)

Astrid Lamberts

Astrophysics with gravitational waves ³⁰

VERY MASSIVE BLACK HOLES

Astrid Lamberts

BHS OF 85 MSUN SHOULD NOT EXIST

Pair instability supernova completely destroys star

Astrid Lamberts

Astrophysics with gravitational waves ³²

HIGH MASS STELLAR BLACK HOLES

BHs in pair instability supernova gap: challenge

- 2nd gen? But Expected high kick velocity
- Stellar merger?
- AGN disk

Astrid Lamberts

Astrophysics with gravitational waves ³³

SUPERNOVAE AS GW SOURCES

New class of sources

Major uncertainties on the GW emission

Lots of information on central engine, geometry of the explosion

Multimessenger: Neutrino, GWs, EM

Astrid Lamberts

Astrophysics with gravitational waves ³⁴

LOW FREQUENCY SOURCES

Supermassive black holes Compact binaries in the Milky Way

A. Lamberts

BLACK HOLE MERGERS IN THE MILKY WAY

Virgo/LIGO merger rate : 18-44 Gpc⁻³ yr ⁻¹ Up to 4-50 mergers per million year in MW

No expected BBH merger Detections in MW

How many are "close" to merger?

Astrid Lamberts

Astrophysics with gravitational waves ³⁶

DETECTING COMPACT BINARIES IN THE MILKY WAY

Black Holes: highest mass evolution Very sensitive to metallicity

Neutron Stars: High mass evolution Somewhat sensitive to metallicity

White dwarfs: 95% of stars!

Type Ia supernovae Low mass evolution, common envelope, tides EM counterparts Map the Milky Way and its environment Understand/quantify past star formation

And even stellar binaries and planets

Astrid Lamberts

Astrophysics with gravitational waves ³⁷

<10 systems For LISA

~5-30 systems (Belczynski+10) ~300 (Andrews+19)

> ~6000 systems (Nelemans+01)

Lamberts+19

THE PROMISE OF DETECTING COMPACT BINARIES IN THE MILKY WAY

Verification binaries: known LISA sources: great for calibration

Much more information: sky localisation, distance, mass measurements, radii....

Understand binary evolution: common envelope, mass transfer, tides, supernovae (*Nelemans+01, Ruiter+10, Nissanke+12*)

Major effort: finding more EM binaries (ZTF, BlackGem, VRO/LSST)

Astrid Lamberts

Astrophysics with gravitational waves ³⁸

LISA DETECTIONS: A COMPLETE CATALOG OF WHITE DWARF BINARIES

~12 000 systems: measurement of period and GW strain No masses, no sky localisation unless high signal/noise GW amplitude(r) ~ 1/r, no extinction, no spatial crowding

Astrid Lamberts

Astrophysics with gravitational waves ³⁹

SUPERMASSIVE BHS: PULSAR TIMING & LISA

A. Lamberts

Astrophysics with gravitational waves ⁴⁰

MORE MASSIVE COMPACT OBJECTS

Supermassive black holes: millions- billions of Msun

Intermediate mass black holes?

A. Lamberts

Astrophysics with gravitational waves ⁴¹

SUPERMASSIVE BLACK HOLES

Found at the center of all (massive galaxies)

Masses correlate with Galactic properties -> joint evolution -> how?

Evidence of very massive BHs very early (10^8 Msun in less than a Gyr) -> how?

Hard to observe with EM

Astrid Lamberts

Astrophysics with gravitational waves ⁴²

HOW DO GALAXIES GROW?

Cosmic web -> structure increases over time with accretion and mergers

Active Galactic Nuclei strongly Affect galaxies

Astrid Lamberts

HOW DO SUPERMASSIVE BH MERGE? HOW DOES THE BINARY SHRINK?

Credit: Lupi et al. (2019)

Credit: Capelo et al. (2015)

Credit: Souza Lima et al. (2017)

1-10s pc: Formation of a bound binary

The host properties have influence on: hardening of the binary, accretion episodes

Credit: Bowen et al. 2017

<1 pc: Hardening of the binary

The host properties have influence on: timescale of hardening Effect of circumbinary disc Three-body interactions (hyper-velocity stars)

Mpcs: The large scale structure

Influence of the large scale environment on: black hole seeding, frequency of mergers, galaxy transformation 1-100s kpcs: Galaxy interactions/merger

Details of the merger have influence on: black hole growth via gas accretion, formation of a black hole binary, galaxy transformation

Astrid Lamberts

MULTISCALE-MULTIPHYSICS PROBLEM

Observations, models, simulations are hard: rates uncertain -> observations will have strong astrophysical implications

Astrid Lamberts

ORIGIN OF SUPERMASSIVE BLACK HOLES?

Very massive BHs are found in early Universe -> major challenge

Astrid Lamberts

Astrophysics with gravitational waves ⁴⁶

OBSERVING BLACK HOLES OVER A WIDE MASS RANGE

Astrid Lamberts

ASTROPHYSICS WITH GW

GW are a new way to understand fundamental components of the Universe: compact objects, stars, galaxies

Different frequencies <-> different objects, different timescales, different distances

Crucial information: merger rate, masses, spins

Core question: bringing the binaries to merger -> hard problem

Astrid Lamberts