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Outline

• GW signals: the basics

• Noise as a stochastic process

• Introducing matched filtering

• Towards real CBC searches

• Other signals: continuous waves, stochastic 
backgrounds

Part I Part II

• Bayesian parameter estimation basics, 
likelihood

• Parameter space and waveforms

• Fisher matrix approach

• Metropolis-Hastings MCMC, Parallel 
tempering and example PE

• PE toolbox

• PE results from LVK

• Future detectors and their challenges
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Bayes theorem and posterior distribution

<latexit sha1_base64="PgR5cCczOxgNEM5mdE8vUu+czwE=">AAACKHicbVBbSwJBGJ21m9nN6rGXIQkUQnZDypdI6KUXwSAvoCKzs7M6OHth5ttAVn9OL/2VXiKK8LVf0qz6YNqBYQ7nnI+Z79ih4ApMc2qkNja3tnfSu5m9/YPDo+zxSUMFkaSsTgMRyJZNFBPcZ3XgIFgrlIx4tmBNe3if+M1nJhUP/CcYhazrkb7PXU4JaKmXvQvzHRgwIHiMnUtcLeBb3HEloXGYd7Q2NxNjKVgtTBJ7rO9eNmcWzRnwOrEWJIcWqPWyHx0noJHHfKCCKNW2zBC6MZHAqWCTTCdSLCR0SPqsralPPKa68WzRCb7QioPdQOrjA56pyxMx8ZQaebZOegQGatVLxP+8dgRuuRtzP4yA+XT+kBsJDAFOWsMOl4yCGGlCqOT6r5gOiK4JdLcZXYK1uvI6aVwVreti6bGUq5QXdaTRGTpHeWShG1RBD6iG6oiiF/SGPtGX8Wq8G9/GdB5NGYuZU/QHxs8vB4Kjhw==</latexit>

p(✓|d,M) =
p(d|✓,M)p(✓|M)

p(d|M)

<latexit sha1_base64="QpAtEEXCQ/0S3Nf2eJhj7rBR89o=">AAACFnicbVDLSgNBEJyNrxhfqx69DAYhgoZdCZqLEPDiQSGCeUASwuzsbDJkdnaZ6RXCmq/w4q948aCIV/Hm3zh5HDRa0FBUddPd5cWCa3CcLyuzsLi0vJJdza2tb2xu2ds7dR0lirIajUSkmh7RTHDJasBBsGasGAk9wRre4GLsN+6Y0jyStzCMWSckPckDTgkYqWsfxwUf3+M29BmQI3x9iM9xOyTQp0SkV6M5s2vnnaIzAf5L3BnJoxmqXfuz7Uc0CZkEKojWLdeJoZMSBZwKNsq1E81iQgekx1qGShIy3Uknb43wgVF8HETKlAQ8UX9OpCTUehh6pnN8sZ73xuJ/XiuBoNxJuYwTYJJOFwWJwBDhcUbY54pREENDCFXc3IppnyhCwSSZMyG48y//JfWTontaLN2U8pXyLI4s2kP7qIBcdIYq6BJVUQ1R9ICe0At6tR6tZ+vNep+2ZqzZzC76BevjGxAfnMs=</latexit>

p(d|✓,M) = L(d|✓,M)

<latexit sha1_base64="b6Gm6+maAvyxQ3K5INYxbZr1faQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lspu3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5EPOqLFSMxyUK27VXYCsEy8nFcjRGJS/+mHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVVCMoyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNcOan3GZpAYlWy4apoKYmMy/JiFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9m+p187pSr+VxFOEMzuESPLiFOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MHx9WM5w==</latexit>

d

<latexit sha1_base64="NEih1PfbZkvIu98FBUbVpmsNXaY=">AAAB7XicbVBNS8NAEN3Ur1q/qh69LBbBU0mkaI8FLx4r2A9oQ9lsJ+3azSbsToQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqObR4LGPdDZgBKRS0UKCEbqKBRYGETjC5nfudJ9BGxOoBpwn4ERspEQrO0ErtPo4B2aBccavuAnSdeDmpkBzNQfmrP4x5GoFCLpkxPc9N0M+YRsElzEr91EDC+ISNoGepYhEYP1tcO6MXVhnSMNa2FNKF+nsiY5Ex0yiwnRHDsVn15uJ/Xi/FsO5nQiUpguLLRWEqKcZ0/jodCg0c5dQSxrWwt1I+ZppxtAGVbAje6svrpH1V9a6rtftapVHP4yiSM3JOLolHbkiD3JEmaRFOHskzeSVvTuy8OO/Ox7K14OQzp+QPnM8fo+OPJw==</latexit>

✓

<latexit sha1_base64="L7EifiK7b87NoEkuBUBermPFkBM=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexK0BwDXrwICZgHJEuYnfQmY2Znl5lZIYR8gRcPinj1k7z5N06SPWhiQUNR1U13V5AIro3rfju5jc2t7Z38bmFv/+DwqHh80tJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Hbut59QaR7LBzNJ0I/oUPKQM2qs1LjvF0tu2V2ArBMvIyXIUO8Xv3qDmKURSsME1brruYnxp1QZzgTOCr1UY0LZmA6xa6mkEWp/ujh0Ri6sMiBhrGxJQxbq74kpjbSeRIHtjKgZ6VVvLv7ndVMTVv0pl0lqULLlojAVxMRk/jUZcIXMiIkllClubyVsRBVlxmZTsCF4qy+vk9ZV2bsuVxqVUq2axZGHMziHS/DgBmpwB3VoAgOEZ3iFN+fReXHenY9la87JZk7hD5zPH6T5jNA=</latexit>

M

inferred params (17 for GW source)
data (observed data in detector)
model (context, assumptions)

<latexit sha1_base64="+7faN3oZjFdvqT1VGg3nAXCD+kA=">AAACIHicbVDLSgMxFM3UV62vqks3wSJUKGVGiu1GKLhxI1SwD+gMJZPJtKGZB8kdobT9FDf+ihsXiuhOv8a0nYW2Hgice8695N7jxoIrMM0vI7O2vrG5ld3O7ezu7R/kD49aKkokZU0aiUh2XKKY4CFrAgfBOrFkJHAFa7vD65nffmBS8Si8h1HMnID0Q+5zSkBLvXw1LnqT23N8hW0eAvZsGDAg2C5hbeAJXtQlrFviYmpOdNXLF8yyOQdeJVZKCihFo5f/tL2IJgELgQqiVNcyY3DGRAKngk1zdqJYTOiQ9FlX05AETDnj+YFTfKYVD/uR1E9vOVd/T4xJoNQocHVnQGCglr2Z+J/XTcCvOWMexgmwkC4+8hOBIcKztLDHJaMgRpoQKrneFdMBkYSCzjSnQ7CWT14lrYuydVmu3FUK9VoaRxadoFNURBaqojq6QQ3URBQ9omf0it6MJ+PFeDc+Fq0ZI505Rn9gfP8APNqf6A==</latexit>

p(d|M) =

Z
d✓ p(d|✓,M)p(✓|M)

Bayes theorem

Posterior distribution

Evidence

Prior distribution

Likelihood

• target of the analysis
• multidim. distribution, 

discrete samples • normalization of the posterior
• important for model comparison

• a priori knowledge 
of parameters
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The likelihood

d = h(✓) + n
<latexit sha1_base64="T7j+3e3ja0URptw9PZq5sh0vtQ4=">AAAB+nicbVBNS8NAEN3Ur1q/Wj16WSxCRShJFexFKHjxWMF+QBvKZrNpl242YXeilNif4sWDIl79Jd78N27bHLT1wcDjvRlm5nmx4Bps+9vKra1vbG7ltws7u3v7B8XSYVtHiaKsRSMRqa5HNBNcshZwEKwbK0ZCT7CON76Z+Z0HpjSP5D1MYuaGZCh5wCkBIw2KJR9f41GlDyMG5AyfY6OV7ao9B14lTkbKKENzUPzq+xFNQiaBCqJ1z7FjcFOigFPBpoV+ollM6JgMWc9QSUKm3XR++hSfGsXHQaRMScBz9fdESkKtJ6FnOkMCI73szcT/vF4CQd1NuYwTYJIuFgWJwBDhWQ7Y54pREBNDCFXc3IrpiChCwaRVMCE4yy+vknat6lxUa3eX5UY9iyOPjtEJqiAHXaEGukVN1EIUPaJn9IrerCfrxXq3PhatOSubOUJ/YH3+AIjmkjQ=</latexit>

L = p(data|signal params)
<latexit sha1_base64="wEo/ProBn73qgFfGN6TKqqpVtdI=">AAACHnicbVDLSgNBEJz1GeMr6tHLYBD0EnZ9YC5CwIsHDxFMIiQh9E4myZDZ2WWmVwzrfokXf8WLB0UET/o3Th4HTSwYqKnupqvLj6Qw6Lrfztz8wuLScmYlu7q2vrGZ29qumjDWjFdYKEN964PhUiheQYGS30aaQ+BLXvP7F8N67Y5rI0J1g4OINwPoKtERDNBKrdxpIwDsMZDJVUrPaXQw+usgaQNCSh9oA/k9JkZ0FUgagYbApIetXN4tuCPQWeJNSJ5MUG7lPhvtkMUBV8gkGFP33AibCWgUTPI024gNj4D1ocvrlioIuGkmo/NSum+VNu2E2j6FdKT+nkisJzMIfNs5NG+ma0Pxv1o9xk6xmQgVxcgVGy/qxJJiSIdZ0bbQnKEcWAJMC+uVsp6NgKFNNGtD8KZPniXVo4J3XDi6PsmXipM4MmSX7JED4pEzUiKXpEwqhJFH8kxeyZvz5Lw4787HuHXOmczskD9wvn4Axd6i3Q==</latexit>

Likelihood:

Assume calibrated data
(reality: marginalize over calibration)

<latexit sha1_base64="rsLWEBPiukGxltqf6skGwVeyxv4=">AAAB9HicbVDLTgJBEOzFF+IL9ehlIjHBC9k1RDmSePGIiTwS2JDZ2VmYMPtwppeEIN/hxYPGePVjvPk3DrAHBSvppFLVne4uL5FCo21/W7mNza3tnfxuYW//4PCoeHzS0nGqGG+yWMaq41HNpYh4EwVK3kkUp6Enedsb3c799pgrLeLoAScJd0M6iEQgGEUjuUnZJ0+kh0OO9LJfLNkVewGyTpyMlCBDo1/86vkxS0MeIZNU665jJ+hOqULBJJ8VeqnmCWUjOuBdQyMacu1OF0fPyIVRfBLEylSEZKH+npjSUOtJ6JnOkOJQr3pz8T+vm2JQc6ciSlLkEVsuClJJMCbzBIgvFGcoJ4ZQpoS5lbAhVZShyalgQnBWX14nrauKc12p3ldL9VoWRx7O4BzK4MAN1OEOGtAEBo/wDK/wZo2tF+vd+li25qxs5hT+wPr8AZMBkU4=</latexit>

p(d|✓)

<latexit sha1_base64="VUvrHzEuM30DK99JmIEHBL6h3RU=">AAACDXicbVC7SgNBFJ2NrxhfUUubwSgkhWFXgqYRAjaWEcwDkhBmZ2ezQ2Znl5m7Qoj5ARt/xcZCEVt7O//GSbKFJh64l8M59zJzjxsLrsG2v63Myura+kZ2M7e1vbO7l98/aOooUZQ1aCQi1XaJZoJL1gAOgrVjxUjoCtZyh9dTv3XPlOaRvINRzHohGUjuc0rASP38SVz08APuQsCAlPAVjovSdA+f4aCYqqV+vmCX7RnwMnFSUkAp6v38V9eLaBIyCVQQrTuOHUNvTBRwKtgk1000iwkdkgHrGCpJyHRvPLtmgk+N4mE/UqYk4Jn6e2NMQq1HoWsmQwKBXvSm4n9eJwG/2htzGSfAJJ0/5CcCQ4Sn0WCPK0ZBjAwhVHHzV0wDoggFE2DOhOAsnrxMmudl56Jcua0UatU0jiw6QseoiBx0iWroBtVRA1H0iJ7RK3qznqwX6936mI9mrHTnEP2B9fkDVAaYig==</latexit>

p(d|✓) = p(n = d� h(✓))

Likelihood: probability that the 
noise explains the residuals 
between data and signal

Signal model:
• includes instrument response
• may be approximate

<latexit sha1_base64="L8wbdf7EtOfilfIK+LnltJX5DoI=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BItQL2VXivZY8OKxgv2QdinZNNsNTbJLMiuUpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMCxLBDbjut1PY2Nza3inulvb2Dw6PyscnHROnmrI2jUWsewExTHDF2sBBsF6iGZGBYN1gcjv3u09MGx6rB5gmzJdkrHjIKQErPUbVAUQMyOWwXHFr7gJ4nXg5qaAcrWH5azCKaSqZAiqIMX3PTcDPiAZOBZuVBqlhCaETMmZ9SxWRzPjZ4uAZvrDKCIextqUAL9TfExmRxkxlYDslgcisenPxP6+fQtjwM66SFJiiy0VhKjDEeP49HnHNKIipJYRqbm/FNCKaULAZlWwI3urL66RzVfOua/X7eqXZyOMoojN0jqrIQzeoie5QC7URRRI9o1f05mjnxXl3PpatBSefOUV/4Hz+ADH/j/4=</latexit>

h(✓)

For a stationary Gaussian process: 
independence FD, diagonal covariance

<latexit sha1_base64="j3d0ShwrO7UOf+SYb7jBTZ7VzIg=">AAACPHicbVBNa9tAFFylSeo6X25zzGWJCbg5GCmEpJeAoQ3kmJL6AyxXrFZP9qLVSuw+BYzQD+ulP6K3nHLJISH02nPXHwc36cDCMDOPt2/CXAqDrnvnrL1Z39h8W3tX39re2d1rvP/QM1mhOXR5JjM9CJkBKRR0UaCEQa6BpaGEfph8nvn9W9BGZOobTnMYpWysRCw4QysFjRtfMjWWQH0UMoJSVUGywuX3Y18vAhfUjzXjpVeVJ/4XkMhoXNGbQLXiIPlI/WgmBWUiq6DRdNvuHPQ18ZakSZa4Dhq//CjjRQoKuWTGDD03x1HJNAouoar7hYGc8YSNYWipYimYUTk/vqJHVolonGn7FNK5ujpRstSYaRraZMpwYl56M/F/3rDA+NOoFCovEBRfLIoLSTGjsyZpJDRwlFNLGNfC/pXyCbMVoe27bkvwXp78mvRO2t5Z+/TrabNzuayjRg7IIWkRj5yTDrki16RLOPlB7skjeXJ+Og/Os/N7EV1zljP75B84f/4CJtSupw==</latexit>

hñkñ
⇤
l i =

1

2�f
Sn(fk)�kl

<latexit sha1_base64="12i6voDtNCmRmi+oMBjGY4gV0ug="></latexit>

Re ñk, Im ñk ⇠ N
✓
0,

1

4�f
Sn(fk)

◆

Whittle likelihood
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The likelihood

d = h(✓) + n
<latexit sha1_base64="T7j+3e3ja0URptw9PZq5sh0vtQ4=">AAAB+nicbVBNS8NAEN3Ur1q/Wj16WSxCRShJFexFKHjxWMF+QBvKZrNpl242YXeilNif4sWDIl79Jd78N27bHLT1wcDjvRlm5nmx4Bps+9vKra1vbG7ltws7u3v7B8XSYVtHiaKsRSMRqa5HNBNcshZwEKwbK0ZCT7CON76Z+Z0HpjSP5D1MYuaGZCh5wCkBIw2KJR9f41GlDyMG5AyfY6OV7ao9B14lTkbKKENzUPzq+xFNQiaBCqJ1z7FjcFOigFPBpoV+ollM6JgMWc9QSUKm3XR++hSfGsXHQaRMScBz9fdESkKtJ6FnOkMCI73szcT/vF4CQd1NuYwTYJIuFgWJwBDhWQ7Y54pREBNDCFXc3IrpiChCwaRVMCE4yy+vknat6lxUa3eX5UY9iyOPjtEJqiAHXaEGukVN1EIUPaJn9IrerCfrxXq3PhatOSubOUJ/YH3+AIjmkjQ=</latexit>

L = p(data|signal params)
<latexit sha1_base64="wEo/ProBn73qgFfGN6TKqqpVtdI=">AAACHnicbVDLSgNBEJz1GeMr6tHLYBD0EnZ9YC5CwIsHDxFMIiQh9E4myZDZ2WWmVwzrfokXf8WLB0UET/o3Th4HTSwYqKnupqvLj6Qw6Lrfztz8wuLScmYlu7q2vrGZ29qumjDWjFdYKEN964PhUiheQYGS30aaQ+BLXvP7F8N67Y5rI0J1g4OINwPoKtERDNBKrdxpIwDsMZDJVUrPaXQw+usgaQNCSh9oA/k9JkZ0FUgagYbApIetXN4tuCPQWeJNSJ5MUG7lPhvtkMUBV8gkGFP33AibCWgUTPI024gNj4D1ocvrlioIuGkmo/NSum+VNu2E2j6FdKT+nkisJzMIfNs5NG+ma0Pxv1o9xk6xmQgVxcgVGy/qxJJiSIdZ0bbQnKEcWAJMC+uVsp6NgKFNNGtD8KZPniXVo4J3XDi6PsmXipM4MmSX7JED4pEzUiKXpEwqhJFH8kxeyZvz5Lw4787HuHXOmczskD9wvn4Axd6i3Q==</latexit>

Likelihood:

Assume calibrated data
(reality: marginalize over calibration)

<latexit sha1_base64="rsLWEBPiukGxltqf6skGwVeyxv4=">AAAB9HicbVDLTgJBEOzFF+IL9ehlIjHBC9k1RDmSePGIiTwS2JDZ2VmYMPtwppeEIN/hxYPGePVjvPk3DrAHBSvppFLVne4uL5FCo21/W7mNza3tnfxuYW//4PCoeHzS0nGqGG+yWMaq41HNpYh4EwVK3kkUp6Enedsb3c799pgrLeLoAScJd0M6iEQgGEUjuUnZJ0+kh0OO9LJfLNkVewGyTpyMlCBDo1/86vkxS0MeIZNU665jJ+hOqULBJJ8VeqnmCWUjOuBdQyMacu1OF0fPyIVRfBLEylSEZKH+npjSUOtJ6JnOkOJQr3pz8T+vm2JQc6ciSlLkEVsuClJJMCbzBIgvFGcoJ4ZQpoS5lbAhVZShyalgQnBWX14nrauKc12p3ldL9VoWRx7O4BzK4MAN1OEOGtAEBo/wDK/wZo2tF+vd+li25qxs5hT+wPr8AZMBkU4=</latexit>

p(d|✓)

<latexit sha1_base64="VUvrHzEuM30DK99JmIEHBL6h3RU=">AAACDXicbVC7SgNBFJ2NrxhfUUubwSgkhWFXgqYRAjaWEcwDkhBmZ2ezQ2Znl5m7Qoj5ARt/xcZCEVt7O//GSbKFJh64l8M59zJzjxsLrsG2v63Myura+kZ2M7e1vbO7l98/aOooUZQ1aCQi1XaJZoJL1gAOgrVjxUjoCtZyh9dTv3XPlOaRvINRzHohGUjuc0rASP38SVz08APuQsCAlPAVjovSdA+f4aCYqqV+vmCX7RnwMnFSUkAp6v38V9eLaBIyCVQQrTuOHUNvTBRwKtgk1000iwkdkgHrGCpJyHRvPLtmgk+N4mE/UqYk4Jn6e2NMQq1HoWsmQwKBXvSm4n9eJwG/2htzGSfAJJ0/5CcCQ4Sn0WCPK0ZBjAwhVHHzV0wDoggFE2DOhOAsnrxMmudl56Jcua0UatU0jiw6QseoiBx0iWroBtVRA1H0iJ7RK3qznqwX6936mI9mrHTnEP2B9fkDVAaYig==</latexit>

p(d|✓) = p(n = d� h(✓))

Likelihood: probability that the 
noise explains the residuals 
between data and signal

Signal model:
• includes instrument response
• may be approximate

<latexit sha1_base64="L8wbdf7EtOfilfIK+LnltJX5DoI=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BItQL2VXivZY8OKxgv2QdinZNNsNTbJLMiuUpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMCxLBDbjut1PY2Nza3inulvb2Dw6PyscnHROnmrI2jUWsewExTHDF2sBBsF6iGZGBYN1gcjv3u09MGx6rB5gmzJdkrHjIKQErPUbVAUQMyOWwXHFr7gJ4nXg5qaAcrWH5azCKaSqZAiqIMX3PTcDPiAZOBZuVBqlhCaETMmZ9SxWRzPjZ4uAZvrDKCIextqUAL9TfExmRxkxlYDslgcisenPxP6+fQtjwM66SFJiiy0VhKjDEeP49HnHNKIipJYRqbm/FNCKaULAZlWwI3urL66RzVfOua/X7eqXZyOMoojN0jqrIQzeoie5QC7URRRI9o1f05mjnxXl3PpatBSefOUV/4Hz+ADH/j/4=</latexit>

h(✓)

For a stationary Gaussian process: 
independence FD, diagonal covariance

<latexit sha1_base64="j3d0ShwrO7UOf+SYb7jBTZ7VzIg="></latexit>

hñkñ
⇤
l i =

1

2�f
Sn(fk)�kl

<latexit sha1_base64="12i6voDtNCmRmi+oMBjGY4gV0ug="></latexit>

Re ñk, Im ñk ⇠ N
✓
0,

1

4�f
Sn(fk)

◆

Whittle likelihood

<latexit sha1_base64="Td8/CYNyVVsQHj65Roqs+7GuHNM="></latexit>

lnL = ln p(n) =
X

k>0

ln p(ñk)
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The likelihood

d = h(✓) + n
<latexit sha1_base64="T7j+3e3ja0URptw9PZq5sh0vtQ4=">AAAB+nicbVBNS8NAEN3Ur1q/Wj16WSxCRShJFexFKHjxWMF+QBvKZrNpl242YXeilNif4sWDIl79Jd78N27bHLT1wcDjvRlm5nmx4Bps+9vKra1vbG7ltws7u3v7B8XSYVtHiaKsRSMRqa5HNBNcshZwEKwbK0ZCT7CON76Z+Z0HpjSP5D1MYuaGZCh5wCkBIw2KJR9f41GlDyMG5AyfY6OV7ao9B14lTkbKKENzUPzq+xFNQiaBCqJ1z7FjcFOigFPBpoV+ollM6JgMWc9QSUKm3XR++hSfGsXHQaRMScBz9fdESkKtJ6FnOkMCI73szcT/vF4CQd1NuYwTYJIuFgWJwBDhWQ7Y54pREBNDCFXc3IrpiChCwaRVMCE4yy+vknat6lxUa3eX5UY9iyOPjtEJqiAHXaEGukVN1EIUPaJn9IrerCfrxXq3PhatOSubOUJ/YH3+AIjmkjQ=</latexit>

L = p(data|signal params)
<latexit sha1_base64="wEo/ProBn73qgFfGN6TKqqpVtdI=">AAACHnicbVDLSgNBEJz1GeMr6tHLYBD0EnZ9YC5CwIsHDxFMIiQh9E4myZDZ2WWmVwzrfokXf8WLB0UET/o3Th4HTSwYqKnupqvLj6Qw6Lrfztz8wuLScmYlu7q2vrGZ29qumjDWjFdYKEN964PhUiheQYGS30aaQ+BLXvP7F8N67Y5rI0J1g4OINwPoKtERDNBKrdxpIwDsMZDJVUrPaXQw+usgaQNCSh9oA/k9JkZ0FUgagYbApIetXN4tuCPQWeJNSJ5MUG7lPhvtkMUBV8gkGFP33AibCWgUTPI024gNj4D1ocvrlioIuGkmo/NSum+VNu2E2j6FdKT+nkisJzMIfNs5NG+ma0Pxv1o9xk6xmQgVxcgVGy/qxJJiSIdZ0bbQnKEcWAJMC+uVsp6NgKFNNGtD8KZPniXVo4J3XDi6PsmXipM4MmSX7JED4pEzUiKXpEwqhJFH8kxeyZvz5Lw4787HuHXOmczskD9wvn4Axd6i3Q==</latexit>

Likelihood:

Assume calibrated data
(reality: marginalize over calibration)

<latexit sha1_base64="rsLWEBPiukGxltqf6skGwVeyxv4=">AAAB9HicbVDLTgJBEOzFF+IL9ehlIjHBC9k1RDmSePGIiTwS2JDZ2VmYMPtwppeEIN/hxYPGePVjvPk3DrAHBSvppFLVne4uL5FCo21/W7mNza3tnfxuYW//4PCoeHzS0nGqGG+yWMaq41HNpYh4EwVK3kkUp6Enedsb3c799pgrLeLoAScJd0M6iEQgGEUjuUnZJ0+kh0OO9LJfLNkVewGyTpyMlCBDo1/86vkxS0MeIZNU665jJ+hOqULBJJ8VeqnmCWUjOuBdQyMacu1OF0fPyIVRfBLEylSEZKH+npjSUOtJ6JnOkOJQr3pz8T+vm2JQc6ciSlLkEVsuClJJMCbzBIgvFGcoJ4ZQpoS5lbAhVZShyalgQnBWX14nrauKc12p3ldL9VoWRx7O4BzK4MAN1OEOGtAEBo/wDK/wZo2tF+vd+li25qxs5hT+wPr8AZMBkU4=</latexit>

p(d|✓)

<latexit sha1_base64="VUvrHzEuM30DK99JmIEHBL6h3RU=">AAACDXicbVC7SgNBFJ2NrxhfUUubwSgkhWFXgqYRAjaWEcwDkhBmZ2ezQ2Znl5m7Qoj5ARt/xcZCEVt7O//GSbKFJh64l8M59zJzjxsLrsG2v63Myura+kZ2M7e1vbO7l98/aOooUZQ1aCQi1XaJZoJL1gAOgrVjxUjoCtZyh9dTv3XPlOaRvINRzHohGUjuc0rASP38SVz08APuQsCAlPAVjovSdA+f4aCYqqV+vmCX7RnwMnFSUkAp6v38V9eLaBIyCVQQrTuOHUNvTBRwKtgk1000iwkdkgHrGCpJyHRvPLtmgk+N4mE/UqYk4Jn6e2NMQq1HoWsmQwKBXvSm4n9eJwG/2htzGSfAJJ0/5CcCQ4Sn0WCPK0ZBjAwhVHHzV0wDoggFE2DOhOAsnrxMmudl56Jcua0UatU0jiw6QseoiBx0iWroBtVRA1H0iJ7RK3qznqwX6936mI9mrHTnEP2B9fkDVAaYig==</latexit>

p(d|✓) = p(n = d� h(✓))

Likelihood: probability that the 
noise explains the residuals 
between data and signal

Signal model:
• includes instrument response
• may be approximate

<latexit sha1_base64="L8wbdf7EtOfilfIK+LnltJX5DoI=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BItQL2VXivZY8OKxgv2QdinZNNsNTbJLMiuUpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMCxLBDbjut1PY2Nza3inulvb2Dw6PyscnHROnmrI2jUWsewExTHDF2sBBsF6iGZGBYN1gcjv3u09MGx6rB5gmzJdkrHjIKQErPUbVAUQMyOWwXHFr7gJ4nXg5qaAcrWH5azCKaSqZAiqIMX3PTcDPiAZOBZuVBqlhCaETMmZ9SxWRzPjZ4uAZvrDKCIextqUAL9TfExmRxkxlYDslgcisenPxP6+fQtjwM66SFJiiy0VhKjDEeP49HnHNKIipJYRqbm/FNCKaULAZlWwI3urL66RzVfOua/X7eqXZyOMoojN0jqrIQzeoie5QC7URRRI9o1f05mjnxXl3PpatBSefOUV/4Hz+ADH/j/4=</latexit>

h(✓)

For a stationary Gaussian process: 
independence FD, diagonal covariance

<latexit sha1_base64="j3d0ShwrO7UOf+SYb7jBTZ7VzIg="></latexit>

hñkñ
⇤
l i =

1

2�f
Sn(fk)�kl

<latexit sha1_base64="12i6voDtNCmRmi+oMBjGY4gV0ug="></latexit>

Re ñk, Im ñk ⇠ N
✓
0,

1

4�f
Sn(fk)

◆

Whittle likelihood

<latexit sha1_base64="Td8/CYNyVVsQHj65Roqs+7GuHNM="></latexit>

lnL = ln p(n) =
X

k>0

ln p(ñk)
<latexit sha1_base64="8pcq1uw4889yXnyVSLpcdWYWUjI=">AAACQHicbZBNaxsxEIa16VfqfsRtj70MMYWUUrNrTJNLQqAN9JiQOg543UUraxOxknaRZgtG0U/LJT+ht557yaGl5JpT5I9Dm/QFwcs7M8zoyWspLMbxj2jl3v0HDx+tPm49efrs+Vr7xcsjWzWG8QGrZGWOc2q5FJoPUKDkx7XhVOWSD/Py46w+/MaNFZX+gtOajxU90aIQjGKIsvZwG1LbqMyVO7GH92lhKHOJdz0PC9+H9BOXSKHw7jDTG0VWvvVwlqKQE+60z0o4+9qDd5AqiqdGOVZpiz5rd+JuPBfcNcnSdMhS+1n7ezqpWKO4RiaptaMkrnHsqEHBJPettLG8pqykJ3wUrKaK27GbA/DwJiQTKCoTnkaYp39POKqsnao8dM6utLdrs/B/tVGDxdbYCV03yDVbLCoaCVjBjCZMhOEM5TQYyowItwI7pYEbBuatACG5/eW75qjXTT50+wf9zu7eEscqeU3WyQZJyCbZJZ/JPhkQRs7JT/KL/I4uosvoT3S1aF2JljOvyD+Krm8ACrKvkQ==</latexit>

=
X

k>0

�1

2

4�f

Sn(fk)
|ñk|2 + const

<latexit sha1_base64="Hwk+nRwi2KVIFkn/N15uSzZ2Y0A=">AAAB/XicbVDLSgNBEOyNrxhf8XHzMhiEeDDshqBehIAIHiOYByRLmJ3MJkNmZ5eZWSGuwV/x4kERr/6HN//GSbIHTSxoKKq66e7yIs6Utu1vK7O0vLK6ll3PbWxube/kd/caKowloXUS8lC2PKwoZ4LWNdOctiJJceBx2vSGVxO/eU+lYqG406OIugHuC+YzgrWRuvmDS3Ta8SUmiTNOymNUFI/ipJsv2CV7CrRInJQUIEWtm//q9EISB1RowrFSbceOtJtgqRnhdJzrxIpGmAxxn7YNFTigyk2m14/RsVF6yA+lKaHRVP09keBAqVHgmc4A64Ga9ybif1471v6FmzARxZoKMlvkxxzpEE2iQD0mKdF8ZAgmkplbERlgk4U2geVMCM78y4ukUS45Z6XKbaVQvU7jyMIhHEERHDiHKtxADepA4AGe4RXerCfrxXq3PmatGSud2Yc/sD5/AK/ylB0=</latexit>

= �1

2
(n|n)

<latexit sha1_base64="iJ6/7EobWrBDQIC2E5MqF4r8Ah0="></latexit>

= �1

2
4

Z

f>0

df

Sn(f)
|ñ(f)|2
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The likelihood

d = h(✓) + n
<latexit sha1_base64="T7j+3e3ja0URptw9PZq5sh0vtQ4=">AAAB+nicbVBNS8NAEN3Ur1q/Wj16WSxCRShJFexFKHjxWMF+QBvKZrNpl242YXeilNif4sWDIl79Jd78N27bHLT1wcDjvRlm5nmx4Bps+9vKra1vbG7ltws7u3v7B8XSYVtHiaKsRSMRqa5HNBNcshZwEKwbK0ZCT7CON76Z+Z0HpjSP5D1MYuaGZCh5wCkBIw2KJR9f41GlDyMG5AyfY6OV7ao9B14lTkbKKENzUPzq+xFNQiaBCqJ1z7FjcFOigFPBpoV+ollM6JgMWc9QSUKm3XR++hSfGsXHQaRMScBz9fdESkKtJ6FnOkMCI73szcT/vF4CQd1NuYwTYJIuFgWJwBDhWQ7Y54pREBNDCFXc3IrpiChCwaRVMCE4yy+vknat6lxUa3eX5UY9iyOPjtEJqiAHXaEGukVN1EIUPaJn9IrerCfrxXq3PhatOSubOUJ/YH3+AIjmkjQ=</latexit>

L = p(data|signal params)
<latexit sha1_base64="wEo/ProBn73qgFfGN6TKqqpVtdI=">AAACHnicbVDLSgNBEJz1GeMr6tHLYBD0EnZ9YC5CwIsHDxFMIiQh9E4myZDZ2WWmVwzrfokXf8WLB0UET/o3Th4HTSwYqKnupqvLj6Qw6Lrfztz8wuLScmYlu7q2vrGZ29qumjDWjFdYKEN964PhUiheQYGS30aaQ+BLXvP7F8N67Y5rI0J1g4OINwPoKtERDNBKrdxpIwDsMZDJVUrPaXQw+usgaQNCSh9oA/k9JkZ0FUgagYbApIetXN4tuCPQWeJNSJ5MUG7lPhvtkMUBV8gkGFP33AibCWgUTPI024gNj4D1ocvrlioIuGkmo/NSum+VNu2E2j6FdKT+nkisJzMIfNs5NG+ma0Pxv1o9xk6xmQgVxcgVGy/qxJJiSIdZ0bbQnKEcWAJMC+uVsp6NgKFNNGtD8KZPniXVo4J3XDi6PsmXipM4MmSX7JED4pEzUiKXpEwqhJFH8kxeyZvz5Lw4787HuHXOmczskD9wvn4Axd6i3Q==</latexit>

Likelihood:

Assume calibrated data
(reality: marginalize over calibration)

<latexit sha1_base64="rsLWEBPiukGxltqf6skGwVeyxv4=">AAAB9HicbVDLTgJBEOzFF+IL9ehlIjHBC9k1RDmSePGIiTwS2JDZ2VmYMPtwppeEIN/hxYPGePVjvPk3DrAHBSvppFLVne4uL5FCo21/W7mNza3tnfxuYW//4PCoeHzS0nGqGG+yWMaq41HNpYh4EwVK3kkUp6Enedsb3c799pgrLeLoAScJd0M6iEQgGEUjuUnZJ0+kh0OO9LJfLNkVewGyTpyMlCBDo1/86vkxS0MeIZNU665jJ+hOqULBJJ8VeqnmCWUjOuBdQyMacu1OF0fPyIVRfBLEylSEZKH+npjSUOtJ6JnOkOJQr3pz8T+vm2JQc6ciSlLkEVsuClJJMCbzBIgvFGcoJ4ZQpoS5lbAhVZShyalgQnBWX14nrauKc12p3ldL9VoWRx7O4BzK4MAN1OEOGtAEBo/wDK/wZo2tF+vd+li25qxs5hT+wPr8AZMBkU4=</latexit>

p(d|✓)

<latexit sha1_base64="VUvrHzEuM30DK99JmIEHBL6h3RU=">AAACDXicbVC7SgNBFJ2NrxhfUUubwSgkhWFXgqYRAjaWEcwDkhBmZ2ezQ2Znl5m7Qoj5ARt/xcZCEVt7O//GSbKFJh64l8M59zJzjxsLrsG2v63Myura+kZ2M7e1vbO7l98/aOooUZQ1aCQi1XaJZoJL1gAOgrVjxUjoCtZyh9dTv3XPlOaRvINRzHohGUjuc0rASP38SVz08APuQsCAlPAVjovSdA+f4aCYqqV+vmCX7RnwMnFSUkAp6v38V9eLaBIyCVQQrTuOHUNvTBRwKtgk1000iwkdkgHrGCpJyHRvPLtmgk+N4mE/UqYk4Jn6e2NMQq1HoWsmQwKBXvSm4n9eJwG/2htzGSfAJJ0/5CcCQ4Sn0WCPK0ZBjAwhVHHzV0wDoggFE2DOhOAsnrxMmudl56Jcua0UatU0jiw6QseoiBx0iWroBtVRA1H0iJ7RK3qznqwX6936mI9mrHTnEP2B9fkDVAaYig==</latexit>

p(d|✓) = p(n = d� h(✓))

Likelihood: probability that the 
noise explains the residuals 
between data and signal

Signal model:
• includes instrument response
• may be approximate

<latexit sha1_base64="L8wbdf7EtOfilfIK+LnltJX5DoI=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BItQL2VXivZY8OKxgv2QdinZNNsNTbJLMiuUpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMCxLBDbjut1PY2Nza3inulvb2Dw6PyscnHROnmrI2jUWsewExTHDF2sBBsF6iGZGBYN1gcjv3u09MGx6rB5gmzJdkrHjIKQErPUbVAUQMyOWwXHFr7gJ4nXg5qaAcrWH5azCKaSqZAiqIMX3PTcDPiAZOBZuVBqlhCaETMmZ9SxWRzPjZ4uAZvrDKCIextqUAL9TfExmRxkxlYDslgcisenPxP6+fQtjwM66SFJiiy0VhKjDEeP49HnHNKIipJYRqbm/FNCKaULAZlWwI3urL66RzVfOua/X7eqXZyOMoojN0jqrIQzeoie5QC7URRRI9o1f05mjnxXl3PpatBSefOUV/4Hz+ADH/j/4=</latexit>

h(✓)

For a stationary Gaussian process: 
independence FD, diagonal covariance

<latexit sha1_base64="j3d0ShwrO7UOf+SYb7jBTZ7VzIg="></latexit>

hñkñ
⇤
l i =

1

2�f
Sn(fk)�kl

<latexit sha1_base64="12i6voDtNCmRmi+oMBjGY4gV0ug="></latexit>

Re ñk, Im ñk ⇠ N
✓
0,

1

4�f
Sn(fk)

◆

Whittle likelihood

<latexit sha1_base64="Td8/CYNyVVsQHj65Roqs+7GuHNM="></latexit>

lnL = ln p(n) =
X

k>0

ln p(ñk)
<latexit sha1_base64="8pcq1uw4889yXnyVSLpcdWYWUjI=">AAACQHicbZBNaxsxEIa16VfqfsRtj70MMYWUUrNrTJNLQqAN9JiQOg543UUraxOxknaRZgtG0U/LJT+ht557yaGl5JpT5I9Dm/QFwcs7M8zoyWspLMbxj2jl3v0HDx+tPm49efrs+Vr7xcsjWzWG8QGrZGWOc2q5FJoPUKDkx7XhVOWSD/Py46w+/MaNFZX+gtOajxU90aIQjGKIsvZwG1LbqMyVO7GH92lhKHOJdz0PC9+H9BOXSKHw7jDTG0VWvvVwlqKQE+60z0o4+9qDd5AqiqdGOVZpiz5rd+JuPBfcNcnSdMhS+1n7ezqpWKO4RiaptaMkrnHsqEHBJPettLG8pqykJ3wUrKaK27GbA/DwJiQTKCoTnkaYp39POKqsnao8dM6utLdrs/B/tVGDxdbYCV03yDVbLCoaCVjBjCZMhOEM5TQYyowItwI7pYEbBuatACG5/eW75qjXTT50+wf9zu7eEscqeU3WyQZJyCbZJZ/JPhkQRs7JT/KL/I4uosvoT3S1aF2JljOvyD+Krm8ACrKvkQ==</latexit>

=
X

k>0

�1

2

4�f

Sn(fk)
|ñk|2 + const

<latexit sha1_base64="Hwk+nRwi2KVIFkn/N15uSzZ2Y0A=">AAAB/XicbVDLSgNBEOyNrxhf8XHzMhiEeDDshqBehIAIHiOYByRLmJ3MJkNmZ5eZWSGuwV/x4kERr/6HN//GSbIHTSxoKKq66e7yIs6Utu1vK7O0vLK6ll3PbWxube/kd/caKowloXUS8lC2PKwoZ4LWNdOctiJJceBx2vSGVxO/eU+lYqG406OIugHuC+YzgrWRuvmDS3Ta8SUmiTNOymNUFI/ipJsv2CV7CrRInJQUIEWtm//q9EISB1RowrFSbceOtJtgqRnhdJzrxIpGmAxxn7YNFTigyk2m14/RsVF6yA+lKaHRVP09keBAqVHgmc4A64Ga9ybif1471v6FmzARxZoKMlvkxxzpEE2iQD0mKdF8ZAgmkplbERlgk4U2geVMCM78y4ukUS45Z6XKbaVQvU7jyMIhHEERHDiHKtxADepA4AGe4RXerCfrxXq3PmatGSud2Yc/sD5/AK/ylB0=</latexit>

= �1

2
(n|n)

<latexit sha1_base64="1Im2+zXxGufS4HfcG6Qc2r2ew0g=">AAACLXicbVDLSsQwFE19juNr1KWb4CDowqEVUTeCoIILFyM4KkzLkKapDaZpSW6FofaH3PgrIrgYEbf+hulMEV8HAifn3Etyjp8KrsG2B9bY+MTk1HRtpj47N7+w2FhavtRJpijr0EQk6tonmgkuWQc4CHadKkZiX7Ar//ao9K/umNI8kRfQT5kXkxvJQ04JGKnXOHaFdGMCESUiPyvwhgsRA7KJD/CWGypCc6fIt40efTlbOLj/cdvsNZp2yx4C/yVORZqoQrvXeHaDhGYxk0AF0brr2Cl4OVHAqWBF3c00Swm9JTesa6gkMdNePkxb4HWjBDhMlDkS8FD9vpGTWOt+7JvJMpj+7ZXif143g3Dfy7lMM2CSjh4KM4EhwWV1OOCKURB9QwhV3PwV04iYjsAUXDclOL8j/yWX2y1nt7VzvtM8PKnqqKFVtIY2kIP20CE6RW3UQRQ9oCc0QK/Wo/VivVnvo9Exq9pZQT9gfXwChSOlzA==</latexit>

lnL(✓) = �1

2
(h(✓)� d|h(✓)� d)

<latexit sha1_base64="iJ6/7EobWrBDQIC2E5MqF4r8Ah0="></latexit>

= �1

2
4

Z

f>0

df

Sn(f)
|ñ(f)|2

Norm of 
residuals !
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TD/FD covariance

• Ringdown analysis: selection of 
post-merger times

• Dealing with data gaps

Covariance matrix for noise 
vector in time domain: 
Toeplitz structure

Diagonality after DFT requires in fact 
Circulant structure (periodicity)

Time domain covariance
Can work directly in time 
domain with Toeplitz structure

Limitations to Whittle:

<latexit sha1_base64="0ch6IJIRaybWYMbXrgHoknM9pGw=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2ARK2iZkaIuC0VwWcE+oB1KJs20oZmHyZ1CGbvwV9y4UMStv+HOvzFtZ6GtBwLnnnMv9+a4keAKLOvbyCwtr6yuZddzG5tb2zvm7l5dhbGkrEZDEcqmSxQTPGA14CBYM5KM+K5gDXdQmfiNIZOKh8E9jCLm+KQXcI9TAlrqmAeVApzBySlus4eYD7Euz3XZMfNW0ZoCLxI7JXmUotoxv9rdkMY+C4AKolTLtiJwEiKBU8HGuXasWETogPRYS9OA+Ew5yfT+MT7WShd7odQvADxVf08kxFdq5Lu60yfQV/PeRPzPa8XgXTsJD6IYWEBni7xYYAjxJAzc5ZJRECNNCJVc34ppn0hCQUeW0yHY819eJPWLon1ZLN2V8uWbNI4sOkRHqIBsdIXK6BZVUQ1R9Iie0St6M56MF+Pd+Ji1Zox0Zh/9gfH5A6pfk/g=</latexit>

C(t, t0) ⌘ C(t� t0)
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The evidence and Bayes ratio

Evidence <latexit sha1_base64="+7faN3oZjFdvqT1VGg3nAXCD+kA=">AAACIHicbVDLSgMxFM3UV62vqks3wSJUKGVGiu1GKLhxI1SwD+gMJZPJtKGZB8kdobT9FDf+ihsXiuhOv8a0nYW2Hgice8695N7jxoIrMM0vI7O2vrG5ld3O7ezu7R/kD49aKkokZU0aiUh2XKKY4CFrAgfBOrFkJHAFa7vD65nffmBS8Si8h1HMnID0Q+5zSkBLvXw1LnqT23N8hW0eAvZsGDAg2C5hbeAJXtQlrFviYmpOdNXLF8yyOQdeJVZKCihFo5f/tL2IJgELgQqiVNcyY3DGRAKngk1zdqJYTOiQ9FlX05AETDnj+YFTfKYVD/uR1E9vOVd/T4xJoNQocHVnQGCglr2Z+J/XTcCvOWMexgmwkC4+8hOBIcKztLDHJaMgRpoQKrneFdMBkYSCzjSnQ7CWT14lrYuydVmu3FUK9VoaRxadoFNURBaqojq6QQ3URBQ9omf0it6MJ+PFeDc+Fq0ZI505Rn9gfP8APNqf6A==</latexit>
p(d|M) =

Z
d✓ p(d|✓,M)p(✓|M)

• ignored in parameter estimation, normalization 
constant

• multidimensional integral, hard to compute

Bayes factor

<latexit sha1_base64="s0JNmps1ZqwxE+nfWUEeWMuWQmo=">AAACC3icbZDLSsNAFIYn9VbrLerSzdAitJuSlKLdCEU3boQK9gJtCJPppB06mYSZiVBi9m58FTcuFHHrC7jzbZy2WWjrDwMf/zmHM+f3IkalsqxvI7e2vrG5ld8u7Ozu7R+Yh0cdGcYCkzYOWSh6HpKEUU7aiipGepEgKPAY6XqTq1m9e0+EpCG/U9OIOAEacepTjJS2XLN46SZ2LYUXcOALhJOoPHy4ce1KmlGtkrpmyapac8FVsDMogUwt1/waDEMcB4QrzJCUfduKlJMgoShmJC0MYkkihCdoRPoaOQqIdJL5LSk81c4Q+qHQjys4d39PJCiQchp4ujNAaiyXazPzv1o/Vn7DSSiPYkU4XizyYwZVCGfBwCEVBCs21YCwoPqvEI+RzkTp+Ao6BHv55FXo1Kr2WbV+Wy81G1kceXACiqAMbHAOmuAatEAbYPAInsEreDOejBfj3fhYtOaMbOYY/JHx+QNjpJlc</latexit>

B12 =
p(d|M1)

p(d|M2)

•model comparison 
(usually log)

•penalty for overfitting
<latexit sha1_base64="PkVt++ul+B5SIUZQaImTBldBOXM=">AAACNHicbZDLSgMxGIUzXmu9jbp0EyxCuykzpWg3QsGNIEIFe4G2lEwm04ZmLiQZoUznodz4IG5EcKGIW5/BzHQKtfWHwMc5OST/sQJGhTSMN21tfWNzazu3k9/d2z841I+OW8IPOSZN7DOfdywkCKMeaUoqGekEnCDXYqRtja8Tv/1IuKC+9yAnAem7aOhRh2IklTTQb3sORzgKincDc2qX4pQqCcErOPfsqXJTL6GK8hZS80wpHugFo2ykA1fBzKAAsmkM9Jee7ePQJZ7EDAnRNY1A9iPEJcWMxPleKEiA8BgNSVehh1wi+lG6dAzPlWJDx+fqeBKm6mIiQq4QE9dSN10kR2LZS8T/vG4onVo/ol4QSuLh2UNOyKD0YdIgtCknWLKJAoQ5VX+FeIRUH1L1nFclmMsrr0KrUjYvytX7aqFey+rIgVNwBorABJegDm5AAzQBBk/gFXyAT+1Ze9e+tO/Z1TUty5yAP6P9/ALruqkk</latexit>

p(M1|d)
p(M2|d)

=
p(d|M1)

p(d|M2)

p(M1)

p(M2)

[Kass-Raftery 1995]
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The parameter space and priors

14. Reduced order modeling for LIGO searches
M. Pürrer, S. Marsat
Astrophysical and Cosmological Relativity Division 

Max-Planck-Institut for Gravitational Physics (Albert Einstein Institute)

Abstract
The effective-one-body (EOB) approach complemented with calibration to numerical relativity (NR) data provides state-of-the-art models of the 
gravitational radiation emitted from coalescing compact binaries. Detection and parameter estimation searches in the LIGO network require fast and 
accurate template waveforms. By construction, EOB waveforms are obtained by numerical integration of a complicated system of ordinary differential 
equations and therefore tend to be too slow to be used directly for LIGO data analysis. Reduced order modeling (ROM) is a proven technique for 
compressing the data obtained from sampling a model over the parameter space in terms of reduced orthogonal bases and interpolated expansion 
coefficients and accelerating waveform generation. We discuss the construction and use of a ROM for the aligned-spin SEOBNR model used in the first 
observing run which was crucial for recent LIGO detections and inference of model parameters. This model has spins aligned with the orbital angular 
momentum with non-trivial dependencies in 3 parameter dimensions. Work on a ROM for its successor aligned-spin SEOBNR model, prepared for the 
second observing run has already been started. For the generic precessing-spin SEOBNR model used in the first observing run the dimensionality of the 
problem increases to 7 dimensions (the mass ratio and the two spin vectors), making the construction of a ROM far more challenging. We have started 
to explore spin subspaces by introducing effective parameters that capture the dominant effects in the waveform.

A prerequisite for LIGO  searches and parameter estimation is the availability of 
fast and accurate models of the GW waveform emitted from BH binaries so as not 
to miss signals or misrepresent their astrophysical parameters. The construction of 
stochastic template banks requires O(108) waveform evaluations. Typically O(107) 
waveform model evaluations are needed for a parameter estimation analyses.

EOB waveforms are obtained from the integration of complicated systems of 
ordinary differential equations and are in general too slow for direct data analysis 
applications. Reduced order modeling (ROM) can provide fast and accurate 
surrogates for such GW models which are crucial for GW searches and parameter 
estimation. 

We discuss ROM approaches based on the singular value decomposition (SVD) and 
tensor product spline interpolation [1,2].

INTRODUCTION

Compressing the waveform space
The polarizations of aligned-spin GWs can be represented in the Fourier domain in a 
highly compressed form as follows: 
• The waveform is split into its non-oscillatory amplitude and phase: 
• The amplitudes and phases are represented as cubic spline interpolants on a sparse 

frequency grid of size m.
• This non-uniform frequency grid is constructed by choosing the spacing such that 

the local spline interpolation error stays constant over the grid (see Fig. 1). 

Input waveforms are generated on a regular grid (see Fig. 2) over the parameter space 
and stored in the sparse frequency grid of size m. The grid can later be refined in 
regions where the modeling error is deemed too large.

Accuracy and performance
In [2] a ROM was built for the non-precessing SEOBNR [3] waveform model. To 
compare two waveforms we can compute their noise-weighted correlation,                   . 
Here we quote the mismatch              . This ROM is accurate to better than 1% mismatch 
(see Fig. 3) and provides a speedup of order a thousand for generating waveforms (see 
Fig. 4).

Figure 3: Accuracy of SEOBNR ROM over the parameter 
space for advanced LIGO design sensitivity.

Figure 4: Speedup of ROM compared 
to non-precessing SEOBNR

REFERENCES

Reduced bases and interpolation over parameter space
We compute reduced orthogonal bases of the n input amplitudes and phases:
• Pack them into the columns of matrices                              .
• Take the SVD of these matrices                       to obtain bases                         .

For each input waveform we calculate a vector of m projection coefficients in terms of 
the reduced bases, forming a matrix                                     , for amplitude and phase.

To complete the model we interpolate the projection coefficients using tensor product 
spline interpolation. This is done separately for the coefficients corresponding to each 
of the m SVD modes, yielding m scalar interpolants of the form

The ROM (or surrogate model) in parameters                              can then be written as

ROM for precessing waveforms
Precession effects are induced by the misalignment of the spins. They can lead to 
important modulations of the signal, and play an important role in parameter 
estimation studies in helping to break degeneracies between other parameters.
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M = BTT 2 Rm⇥n

I⌦[g](~�) =
n⌘X

i=1

n�1X

j=1

n�2X

k=1

gijk( ⌘ ⌦ �1 ⌦ �2)ijk(~�)

h̃m(~�;M ; f) := A0(~�,M) If [BA · I⌦[MA](~�)] exp{i If [B� · I⌦[M�](~�)]}

~� = (⌘,�1,�2)

Figure 2: Regular grid for input waveforms in 
mass-ratio and aligned spin on larger BH.
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The  precessing  SEOBNR  model  [4,5] 
includes the 7 degrees of freedom of the 
problem  (the  mass  ratio  and  the  two 
spin  vectors)  and  covers  the  inspiral, 
merger  and  ringdown  phases. 
However, the higher dimensionality of 
the problem makes the ROM approach 
challenging.

A precessing waveform can be decomposed by introducing a frame following the 
motion of the orbital plane. The waveform in this precessing frame is then close to a 
non-precessing waveform. Introducing Euler angles               for the P-frame,p↵,�, �q

hI
`m “

ÿ

m

D`˚
m1mp↵,�, �qhP

`m1

We made preliminary 1D explorations of the smoothness of the decomposed waveform 
when varying parameters, illustrated here with the mass ratio.  
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Figure 6: Smoothness of the amplitude and phase in the P-frame, varying the mass ratio q=1-6

Figure 5: Smoothness of the Euler angles for the P-frame, varying the mass ratio q=1-6
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q “ 1 ´ 6, �1 “ p´0.6, 0.6, 0.5q, �2 “ p0.8, 0,´0.5q

q

q

CBC:  15+2+2 parameters
• intrinsic: 2 masses, 2*3 spin vectors
• distance: 1
• time of coalescence: 1
• direction to the observer: 2 angles
• sky position in observer’s frame: 2 angles
• polarization angle: 1 angle
• +eccentricity, periastron: 2
• +tidal deformabilities BNS: 2
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(◆,') Intrinsic parameters
• masses, spins, tidal deformabilities, 

eccentricity
• expensive: generate GR solution
• priors: physically motivated, but 

arbitrary

Extrinsic parameters
• distance, time, orientation angles
• cheap: simple geometry of source/

detector
• prior for distance: uniform in volume ?
• prior for time: uniform
• prior for angles: uniform (on a sphere)



26

6200 6400 6600 6800 7000 7200 7400 7600
t/M

�0.04
�0.03
�0.02
�0.01

0.00
0.01
0.02
0.03
0.04

D
L/

M
R

e(
h +
�

ih
x)

(q = 8, �1 = 0.5, �2 = 0, ◆ = ⇡/2, '0 = 1.2)

NR SEOBNRv4HM SEOBNRv4

6200 6400 6600 6800 7000 7200 7400 7600
t/M

�0.5

0.0

0.5

1.0

1.5

�
�

h
(r

ad
)

NR (`,m) = (2, 2) vs SEOBNRv4
NR (`,m) = (2, 2), (3, 3), (2, 1), (4, 4), (5, 5) vs SEOBNRv4
NR (`,m) = (2, 2), (3, 3), (2, 1), (4, 4), (5, 5) vs SEOBNRv4HM
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orientation (◆ = ⇡/2,'0 = 1.2) for the NR simulation SXS:BBH:0065 (q = 8, �1 = 0.5, �2 = 0). In the top panel is plotted the real part of
the observer-frame’s gravitational strain h+(◆,'0; t) � i hx(◆,'0; t), while in the bottom panel the dephasing with the NR waveform ��h.The
dotted-dashed red horizontal line in the bottom panel indicates zero dephasing with the NR waveform. Both SEOBNRv4 and SEOBNRv4HM
waveforms are phase aligned and time shifted at low frequency using as alignment window tini = 1000M and t f in = 3000M.
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Waveform complexity I

• creates another set of 
harmonics 

• fast circularization before 
merger

Higher harmonics beyond h22:

<latexit sha1_base64="Om4Q+S1pMfBbHTikLf1TdtqHwPY="></latexit>

h+ � ih⇥ =
X

`�2

+X̀

m=�`

�2Y`m(◆,')h`m

Eccentricity:
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h`m / e�im�orb

• stronger for high 
inclination, high mass 
ratio

• most important at 
merger

[arXiv:2112.06952]
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Figure 7. From top to bottom, real part of the (2,2),(2,1), (3,3), (4,4) and (5,5) modes in the time domain. The black curve corresponds to the
NR simulation SXS:BBH:1369, which has mass ratio q = 2, zero spins, and eccentricity e!orb,p = 0.257, while the green curve corresponds to
the SEOBNRv4EHM model for the values of eccentricity and starting frequency that lead to the lowest unfaithfulness for the (2,2) mode.

of the waveform model in the large-spin region, we compute
the unfaithfulness between two waveforms varying the spins
in the region �1,2 2 [0.8,0.99] for 100 mass ratios q 2 [1,50].
For each mass ratio, we compute the unfaithfulness between a
waveform with �1 = �2 = 0.8, initial eccentricity 0.3 at start-
ing frequency of 20Hz and total mass 100M� and waveforms
with the same parameters but varying both �1,2 2 [0.8,0.99].
This choice of total mass, starting frequency and eccentric-
ity implies smaller initial separations of r/M ⇠ 11, and thus
corresponds to a challenging case for the quasi-circular as-
sumption of the merger-ringdown signal. The results from
such a test show an oscillatory unfaithfulness surface across
parameter space without sharp features. We also observe that
for �1,2 & 0.9–0.95 the frequency of the (2,2)-mode can have

small spurious oscillations, thus, the model should be used
with caution in this region of parameter space. Nevertheless,
the model does not show prominent features in the waveform,
and therefore, we recommend that it is used up to spins 0.99,
eccentricity 0.3 and initial frequency up to 20 Hz. We plan to
improve the model in the transition from plunge to merger for
large spins, as soon as we will have access to NR eccentric
waveforms with large spins.

We note that whereas we have probed the validity of the
model through comparisons to the public SXS eccentric wave-
forms and internal consistency tests mostly for mass ratios
q 2 [1,20] and eccentricities e 2 [0,0.3] at 20Hz, we can
also generate SEOBNRv4EHM waveforms at higher eccentrici-
ties and mass ratios, as illustrated in Fig. 9, where we show the
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of the waveform model in the large-spin region, we compute
the unfaithfulness between two waveforms varying the spins
in the region �1,2 2 [0.8,0.99] for 100 mass ratios q 2 [1,50].
For each mass ratio, we compute the unfaithfulness between a
waveform with �1 = �2 = 0.8, initial eccentricity 0.3 at start-
ing frequency of 20Hz and total mass 100M� and waveforms
with the same parameters but varying both �1,2 2 [0.8,0.99].
This choice of total mass, starting frequency and eccentric-
ity implies smaller initial separations of r/M ⇠ 11, and thus
corresponds to a challenging case for the quasi-circular as-
sumption of the merger-ringdown signal. The results from
such a test show an oscillatory unfaithfulness surface across
parameter space without sharp features. We also observe that
for �1,2 & 0.9–0.95 the frequency of the (2,2)-mode can have

small spurious oscillations, thus, the model should be used
with caution in this region of parameter space. Nevertheless,
the model does not show prominent features in the waveform,
and therefore, we recommend that it is used up to spins 0.99,
eccentricity 0.3 and initial frequency up to 20 Hz. We plan to
improve the model in the transition from plunge to merger for
large spins, as soon as we will have access to NR eccentric
waveforms with large spins.

We note that whereas we have probed the validity of the
model through comparisons to the public SXS eccentric wave-
forms and internal consistency tests mostly for mass ratios
q 2 [1,20] and eccentricities e 2 [0,0.3] at 20Hz, we can
also generate SEOBNRv4EHM waveforms at higher eccentrici-
ties and mass ratios, as illustrated in Fig. 9, where we show the
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Waveform complexity II

[https://vijayvarma392.github.io/binaryBHexp/]

Effect of precession

36

The range f < 0 can be obtained readily, since h+, h⇥
are real quantities, from h̃+,⇥(�f) = h̃+,⇥(f)⇤.
Dropping the mode indices `, m, we will decompose a

given mode11 h̃`m = h̃ into a Fourier-domain amplitude
A and a phase  according to

h̃(f) ⌘ A(f)e�i (f)
. (A10)

Throughout this paper we will refer to Discrete Fourier
Transform (DFT) with the acronyms FFT/IFFT for
the Fast Fourier Transform and its inverse. In our
convention (A1), the link between the DFT and the
trigonometric polynomial representation of a function
goes as follows. For a periodic function F (x) defined
on x 2 [x0, x0 + �x], and represented by N samples
xj = x+ j�x/N , j = 0, . . . , N � 1, with N large enough
to satisfy, at least approximately, the Nyquist criterion,
we can build a trigonometric interpolant P (x) as

P (x) =
+MX

k=�M

cke
2i⇡k

x�x0
�x , (A11)

that will satisfy the system P (xj) = F (xj) for j =
0, . . . , N � 1. Here we set M = N/2, assuming N is even.
This trigonometric polynomial representation is equiva-
lent to truncating the formal Fourier series, representing
the full signal, to a finite order M . The coe�cients ck,
in the full series, are defined as

cn(F ) =
1

�x

Z
�x

0

dx e
2i⇡nx
�x F (x) . (A12)

In both interpretations, either the truncated approxima-
tion of the Fourier series or the trigonometric interpo-
lation formulation, these coe�cients are related to the
coe�cients of the IFFT. If we set ! ⌘ e

2i⇡/N and define

yk =
1

N

N�1X

j=0

F (xj)!
jk

, (A13)

which is the expression of the IFFT in our sign conven-
tion (A1), the coe�cients ck are given by

ck = yk for k = 0, . . . ,M � 1 ,

ck = yk+N for k = �M + 1, . . . ,�1 ,

cM = c�M =
yM

2
, (A14)

where the condition cM = c�M is an arbitrary condition
enforced to match the number of degrees of freedom. In
practice, a good representation of the Fourier series of
the signal is achieved when the truncation order M is
su�cient so that the coe�cients c|n|�M become negligi-
bly small.

11
Not to be confused with the commonly used notation h = h+ �
ih⇥ for the complex strain.

Appendix B: Wigner matrices and precessing frame

In this Appendix, we summarize our conventions for
the Wigner matrices and give a brief description of
the construction of a precessing-frame directly from the
waveform.

If the h
I

`m are the spin-weighted spherical harmon-
ics (A3) of the waveform in a fixed inertial frame (I),
and if the h

P

`m are the modes of the waveform in a time-
dependent precessing frame (P) constructed from the
inertial frame by an active rotation with Euler angles
(↵,�, �) (in the convention (z, y, z)), then the modes are
related by

h
I

`m =
X̀

m=�`

D
`⇤
mm0(↵,�, �)hP

`m0 , (B1a)

h
P

`m =
X̀

m=�`

D
`
m0m(↵,�, �)hI

`m0 . (B1b)

Here we introduced Wigner D-matrices

D
`
mm0(↵,�, �) = e

im↵
d
`
mm0(�)eim

0�
, (B2)

with the real-valued Wigner d-matrix reading

d
`
mm0(�) =

kmaxX

k=kmin

(�1)k

k!

p
(l +m)!(l �m)!(l +m0)!(l �m0)!

(l +m� k)!(l �m0 � k)!(k �m+m0)!

✓
cos

�

2

◆2`+m�m0�2k ✓
sin

�

2

◆2k�m+m0

, (B3)

where the boundaries of the sum, kmin = max(0,m�m
0)

and kmax = min(` + m, ` � m
0), can also be read by

enforcing that the arguments of the factorials must be

non-negative. Note that our convention di↵ers from the
convention of [78] by a transposition,

D
`
mm0(↵,�, �) = D

`ABFO

m0m (↵,�, �) . (B4)

In Sec. V, we considered only ` = 2 and we restricted our-

• introduce Precessing frame, follows 
plane of the orbit

• time-dependent rotation to Inertial 
frame

• not exact, mode asymmetries !

Effect of aligned spins

• Aligned/anti-aligned spins: longer/shorter 
inspiral, reaching higher/lower frequencies

• Degeneracy with mass ratio
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Waveform models

• eccentric IMR waveforms
• EMRIs: Extreme (Intermediate) Mass 

Ratio Inspirals
• matter effects for BNS, BNS merger
• environmental effects

Analytical/numerical methods

Frontiers of waveform modelling

Computational approaches

• post-Newtonian, post-Minkowskian
• Gravitational Self-Force
• Numerical Relativity

• Phenomenological waveforms: analytic fits
• EOB waveforms: integrate ODE
• NR: costly large-scale simulations

We need millions of waveform 
evaluations !

Acceleration of EOB, NR with Reduced 
Order Models (ROMs), surrogates
Acceleration of likelihoods (heterodyning, …)
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Outline

• GW signals: the basics

• Noise as a stochastic process

• Introducing matched filtering

• Towards real CBC searches

• Other signals: continuous waves, stochastic 
backgrounds

Part I Part II

• Bayesian parameter estimation basics, 
likelihood

• Parameter space and waveforms

•Fisher matrix approach

• Metropolis-Hastings MCMC, Parallel 
tempering and example PE

• PE toolbox

• PE results from LVK

• Future detectors and their challenges
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Fisher matrix approach

Fisher matrix and covariance Parameter biases
Objective: simple simulation of PE

Local Taylor expansion of likelihood 
around true parameters, ignore noise:

<latexit sha1_base64="Klk8i/ScO9rAs53LeiglB3xHtd0=">AAACOXicdVDLSsNAFJ34tr6qLt0MFqFdWJJS1I0giODCRQVbhSaEyXRiByeTMHMjlJjfcuNfuBPcuFDErT/g9CFoqwcGDufcy51zgkRwDbb9ZE1Nz8zOzS8sFpaWV1bXiusbLR2nirImjUWsrgKimeCSNYGDYFeJYiQKBLsMbo77/uUtU5rH8gJ6CfMici15yCkBI/nFhiskdiMCXUpEdpbjQ7zrhorQzMmzWo7L3bILXQakgnfxN/ftyt0/esUvluyqPQCeJM6IlNAIDb/46HZimkZMAhVE67ZjJ+BlRAGnguUFN9UsIfSGXLO2oZJETHvZIHmOd4zSwWGszJOAB+rPjYxEWveiwEz2M+pxry/+5bVTCA+8jMskBSbp8FCYCgwx7teIO1wxCqJnCKGKm79i2iWmNzBlF0wJznjkSdKqVZ29av28Xjo6GdWxgLbQNiojB+2jI3SKGqiJKLpHz+gVvVkP1ov1bn0MR6es0c4m+gXr8wtOLaot</latexit>

lnL = �1

2
(h(✓)� h(✓0)|h(✓)� h(✓0))

<latexit sha1_base64="+FnBhrGzYqcdSSdztbLw5n6+aWE=">AAACPXicbVBNSxtRFH2jtqbp11SXbh4NhYRCmJFQ3RQCWnBnCiYKmTTceblxHr754L07Qhjyx9z4H9y568aFpXTr1jfJCG3shQuHc87l3nvCTElDnnfrrK1vvHi5WXtVf/3m7bv37oetgUlzLbAvUpXqsxAMKplgnyQpPMs0QhwqPA0vDkr99BK1kWlyQrMMRzGcJ3IqBZClxu5J1AwoQoIW/8qf8Nhr8c88OERFwCtK8iADTRKUhVEpx0CRAFUcz5tL69L5Y7c1dhte21sUfw78CjRYVb2xexNMUpHHmJBQYMzQ9zIaFeU+oXBeD3KDGYgLOMehhQnEaEbF4vs5/2SZCZ+m2nZCfMH+PVFAbMwsDq2zPNmsaiX5P22Y03R/VMgkywkTsVw0zRWnlJdR8onUKEjNLAChpb2Viwg0CLKB120I/urLz8Fgt+1/aXe+dxrdb1UcNbbDPrIm89ke67Ij1mN9JtgV+8nu2S/n2rlzfjt/ltY1p5rZZv+U8/AIuRKspg==</latexit>

h(✓) = h(✓0) +�✓i@ih+O(�✓2)
<latexit sha1_base64="aPuxWcbGU/Q1LekS5ATDFRrTfFs="></latexit>

lnL = �1

2
Fij�✓i�✓j

<latexit sha1_base64="YFgicQEFGSuZ7dU/42ibFElxa/8=">AAACFHicbVDLSgMxFM34rPU16tJNsAgVocxIUZcFUVxWsA/oDEMmzXTSZh4mmUIZ+xFu/BU3LhRx68Kdf2OmHURbDwROzrn3Jve4MaNCGsaXtrC4tLyyWlgrrm9sbm3rO7tNESUckwaOWMTbLhKE0ZA0JJWMtGNOUOAy0nIHF5nfGhIuaBTeylFM7AD1QupRjKSSHP34yklpfwwtcpfQISxbMeKSIuZQ6MN7+HPtQ//I0UtGxZgAzhMzJyWQo+7on1Y3wklAQokZEqJjGrG002wkZmRctBJBYoQHqEc6ioYoIMJOJ0uN4aFSutCLuDqhhBP1d0eKAiFGgasqAyR9Metl4n9eJ5HeuZ3SME4kCfH0IS9hUEYwSwh2KSdYspEiCHOq/gqxjzjCUuVYVCGYsyvPk+ZJxTytVG+qpdplHkcB7IMDUAYmOAM1cA3qoAEweABP4AW8ao/as/amvU9LF7S8Zw/8gfbxDX+dnds=</latexit>

Fij ⌘ (@ih|@jh)
<latexit sha1_base64="Wnhw5Onq33Y99ilCaKwhgwHHzvs=">AAACCnicbVDLSsNAFJ3UV62vqEs3o0VwY0mkqBuhIIrLivYBTSyT6aQdOpOEmYlQQtZu/BU3LhRx6xe482+ctBG09cCFwzn3cu89XsSoVJb1ZRTm5hcWl4rLpZXVtfUNc3OrKcNYYNLAIQtF20OSMBqQhqKKkXYkCOIeIy1veJ75rXsiJA2DWzWKiMtRP6A+xUhpqWvuOhypgecnzg3tc5TCM/ijXKZ3yaGdds2yVbHGgLPEzkkZ5Kh3zU+nF+KYk0BhhqTs2Fak3AQJRTEjacmJJYkQHqI+6WgaIE6km4xfSeG+VnrQD4WuQMGx+nsiQVzKEfd0Z3amnPYy8T+vEyv/1E1oEMWKBHiyyI8ZVCHMcoE9KghWbKQJwoLqWyEeIIGw0umVdAj29MuzpHlUsY8r1etquXaRx1EEO2APHAAbnIAauAJ10AAYPIAn8AJejUfj2Xgz3ietBSOf2QZ/YHx8A8HzmlE=</latexit>

⌃ = F�1

Fisher matrix

Fisher covariance

Gaussian approximation of the 
posterior, with Fisher covariance

In the presence of a residual
(noise, error in the waveform):
bias in best-fit parameters

<latexit sha1_base64="15eoxNpFOkTrRU2jCQq7PQ6b2qQ=">AAAB73icbVBNS8NAEN3Ur1q/qh69LBbBU0mkqMeCCB4r2A9oQ9lsJu3SzSbuToRS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJXCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMkmmOTR5IhPdCZgBKRQ0UaCETqqBxYGEdjC6mfntJ9BGJOoBxyn4MRsoEQnO0EqdXggSGR32yxW36s5BV4mXkwrJ0eiXv3phwrMYFHLJjOl6bor+hGkUXMK01MsMpIyP2AC6lioWg/En83un9MwqIY0SbUshnau/JyYsNmYcB7YzZjg0y95M/M/rZhhd+xOh0gxB8cWiKJMUEzp7noZCA0c5toRxLeytlA+ZZhxtRCUbgrf88ippXVS9y2rtvlap3+ZxFMkJOSXnxCNXpE7uSIM0CSeSPJNX8uY8Oi/Ou/OxaC04+cwx+QPn8weyWo/E</latexit>

�h

<latexit sha1_base64="A4t0ecvdIaGaxtX8i2pNUXCyItE="></latexit>

�✓i = F�1
ij (@jh|�h)

In practice…

• requires signal derivatives
• sensitive to degeneracies (even at high 

SNR)
• numerically delicate !

Valid in the high-SNR limit
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Effect of noise on posterior

Effect of noise
<latexit sha1_base64="GigLlS9BaeDFR4l5zwtIzj1c7Rc="></latexit>

lnL = �1

2
(h� h0|h� h0) + (h� h0|n)�

1

2
(n|n)

<latexit sha1_base64="VBX+VkJHfIuMBEYoEJX+rvdODus=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSIIQkmkqBehIILHCvYD0lA2m027dLMbdjdCCf0ZXjwo4tVf481/47bNQVsfDDzem2FmXphypo3rfjsrq2vrG5ulrfL2zu7efuXgsK1lpghtEcml6oZYU84EbRlmOO2miuIk5LQTjm6nfueJKs2keDTjlAYJHggWM4KNlfwI3aBh30XnSPQrVbfmzoCWiVeQKhRo9itfvUiSLKHCEI619j03NUGOlWGE00m5l2maYjLCA+pbKnBCdZDPTp6gU6tEKJbKljBopv6eyHGi9TgJbWeCzVAvelPxP8/PTHwd5EykmaGCzBfFGUdGoun/KGKKEsPHlmCimL0VkSFWmBibUtmG4C2+vEzaFzXvslZ/qFcbd0UcJTiGEzgDD66gAffQhBYQkPAMr/DmGOfFeXc+5q0rTjFzBH/gfP4Ax7CPpQ==</latexit>

d = h0 + n

0-noise likelihood cross-term
changes with n

const.
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Effect of noise on posterior

Effect of noise

<latexit sha1_base64="5YtteLqKbdRhzkHg3VNSdvnhGeQ=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqBehIILHCvYDmlI22027dLMJuxOhhP4NLx4U8eqf8ea/cdvmoK0PBh7vzTAzL0ikMOi6305hbX1jc6u4XdrZ3ds/KB8etUycasabLJax7gTUcCkUb6JAyTuJ5jQKJG8H49uZ337i2ohYPeIk4b2IDpUIBaNoJd8fcImUjMgNUf1yxa26c5BV4uWkAjka/fKXP4hZGnGFTFJjup6bYC+jGgWTfFryU8MTysZ0yLuWKhpx08vmN0/JmVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbzuZUIlKXLFFovCVBKMySwAMhCaM5QTSyjTwt5K2IhqytDGVLIheMsvr5LWRdW7rNYeapX6XR5HEU7gFM7Bgyuowz00oAkMEniGV3hzUufFeXc+Fq0FJ585hj9wPn8AtyqQ1w==</latexit>

�h = n

<latexit sha1_base64="GigLlS9BaeDFR4l5zwtIzj1c7Rc="></latexit>

lnL = �1

2
(h� h0|h� h0) + (h� h0|n)�

1

2
(n|n)

<latexit sha1_base64="VBX+VkJHfIuMBEYoEJX+rvdODus=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSIIQkmkqBehIILHCvYD0lA2m027dLMbdjdCCf0ZXjwo4tVf481/47bNQVsfDDzem2FmXphypo3rfjsrq2vrG5ulrfL2zu7efuXgsK1lpghtEcml6oZYU84EbRlmOO2miuIk5LQTjm6nfueJKs2keDTjlAYJHggWM4KNlfwI3aBh30XnSPQrVbfmzoCWiVeQKhRo9itfvUiSLKHCEI619j03NUGOlWGE00m5l2maYjLCA+pbKnBCdZDPTp6gU6tEKJbKljBopv6eyHGi9TgJbWeCzVAvelPxP8/PTHwd5EykmaGCzBfFGUdGoun/KGKKEsPHlmCimL0VkSFWmBibUtmG4C2+vEzaFzXvslZ/qFcbd0UcJTiGEzgDD66gAffQhBYQkPAMr/DmGOfFeXc+5q0rTjFzBH/gfP4Ax7CPpQ==</latexit>

d = h0 + n

0-noise likelihood cross-term
changes with n

const.

Bias in Fisher approach:
<latexit sha1_base64="6nnAmcqPkxQS9E3Qm3eJlT07dQ8="></latexit>

�✓i = F�1
ij (@jh|n)

<latexit sha1_base64="ZjeQurX7Ccy/Gnf68YhLJ0F/fxg="></latexit>

h�✓i�✓ji = F�1
ij = ⌃ij

<latexit sha1_base64="A6EyeTFeW7IOxF8a36W1ueqveCk="></latexit>

h�✓i�✓ji = F�1
ik F�1

jl h(@ih|n)(n|@jh)i
<latexit sha1_base64="jtPGzAdw1R8zY+fr5Na/aYUMjvQ=">AAACDnicbVDLSgMxFL3js9ZX1aWbYCnUTZmRom6EggguK9gHdIaSSTNtaCYzJBmhTPsFbvwVNy4UcevanX9jpu1CWw8ETs65l3vv8WPOlLbtb2tldW19YzO3ld/e2d3bLxwcNlWUSEIbJOKRbPtYUc4EbWimOW3HkuLQ57TlD68zv/VApWKRuNejmHoh7gsWMIK1kbqFEnI5Fn1O0VicorJAY1fO/lfIDbEe+EHqTLqFol2xp0DLxJmTIsxR7xa+3F5EkpAKTThWquPYsfZSLDUjnE7ybqJojMkQ92nHUIFDqrx0es4ElYzSQ0EkzRMaTdXfHSkOlRqFvqnMNlSLXib+53USHVx6KRNxoqkgs0FBwpGOUJYN6jFJieYjQzCRzOyKyABLTLRJMG9CcBZPXibNs4pzXqneVYu1m3kcOTiGEyiDAxdQg1uoQwMIPMIzvMKb9WS9WO/Wx6x0xZr3HMEfWJ8/EmWa5g==</latexit>

h|n)(n|i = 1

Biases due to noise follow the Fisher covariance
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Effect of noise on posterior

Effect of noise

<latexit sha1_base64="5YtteLqKbdRhzkHg3VNSdvnhGeQ=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqBehIILHCvYDmlI22027dLMJuxOhhP4NLx4U8eqf8ea/cdvmoK0PBh7vzTAzL0ikMOi6305hbX1jc6u4XdrZ3ds/KB8etUycasabLJax7gTUcCkUb6JAyTuJ5jQKJG8H49uZ337i2ohYPeIk4b2IDpUIBaNoJd8fcImUjMgNUf1yxa26c5BV4uWkAjka/fKXP4hZGnGFTFJjup6bYC+jGgWTfFryU8MTysZ0yLuWKhpx08vmN0/JmVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbzuZUIlKXLFFovCVBKMySwAMhCaM5QTSyjTwt5K2IhqytDGVLIheMsvr5LWRdW7rNYeapX6XR5HEU7gFM7Bgyuowz00oAkMEniGV3hzUufFeXc+Fq0FJ585hj9wPn8AtyqQ1w==</latexit>

�h = n

<latexit sha1_base64="GigLlS9BaeDFR4l5zwtIzj1c7Rc="></latexit>

lnL = �1

2
(h� h0|h� h0) + (h� h0|n)�

1

2
(n|n)

<latexit sha1_base64="VBX+VkJHfIuMBEYoEJX+rvdODus=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSIIQkmkqBehIILHCvYD0lA2m027dLMbdjdCCf0ZXjwo4tVf481/47bNQVsfDDzem2FmXphypo3rfjsrq2vrG5ulrfL2zu7efuXgsK1lpghtEcml6oZYU84EbRlmOO2miuIk5LQTjm6nfueJKs2keDTjlAYJHggWM4KNlfwI3aBh30XnSPQrVbfmzoCWiVeQKhRo9itfvUiSLKHCEI619j03NUGOlWGE00m5l2maYjLCA+pbKnBCdZDPTp6gU6tEKJbKljBopv6eyHGi9TgJbWeCzVAvelPxP8/PTHwd5EykmaGCzBfFGUdGoun/KGKKEsPHlmCimL0VkSFWmBibUtmG4C2+vEzaFzXvslZ/qFcbd0UcJTiGEzgDD66gAffQhBYQkPAMr/DmGOfFeXc+5q0rTjFzBH/gfP4Ax7CPpQ==</latexit>

d = h0 + n

0-noise likelihood cross-term
changes with n

const.

Bias in Fisher approach:
<latexit sha1_base64="6nnAmcqPkxQS9E3Qm3eJlT07dQ8="></latexit>

�✓i = F�1
ij (@jh|n)

<latexit sha1_base64="ZjeQurX7Ccy/Gnf68YhLJ0F/fxg="></latexit>

h�✓i�✓ji = F�1
ij = ⌃ij

<latexit sha1_base64="A6EyeTFeW7IOxF8a36W1ueqveCk="></latexit>

h�✓i�✓ji = F�1
ik F�1

jl h(@ih|n)(n|@jh)i
<latexit sha1_base64="jtPGzAdw1R8zY+fr5Na/aYUMjvQ=">AAACDnicbVDLSgMxFL3js9ZX1aWbYCnUTZmRom6EggguK9gHdIaSSTNtaCYzJBmhTPsFbvwVNy4UcevanX9jpu1CWw8ETs65l3vv8WPOlLbtb2tldW19YzO3ld/e2d3bLxwcNlWUSEIbJOKRbPtYUc4EbWimOW3HkuLQ57TlD68zv/VApWKRuNejmHoh7gsWMIK1kbqFEnI5Fn1O0VicorJAY1fO/lfIDbEe+EHqTLqFol2xp0DLxJmTIsxR7xa+3F5EkpAKTThWquPYsfZSLDUjnE7ybqJojMkQ92nHUIFDqrx0es4ElYzSQ0EkzRMaTdXfHSkOlRqFvqnMNlSLXib+53USHVx6KRNxoqkgs0FBwpGOUJYN6jFJieYjQzCRzOyKyABLTLRJMG9CcBZPXibNs4pzXqneVYu1m3kcOTiGEyiDAxdQg1uoQwMIPMIzvMKb9WS9WO/Wx6x0xZr3HMEfWJ8/EmWa5g==</latexit>

h|n)(n|i = 1

Biases due to noise follow the Fisher covariance

For different noise realizations:

• peak of the posterior moves around 
by the size of the statistical errors

• width of posterior unaffected (in this 
approx.)
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Outline

• GW signals: the basics

• Noise as a stochastic process

• Introducing matched filtering

• Towards real CBC searches

• Other signals: continuous waves, stochastic 
backgrounds

Part I Part II

• Bayesian parameter estimation basics, 
likelihood

• Parameter space and waveforms

• Fisher matrix approach

•Metropolis-Hastings MCMC, Parallel 
tempering and example PE

• PE toolbox

• PE results from LVK

• Future detectors and their challenges
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Sampling: introduction

Marginal

Conditional

<latexit sha1_base64="AfmmyVPiZmmlZAzn4mDwbivm+yY="></latexit>

1

n

nX

i=1

f(xi) ⇠n!+1

Z
dx p(x)f(x)

•Mandatory in high dimensions ! 
•Convenient compression
•Change of variable trivial
•Marginalization trivial

Samples: independent 
draws from the pdf

<latexit sha1_base64="1EjFYJb3zyM6p92ESS+PNGYxrPo="></latexit>

p(lnL) = 1

�(d/2)
(� lnL)d/2�1elnL

Multidimensional posteriors Curse of dimensionality
•Grids explode:

•Relevant volume vs 
full volume:

•In high dimensions, 
tails are important

<latexit sha1_base64="phAyeOWubXZxcUYgtsapr1L8cOc=">AAAB/XicbZDLSsNAFIZP6q3WW7zs3AwWoW5qIkXdCAURXLioYC/QxjKZTNqhkwszk0INxVdx40IRt76HO9/GaZuFVn8Y+PjPOZwzvxtzJpVlfRm5hcWl5ZX8amFtfWNzy9zeacgoEYTWScQj0XKxpJyFtK6Y4rQVC4oDl9OmO7ic1JtDKiSLwjs1iqkT4F7IfEaw0lbX3BuiY9RAF6jUoZxrvjm697pm0SpbU6G/YGdQhEy1rvnZ8SKSBDRUhGMp27YVKyfFQjHC6bjQSSSNMRngHm1rDHFApZNOrx+jQ+14yI+EfqFCU/fnRIoDKUeBqzsDrPpyvjYx/6u1E+WfOykL40TRkMwW+QlHKkKTKJDHBCWKjzRgIpi+FZE+FpgoHVhBh2DPf/kvNE7K9mm5clspVq+yOPKwDwdQAhvOoArXUIM6EHiAJ3iBV+PReDbejPdZa87IZnbhl4yPb1zVkp4=</latexit>

v/V = (`/L)d

Normal distribution

Posterior samples
Marginal:

Conditional:

<latexit sha1_base64="biN0xqBEZefdovJIzxiEDtkli0U=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL4tFaKGURIp6EQoieKxgW6EJZbPZtEs3m7C7EUOoF/+KFw+KePVfePPfuG1z0NYHA4/3ZpiZ58WMSmVZ30ZhaXllda24XtrY3NreMXf3OjJKBCZtHLFI3HlIEkY5aSuqGLmLBUGhx0jXG11O/O49EZJG/FalMXFDNOA0oBgpLfXNg7jyUIUX0KFcQT+FTg1qpZZW+2bZqltTwEVi56QMcrT65pfjRzgJCVeYISl7thUrN0NCUczIuOQkksQIj9CA9DTlKCTSzaYfjOGxVnwYREKXPmSq/p7IUChlGnq6M0RqKOe9ifif10tUcO5mlMeJIhzPFgUJgyqCkzigTwXBiqWaICyovhXiIRIIKx1aSYdgz7+8SDondfu03rhplJtXeRxFcAiOQAXY4Aw0wTVogTbA4BE8g1fwZjwZL8a78TFrLRj5zD74A+PzB+zqlKc=</latexit>

p(x) =

Z
dy p(x, y)

<latexit sha1_base64="6cykZR4d5BO69aBCpndtZRVtG48=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquFPVYEMFjBfsB7VKyabaNzSZLkhWX2v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTS0TRWiDSC5VO8CaciZowzDDaTtWFEcBp61gdDX1Ww9UaSbFnUlj6kd4IFjICDZWasblx6f0tFcsuRV3BrRMvIyUIEO9V/zq9iVJIioM4VjrjufGxh9jZRjhdFLoJprGmIzwgHYsFTii2h/Prp2gE6v0USiVLWHQTP09McaR1mkU2M4Im6Fe9Kbif14nMeGlP2YiTgwVZL4oTDgyEk1fR32mKDE8tQQTxeytiAyxwsTYgAo2BG/x5WXSPKt455XqbbVUu87iyMMRHEMZPLiAGtxAHRpA4B6e4RXeHOm8OO/Ox7w152Qzh/AHzucPQFOO8A==</latexit>

p(x|y)

<latexit sha1_base64="xalzWJ0DfRvgSLDqEPSWVHdwXpg=">AAAB6nicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY8FETxJRfsB7Vqy2Wwbms0uSVYoS3+CFw+KePUXefPfmLZ70NYHA4/3ZpiZ5yeCa+M436iwsrq2vlHcLG1t7+zulfcPWjpOFWVNGotYdXyimeCSNQ03gnUSxUjkC9b2R1dTv/3ElOaxfDDjhHkRGUgeckqMle5vH4N+ueJUnRnwMnFzUoEcjX75qxfENI2YNFQQrbuukxgvI8pwKtik1Es1SwgdkQHrWipJxLSXzU6d4BOrBDiMlS1p8Ez9PZGRSOtx5NvOiJihXvSm4n9eNzXhpZdxmaSGSTpfFKYCmxhP/8YBV4waMbaEUMXtrZgOiSLU2HRKNgR38eVl0jqruufV2l2tUr/O4yjCERzDKbhwAXW4gQY0gcIAnuEV3pBAL+gdfcxbCyifOYQ/QJ8/G1CNtA==</latexit>

Nd
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MH MCMC

• chain of values, no memory
• jump proposal, proba. acceptance

Markov Chain Monte Carlo

MCMC for sampling
• ergodicity (hard !)
• stationarity of the distribution

<latexit sha1_base64="+quhT/e/CX8dpit03yhwH7YEnhk=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CRahXsquFPVYEMFjBbcttEvJptk2NJssSVYsS3+DFw+KePUHefPfmLZ70NYHA4/3ZpiZFyacaeO6305hbX1jc6u4XdrZ3ds/KB8etbRMFaE+kVyqTog15UxQ3zDDaSdRFMchp+1wfDPz249UaSbFg5kkNIjxULCIEWys5Ceo+nTeL1fcmjsHWiVeTiqQo9kvf/UGkqQxFYZwrHXXcxMTZFgZRjidlnqppgkmYzykXUsFjqkOsvmxU3RmlQGKpLIlDJqrvycyHGs9iUPbGWMz0sveTPzP66Ymug4yJpLUUEEWi6KUIyPR7HM0YIoSwyeWYKKYvRWREVaYGJtPyYbgLb+8SloXNe+yVr+vVxq3eRxFOIFTqIIHV9CAO2iCDwQYPMMrvDnCeXHenY9Fa8HJZ47hD5zPH9W0jhE=</latexit>

p(x) target prob. distribution
<latexit sha1_base64="PQLkiOUqPSjtrLucZL7MhIaODRM=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpRdKeqxIILHCv2CdinZNNvGZpMlyYpL6X/w4kERr/4fb/4b03YPWn0w8Hhvhpl5QcyZNq775eRWVtfWN/Kbha3tnd294v5BS8tEEdokkkvVCbCmnAnaNMxw2okVxVHAaTsYX8/89gNVmknRMGlM/QgPBQsZwcZKrUb58Sw97RdLbsWdA/0lXkZKkKHeL372BpIkERWGcKx113Nj40+wMoxwOi30Ek1jTMZ4SLuWChxR7U/m107RiVUGKJTKljBorv6cmOBI6zQKbGeEzUgvezPxP6+bmPDKnzARJ4YKslgUJhwZiWavowFTlBieWoKJYvZWREZYYWJsQAUbgrf88l/SOq94F5XqXbVUu8niyMMRHEMZPLiEGtxCHZpA4B6e4AVeHek8O2/O+6I152Qzh/ALzsc3m2iOhA==</latexit>

T (x, y) transition prob. <latexit sha1_base64="hFpw5XU6zM3eUTzSMQfa8JC/M4o=">AAAB+HicbVBNSwMxEJ2tX7V+dNWjl2ARPJVdEfVYEMFjBfsB7VKyabYNzSZLklXX0l/ixYMiXv0p3vw3pu0etPXBwOO9GWbmhQln2njet1NYWV1b3yhulra2d3bL7t5+U8tUEdogkkvVDrGmnAnaMMxw2k4UxXHIaSscXU391j1VmklxZ7KEBjEeCBYxgo2Vem75EXUVGwwNVko+oKznVryqNwNaJn5OKpCj3nO/un1J0pgKQzjWuuN7iQnGWBlGOJ2UuqmmCSYjPKAdSwWOqQ7Gs8Mn6NgqfRRJZUsYNFN/T4xxrHUWh7YzxmaoF72p+J/XSU10GYyZSFJDBZkvilKOjETTFFCfKUoMzyzBRDF7KyJDrDAxNquSDcFffHmZNE+r/nn17PasUrvO4yjCIRzBCfhwATW4gTo0gEAKz/AKb86T8+K8Ox/z1oKTzxzAHzifP7I8kyM=</latexit>x ! y
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MH MCMC

• chain of values, no memory
• jump proposal, proba. acceptance

Markov Chain Monte Carlo

MCMC for sampling
• ergodicity (hard !)
• stationarity of the distribution

<latexit sha1_base64="+quhT/e/CX8dpit03yhwH7YEnhk=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CRahXsquFPVYEMFjBbcttEvJptk2NJssSVYsS3+DFw+KePUHefPfmLZ70NYHA4/3ZpiZFyacaeO6305hbX1jc6u4XdrZ3ds/KB8etbRMFaE+kVyqTog15UxQ3zDDaSdRFMchp+1wfDPz249UaSbFg5kkNIjxULCIEWys5Ceo+nTeL1fcmjsHWiVeTiqQo9kvf/UGkqQxFYZwrHXXcxMTZFgZRjidlnqppgkmYzykXUsFjqkOsvmxU3RmlQGKpLIlDJqrvycyHGs9iUPbGWMz0sveTPzP66Ymug4yJpLUUEEWi6KUIyPR7HM0YIoSwyeWYKKYvRWREVaYGJtPyYbgLb+8SloXNe+yVr+vVxq3eRxFOIFTqIIHV9CAO2iCDwQYPMMrvDnCeXHenY9Fa8HJZ47hD5zPH9W0jhE=</latexit>

p(x) target prob. distribution
<latexit sha1_base64="PQLkiOUqPSjtrLucZL7MhIaODRM=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpRdKeqxIILHCv2CdinZNNvGZpMlyYpL6X/w4kERr/4fb/4b03YPWn0w8Hhvhpl5QcyZNq775eRWVtfWN/Kbha3tnd294v5BS8tEEdokkkvVCbCmnAnaNMxw2okVxVHAaTsYX8/89gNVmknRMGlM/QgPBQsZwcZKrUb58Sw97RdLbsWdA/0lXkZKkKHeL372BpIkERWGcKx113Nj40+wMoxwOi30Ek1jTMZ4SLuWChxR7U/m107RiVUGKJTKljBorv6cmOBI6zQKbGeEzUgvezPxP6+bmPDKnzARJ4YKslgUJhwZiWavowFTlBieWoKJYvZWREZYYWJsQAUbgrf88l/SOq94F5XqXbVUu8niyMMRHEMZPLiEGtxCHZpA4B6e4AVeHek8O2/O+6I152Qzh/ALzsc3m2iOhA==</latexit>

T (x, y) transition prob. <latexit sha1_base64="hFpw5XU6zM3eUTzSMQfa8JC/M4o=">AAAB+HicbVBNSwMxEJ2tX7V+dNWjl2ARPJVdEfVYEMFjBfsB7VKyabYNzSZLklXX0l/ixYMiXv0p3vw3pu0etPXBwOO9GWbmhQln2njet1NYWV1b3yhulra2d3bL7t5+U8tUEdogkkvVDrGmnAnaMMxw2k4UxXHIaSscXU391j1VmklxZ7KEBjEeCBYxgo2Vem75EXUVGwwNVko+oKznVryqNwNaJn5OKpCj3nO/un1J0pgKQzjWuuN7iQnGWBlGOJ2UuqmmCSYjPKAdSwWOqQ7Gs8Mn6NgqfRRJZUsYNFN/T4xxrHUWh7YzxmaoF72p+J/XSU10GYyZSFJDBZkvilKOjETTFFCfKUoMzyzBRDF7KyJDrDAxNquSDcFffHmZNE+r/nn17PasUrvO4yjCIRzBCfhwATW4gTo0gEAKz/AKb86T8+K8Ox/z1oKTzxzAHzifP7I8kyM=</latexit>x ! y
<latexit sha1_base64="u7Y/8Uq6HtRyJPK588lJp4IEFMo=">AAACBnicbVDLSsNAFJ3UV62vqEsRBouQQimJFHUjFERwWaEPoQllMpm0QycPZibSELpy46+4caGIW7/BnX/jtM1CWw9cOJxzL/fe48aMCmma31phZXVtfaO4Wdra3tnd0/cPOiJKOCZtHLGI37tIEEZD0pZUMnIfc4ICl5GuO7qe+t0HwgWNwpZMY+IEaBBSn2IkldTXj2MjrcAraNNQQm8M7SqMjXEFtoxxNa309bJZM2eAy8TKSRnkaPb1L9uLcBKQUGKGhOhZZiydDHFJMSOTkp0IEiM8QgPSUzREARFONntjAk+V4kE/4qrUNTP190SGAiHSwFWdAZJDsehNxf+8XiL9SyejYZxIEuL5Ij9hUEZwmgn0KCdYslQRhDlVt0I8RBxhqZIrqRCsxZeXSeesZp3X6nf1cuMmj6MIjsAJMIAFLkAD3IImaAMMHsEzeAVv2pP2or1rH/PWgpbPHII/0D5/AKwklhY=</latexit>

p(y) =

Z
dx p(x)T (x, y)Stationarity:

Detailed balance
(sufficient):

<latexit sha1_base64="peHtO/abTgq9Oh+cwRwLaCfL47U=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1iEFEpJpKgboSCCywp9CG0ok+mkHTpJhpmJNJTixl9x40IRt36FO//GSZuFth64cOace5l7j8cZlcq2v43cyura+kZ+s7C1vbO7Z+4ftGQUC0yaOGKRuPeQJIyGpKmoYuSeC4ICj5G2N7pO/fYDEZJGYUMlnLgBGoTUpxgpLfXMI26NS7BhjctJCV5BbiXpKymPSz2zaFfsGeAycTJSBBnqPfOr249wHJBQYYak7Dg2V+4ECUUxI9NCN5aEIzxCA9LRNEQBke5kdsIUnmqlD/1I6AoVnKm/JyYokDIJPN0ZIDWUi14q/ud1YuVfuhMa8liREM8/8mMGVQTTPGCfCoIVSzRBWFC9K8RDJBBWOrWCDsFZPHmZtM4qznmlelct1m6yOPLgGJwACzjgAtTALaiDJsDgETyDV/BmPBkvxrvxMW/NGdnMIfgD4/MHn2uUZQ==</latexit>

p(x)T (x, y) = p(y)T (y, x)
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MH MCMC

• chain of values, no memory
• jump proposal, proba. acceptance

Markov Chain Monte Carlo Metropolis-Hastings MCMC

MCMC for sampling
• ergodicity (hard !)
• stationarity of the distribution

<latexit sha1_base64="+quhT/e/CX8dpit03yhwH7YEnhk=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CRahXsquFPVYEMFjBbcttEvJptk2NJssSVYsS3+DFw+KePUHefPfmLZ70NYHA4/3ZpiZFyacaeO6305hbX1jc6u4XdrZ3ds/KB8etbRMFaE+kVyqTog15UxQ3zDDaSdRFMchp+1wfDPz249UaSbFg5kkNIjxULCIEWys5Ceo+nTeL1fcmjsHWiVeTiqQo9kvf/UGkqQxFYZwrHXXcxMTZFgZRjidlnqppgkmYzykXUsFjqkOsvmxU3RmlQGKpLIlDJqrvycyHGs9iUPbGWMz0sveTPzP66Ymug4yJpLUUEEWi6KUIyPR7HM0YIoSwyeWYKKYvRWREVaYGJtPyYbgLb+8SloXNe+yVr+vVxq3eRxFOIFTqIIHV9CAO2iCDwQYPMMrvDnCeXHenY9Fa8HJZ47hD5zPH9W0jhE=</latexit>

p(x) target prob. distribution
<latexit sha1_base64="PQLkiOUqPSjtrLucZL7MhIaODRM=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpRdKeqxIILHCv2CdinZNNvGZpMlyYpL6X/w4kERr/4fb/4b03YPWn0w8Hhvhpl5QcyZNq775eRWVtfWN/Kbha3tnd294v5BS8tEEdokkkvVCbCmnAnaNMxw2okVxVHAaTsYX8/89gNVmknRMGlM/QgPBQsZwcZKrUb58Sw97RdLbsWdA/0lXkZKkKHeL372BpIkERWGcKx113Nj40+wMoxwOi30Ek1jTMZ4SLuWChxR7U/m107RiVUGKJTKljBorv6cmOBI6zQKbGeEzUgvezPxP6+bmPDKnzARJ4YKslgUJhwZiWavowFTlBieWoKJYvZWREZYYWJsQAUbgrf88l/SOq94F5XqXbVUu8niyMMRHEMZPLiEGtxCHZpA4B6e4AVeHek8O2/O+6I152Qzh/ALzsc3m2iOhA==</latexit>

T (x, y) transition prob. <latexit sha1_base64="hFpw5XU6zM3eUTzSMQfa8JC/M4o=">AAAB+HicbVBNSwMxEJ2tX7V+dNWjl2ARPJVdEfVYEMFjBfsB7VKyabYNzSZLklXX0l/ixYMiXv0p3vw3pu0etPXBwOO9GWbmhQln2njet1NYWV1b3yhulra2d3bL7t5+U8tUEdogkkvVDrGmnAnaMMxw2k4UxXHIaSscXU391j1VmklxZ7KEBjEeCBYxgo2Vem75EXUVGwwNVko+oKznVryqNwNaJn5OKpCj3nO/un1J0pgKQzjWuuN7iQnGWBlGOJ2UuqmmCSYjPKAdSwWOqQ7Gs8Mn6NgqfRRJZUsYNFN/T4xxrHUWh7YzxmaoF72p+J/XSU10GYyZSFJDBZkvilKOjETTFFCfKUoMzyzBRDF7KyJDrDAxNquSDcFffHmZNE+r/nn17PasUrvO4yjCIRzBCfhwATW4gTo0gEAKz/AKb86T8+K8Ox/z1oKTzxzAHzifP7I8kyM=</latexit>x ! y
<latexit sha1_base64="u7Y/8Uq6HtRyJPK588lJp4IEFMo=">AAACBnicbVDLSsNAFJ3UV62vqEsRBouQQimJFHUjFERwWaEPoQllMpm0QycPZibSELpy46+4caGIW7/BnX/jtM1CWw9cOJxzL/fe48aMCmma31phZXVtfaO4Wdra3tnd0/cPOiJKOCZtHLGI37tIEEZD0pZUMnIfc4ICl5GuO7qe+t0HwgWNwpZMY+IEaBBSn2IkldTXj2MjrcAraNNQQm8M7SqMjXEFtoxxNa309bJZM2eAy8TKSRnkaPb1L9uLcBKQUGKGhOhZZiydDHFJMSOTkp0IEiM8QgPSUzREARFONntjAk+V4kE/4qrUNTP190SGAiHSwFWdAZJDsehNxf+8XiL9SyejYZxIEuL5Ij9hUEZwmgn0KCdYslQRhDlVt0I8RBxhqZIrqRCsxZeXSeesZp3X6nf1cuMmj6MIjsAJMIAFLkAD3IImaAMMHsEzeAVv2pP2or1rH/PWgpbPHII/0D5/AKwklhY=</latexit>

p(y) =

Z
dx p(x)T (x, y)Stationarity:

Detailed balance
(sufficient):

<latexit sha1_base64="peHtO/abTgq9Oh+cwRwLaCfL47U=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1iEFEpJpKgboSCCywp9CG0ok+mkHTpJhpmJNJTixl9x40IRt36FO//GSZuFth64cOace5l7j8cZlcq2v43cyura+kZ+s7C1vbO7Z+4ftGQUC0yaOGKRuPeQJIyGpKmoYuSeC4ICj5G2N7pO/fYDEZJGYUMlnLgBGoTUpxgpLfXMI26NS7BhjctJCV5BbiXpKymPSz2zaFfsGeAycTJSBBnqPfOr249wHJBQYYak7Dg2V+4ECUUxI9NCN5aEIzxCA9LRNEQBke5kdsIUnmqlD/1I6AoVnKm/JyYokDIJPN0ZIDWUi14q/ud1YuVfuhMa8liREM8/8mMGVQTTPGCfCoIVSzRBWFC9K8RDJBBWOrWCDsFZPHmZtM4qznmlelct1m6yOPLgGJwACzjgAtTALaiDJsDgETyDV/BmPBkvxrvxMW/NGdnMIfgD4/MHn2uUZQ==</latexit>

p(x)T (x, y) = p(y)T (y, x)

jump proposal

For generic proposal, build acceptance 
probability that respects detailed balance

<latexit sha1_base64="hFpw5XU6zM3eUTzSMQfa8JC/M4o=">AAAB+HicbVBNSwMxEJ2tX7V+dNWjl2ARPJVdEfVYEMFjBfsB7VKyabYNzSZLklXX0l/ixYMiXv0p3vw3pu0etPXBwOO9GWbmhQln2njet1NYWV1b3yhulra2d3bL7t5+U8tUEdogkkvVDrGmnAnaMMxw2k4UxXHIaSscXU391j1VmklxZ7KEBjEeCBYxgo2Vem75EXUVGwwNVko+oKznVryqNwNaJn5OKpCj3nO/un1J0pgKQzjWuuN7iQnGWBlGOJ2UuqmmCSYjPKAdSwWOqQ7Gs8Mn6NgqfRRJZUsYNFN/T4xxrHUWh7YzxmaoF72p+J/XSU10GYyZSFJDBZkvilKOjETTFFCfKUoMzyzBRDF7KyJDrDAxNquSDcFffHmZNE+r/nn17PasUrvO4yjCIRzBCfhwATW4gTo0gEAKz/AKb86T8+K8Ox/z1oKTzxzAHzifP7I8kyM=</latexit>x ! y
<latexit sha1_base64="ySlbv3CSJN7CqwcUB0PeWv3yG1g=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpRdKeqxIILHCvYD2qVk07SNZpM1yYrL0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBRFn2rjut5NbWl5ZXcuvFzY2t7Z3irt7TS1jRWiDSC5VO8CaciZowzDDaTtSFIcBp63g/nLitx6p0kyKW5NE1A/xULABI9hYqflQfjpJjnvFkltxp0CLxMtICTLUe8Wvbl+SOKTCEI617nhuZPwUK8MIp+NCN9Y0wuQeD2nHUoFDqv10eu0YHVmljwZS2RIGTdXfEykOtU7CwHaG2Iz0vDcR//M6sRlc+CkTUWyoILNFg5gjI9HkddRnihLDE0swUczeisgIK0yMDahgQ/DmX14kzdOKd1ap3lRLtassjjwcwCGUwYNzqME11KEBBO7gGV7hzZHOi/PufMxac042sw9/4Hz+AMftjqE=</latexit>

q(x, y)
<latexit sha1_base64="EUKFAKaeQ7KdFHoFPd4PtmQSltM=">AAAB8nicbVBNSwMxEM36WetX1aOXYBEqSNmVoh4LInisYD9gu5TZNG1Ds8mSZMVl6c/w4kERr/4ab/4b03YP2vpg4PHeDDPzwpgzbVz321lZXVvf2CxsFbd3dvf2SweHLS0TRWiTSC5VJwRNORO0aZjhtBMrClHIaTsc30z99iNVmknxYNKYBhEMBRswAsZKfhd4PILK03l61iuV3ao7A14mXk7KKEejV/rq9iVJIioM4aC177mxCTJQhhFOJ8VuomkMZAxD6lsqIKI6yGYnT/CpVfp4IJUtYfBM/T2RQaR1GoW2MwIz0oveVPzP8xMzuA4yJuLEUEHmiwYJx0bi6f+4zxQlhqeWAFHM3orJCBQQY1Mq2hC8xZeXSeui6l1Wa/e1cv02j6OAjtEJqiAPXaE6ukMN1EQESfSMXtGbY5wX5935mLeuOPnMEfoD5/MHgbiQxA==</latexit>

↵(x, y) acceptance probability
<latexit sha1_base64="h2PBU4tFGIwO52YFHhLqxMn5TPA=">AAACBHicbZDLSsNAFIZPvNZ6i7rsZrAIFaQkUtSNUBDBZYXeoA1lMp20QycXZyZiCF248VXcuFDErQ/hzrdxmnahrT8MfPznHM6c3404k8qyvo2l5ZXVtfXcRn5za3tn19zbb8owFoQ2SMhD0XaxpJwFtKGY4rQdCYp9l9OWO7qa1Fv3VEgWBnWVRNTx8SBgHiNYaatnFuqlh5PkGF2iuyl0MY+GOOOeWbTKVia0CPYMijBTrWd+dfshiX0aKMKxlB3bipSTYqEY4XSc78aSRpiM8IB2NAbYp9JJsyPG6Eg7feSFQr9Aocz9PZFiX8rEd3Wnj9VQztcm5n+1Tqy8CydlQRQrGpDpIi/mSIVokgjqM0GJ4okGTATTf0VkiAUmSueW1yHY8ycvQvO0bJ+VK7eVYvV6FkcOCnAIJbDhHKpwAzVoAIFHeIZXeDOejBfj3fiYti4Zs5kD+CPj8wcJb5XT</latexit>

T (x, y) = q(x, y)↵(x, y)

Reject jump with probability
<latexit sha1_base64="kA8mFy+fClT2MLPrfRumsiknlKM=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBahgpZEinosiOCxgv2ANpbNdtMu3WzC7kYNof/DiwdFvPpfvPlv3LY5aOuDgcd7M8zM8yLOlLbtbyu3tLyyupZfL2xsbm3vFHf3miqMJaENEvJQtj2sKGeCNjTTnLYjSXHgcdryRlcTv/VApWKhuNNJRN0ADwTzGcHaSPcOOu1iHg1x+ekkOe4VS3bFngItEicjJchQ7xW/uv2QxAEVmnCsVMexI+2mWGpGOB0XurGiESYjPKAdQwUOqHLT6dVjdGSUPvJDaUpoNFV/T6Q4UCoJPNMZYD1U895E/M/rxNq/dFMmolhTQWaL/JgjHaJJBKjPJCWaJ4ZgIpm5FZEhlphoE1TBhODMv7xImmcV57xSva2WatdZHHk4gEMogwMXUIMbqEMDCEh4hld4sx6tF+vd+pi15qxsZh/+wPr8AbWZkWA=</latexit>

1� ↵(x, y)
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MH MCMC

• chain of values, no memory
• jump proposal, proba. acceptance

Markov Chain Monte Carlo Metropolis-Hastings MCMC

MCMC for sampling
• ergodicity (hard !)
• stationarity of the distribution

<latexit sha1_base64="+quhT/e/CX8dpit03yhwH7YEnhk=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CRahXsquFPVYEMFjBbcttEvJptk2NJssSVYsS3+DFw+KePUHefPfmLZ70NYHA4/3ZpiZFyacaeO6305hbX1jc6u4XdrZ3ds/KB8etbRMFaE+kVyqTog15UxQ3zDDaSdRFMchp+1wfDPz249UaSbFg5kkNIjxULCIEWys5Ceo+nTeL1fcmjsHWiVeTiqQo9kvf/UGkqQxFYZwrHXXcxMTZFgZRjidlnqppgkmYzykXUsFjqkOsvmxU3RmlQGKpLIlDJqrvycyHGs9iUPbGWMz0sveTPzP66Ymug4yJpLUUEEWi6KUIyPR7HM0YIoSwyeWYKKYvRWREVaYGJtPyYbgLb+8SloXNe+yVr+vVxq3eRxFOIFTqIIHV9CAO2iCDwQYPMMrvDnCeXHenY9Fa8HJZ47hD5zPH9W0jhE=</latexit>

p(x) target prob. distribution
<latexit sha1_base64="PQLkiOUqPSjtrLucZL7MhIaODRM=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpRdKeqxIILHCv2CdinZNNvGZpMlyYpL6X/w4kERr/4fb/4b03YPWn0w8Hhvhpl5QcyZNq775eRWVtfWN/Kbha3tnd294v5BS8tEEdokkkvVCbCmnAnaNMxw2okVxVHAaTsYX8/89gNVmknRMGlM/QgPBQsZwcZKrUb58Sw97RdLbsWdA/0lXkZKkKHeL372BpIkERWGcKx113Nj40+wMoxwOi30Ek1jTMZ4SLuWChxR7U/m107RiVUGKJTKljBorv6cmOBI6zQKbGeEzUgvezPxP6+bmPDKnzARJ4YKslgUJhwZiWavowFTlBieWoKJYvZWREZYYWJsQAUbgrf88l/SOq94F5XqXbVUu8niyMMRHEMZPLiEGtxCHZpA4B6e4AVeHek8O2/O+6I152Qzh/ALzsc3m2iOhA==</latexit>

T (x, y) transition prob. <latexit sha1_base64="hFpw5XU6zM3eUTzSMQfa8JC/M4o=">AAAB+HicbVBNSwMxEJ2tX7V+dNWjl2ARPJVdEfVYEMFjBfsB7VKyabYNzSZLklXX0l/ixYMiXv0p3vw3pu0etPXBwOO9GWbmhQln2njet1NYWV1b3yhulra2d3bL7t5+U8tUEdogkkvVDrGmnAnaMMxw2k4UxXHIaSscXU391j1VmklxZ7KEBjEeCBYxgo2Vem75EXUVGwwNVko+oKznVryqNwNaJn5OKpCj3nO/un1J0pgKQzjWuuN7iQnGWBlGOJ2UuqmmCSYjPKAdSwWOqQ7Gs8Mn6NgqfRRJZUsYNFN/T4xxrHUWh7YzxmaoF72p+J/XSU10GYyZSFJDBZkvilKOjETTFFCfKUoMzyzBRDF7KyJDrDAxNquSDcFffHmZNE+r/nn17PasUrvO4yjCIRzBCfhwATW4gTo0gEAKz/AKb86T8+K8Ox/z1oKTzxzAHzifP7I8kyM=</latexit>x ! y
<latexit sha1_base64="u7Y/8Uq6HtRyJPK588lJp4IEFMo=">AAACBnicbVDLSsNAFJ3UV62vqEsRBouQQimJFHUjFERwWaEPoQllMpm0QycPZibSELpy46+4caGIW7/BnX/jtM1CWw9cOJxzL/fe48aMCmma31phZXVtfaO4Wdra3tnd0/cPOiJKOCZtHLGI37tIEEZD0pZUMnIfc4ICl5GuO7qe+t0HwgWNwpZMY+IEaBBSn2IkldTXj2MjrcAraNNQQm8M7SqMjXEFtoxxNa309bJZM2eAy8TKSRnkaPb1L9uLcBKQUGKGhOhZZiydDHFJMSOTkp0IEiM8QgPSUzREARFONntjAk+V4kE/4qrUNTP190SGAiHSwFWdAZJDsehNxf+8XiL9SyejYZxIEuL5Ij9hUEZwmgn0KCdYslQRhDlVt0I8RBxhqZIrqRCsxZeXSeesZp3X6nf1cuMmj6MIjsAJMIAFLkAD3IImaAMMHsEzeAVv2pP2or1rH/PWgpbPHII/0D5/AKwklhY=</latexit>

p(y) =

Z
dx p(x)T (x, y)Stationarity:

Detailed balance
(sufficient):

<latexit sha1_base64="peHtO/abTgq9Oh+cwRwLaCfL47U=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1iEFEpJpKgboSCCywp9CG0ok+mkHTpJhpmJNJTixl9x40IRt36FO//GSZuFth64cOace5l7j8cZlcq2v43cyura+kZ+s7C1vbO7Z+4ftGQUC0yaOGKRuPeQJIyGpKmoYuSeC4ICj5G2N7pO/fYDEZJGYUMlnLgBGoTUpxgpLfXMI26NS7BhjctJCV5BbiXpKymPSz2zaFfsGeAycTJSBBnqPfOr249wHJBQYYak7Dg2V+4ECUUxI9NCN5aEIzxCA9LRNEQBke5kdsIUnmqlD/1I6AoVnKm/JyYokDIJPN0ZIDWUi14q/ud1YuVfuhMa8liREM8/8mMGVQTTPGCfCoIVSzRBWFC9K8RDJBBWOrWCDsFZPHmZtM4qznmlelct1m6yOPLgGJwACzjgAtTALaiDJsDgETyDV/BmPBkvxrvxMW/NGdnMIfgD4/MHn2uUZQ==</latexit>

p(x)T (x, y) = p(y)T (y, x)

jump proposal

For generic proposal, build acceptance 
probability that respects detailed balance

<latexit sha1_base64="hFpw5XU6zM3eUTzSMQfa8JC/M4o=">AAAB+HicbVBNSwMxEJ2tX7V+dNWjl2ARPJVdEfVYEMFjBfsB7VKyabYNzSZLklXX0l/ixYMiXv0p3vw3pu0etPXBwOO9GWbmhQln2njet1NYWV1b3yhulra2d3bL7t5+U8tUEdogkkvVDrGmnAnaMMxw2k4UxXHIaSscXU391j1VmklxZ7KEBjEeCBYxgo2Vem75EXUVGwwNVko+oKznVryqNwNaJn5OKpCj3nO/un1J0pgKQzjWuuN7iQnGWBlGOJ2UuqmmCSYjPKAdSwWOqQ7Gs8Mn6NgqfRRJZUsYNFN/T4xxrHUWh7YzxmaoF72p+J/XSU10GYyZSFJDBZkvilKOjETTFFCfKUoMzyzBRDF7KyJDrDAxNquSDcFffHmZNE+r/nn17PasUrvO4yjCIRzBCfhwATW4gTo0gEAKz/AKb86T8+K8Ox/z1oKTzxzAHzifP7I8kyM=</latexit>x ! y
<latexit sha1_base64="ySlbv3CSJN7CqwcUB0PeWv3yG1g=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpRdKeqxIILHCvYD2qVk07SNZpM1yYrL0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBRFn2rjut5NbWl5ZXcuvFzY2t7Z3irt7TS1jRWiDSC5VO8CaciZowzDDaTtSFIcBp63g/nLitx6p0kyKW5NE1A/xULABI9hYqflQfjpJjnvFkltxp0CLxMtICTLUe8Wvbl+SOKTCEI617nhuZPwUK8MIp+NCN9Y0wuQeD2nHUoFDqv10eu0YHVmljwZS2RIGTdXfEykOtU7CwHaG2Iz0vDcR//M6sRlc+CkTUWyoILNFg5gjI9HkddRnihLDE0swUczeisgIK0yMDahgQ/DmX14kzdOKd1ap3lRLtassjjwcwCGUwYNzqME11KEBBO7gGV7hzZHOi/PufMxac042sw9/4Hz+AMftjqE=</latexit>

q(x, y)
<latexit sha1_base64="EUKFAKaeQ7KdFHoFPd4PtmQSltM=">AAAB8nicbVBNSwMxEM36WetX1aOXYBEqSNmVoh4LInisYD9gu5TZNG1Ds8mSZMVl6c/w4kERr/4ab/4b03YP2vpg4PHeDDPzwpgzbVz321lZXVvf2CxsFbd3dvf2SweHLS0TRWiTSC5VJwRNORO0aZjhtBMrClHIaTsc30z99iNVmknxYNKYBhEMBRswAsZKfhd4PILK03l61iuV3ao7A14mXk7KKEejV/rq9iVJIioM4aC177mxCTJQhhFOJ8VuomkMZAxD6lsqIKI6yGYnT/CpVfp4IJUtYfBM/T2RQaR1GoW2MwIz0oveVPzP8xMzuA4yJuLEUEHmiwYJx0bi6f+4zxQlhqeWAFHM3orJCBQQY1Mq2hC8xZeXSeui6l1Wa/e1cv02j6OAjtEJqiAPXaE6ukMN1EQESfSMXtGbY5wX5935mLeuOPnMEfoD5/MHgbiQxA==</latexit>

↵(x, y) acceptance probability
<latexit sha1_base64="h2PBU4tFGIwO52YFHhLqxMn5TPA=">AAACBHicbZDLSsNAFIZPvNZ6i7rsZrAIFaQkUtSNUBDBZYXeoA1lMp20QycXZyZiCF248VXcuFDErQ/hzrdxmnahrT8MfPznHM6c3404k8qyvo2l5ZXVtfXcRn5za3tn19zbb8owFoQ2SMhD0XaxpJwFtKGY4rQdCYp9l9OWO7qa1Fv3VEgWBnWVRNTx8SBgHiNYaatnFuqlh5PkGF2iuyl0MY+GOOOeWbTKVia0CPYMijBTrWd+dfshiX0aKMKxlB3bipSTYqEY4XSc78aSRpiM8IB2NAbYp9JJsyPG6Eg7feSFQr9Aocz9PZFiX8rEd3Wnj9VQztcm5n+1Tqy8CydlQRQrGpDpIi/mSIVokgjqM0GJ4okGTATTf0VkiAUmSueW1yHY8ycvQvO0bJ+VK7eVYvV6FkcOCnAIJbDhHKpwAzVoAIFHeIZXeDOejBfj3fiYti4Zs5kD+CPj8wcJb5XT</latexit>

T (x, y) = q(x, y)↵(x, y)

Reject jump with probability
<latexit sha1_base64="kA8mFy+fClT2MLPrfRumsiknlKM=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBahgpZEinosiOCxgv2ANpbNdtMu3WzC7kYNof/DiwdFvPpfvPlv3LY5aOuDgcd7M8zM8yLOlLbtbyu3tLyyupZfL2xsbm3vFHf3miqMJaENEvJQtj2sKGeCNjTTnLYjSXHgcdryRlcTv/VApWKhuNNJRN0ADwTzGcHaSPcOOu1iHg1x+ekkOe4VS3bFngItEicjJchQ7xW/uv2QxAEVmnCsVMexI+2mWGpGOB0XurGiESYjPKAdQwUOqHLT6dVjdGSUPvJDaUpoNFV/T6Q4UCoJPNMZYD1U895E/M/rxNq/dFMmolhTQWaL/JgjHaJJBKjPJCWaJ4ZgIpm5FZEhlphoE1TBhODMv7xImmcV57xSva2WatdZHHk4gEMogwMXUIMbqEMDCEh4hld4sx6tF+vd+pi15qxsZh/+wPr8AbWZkWA=</latexit>

1� ↵(x, y)

MH:
<latexit sha1_base64="ObJWq8f26ztlCWa2bPre+EGVUo8="></latexit>

↵(x, y) = min

✓
1,

p(y)

p(x)

q(y, x)

q(x, y)

◆

Symmetric proposal:
<latexit sha1_base64="4vwJM+rzo0t+zridiLta7fHvW3Y=">AAACHXicbVDLSgMxFM34rPVVdekmWIQWSpmRom6EggguK9gHdErJpJk2NJMZkjvSYeiPuPFX3LhQxIUb8W9MHwttPXAvh3PuJbnHiwTXYNvf1srq2vrGZmYru72zu7efOzhs6DBWlNVpKELV8ohmgktWBw6CtSLFSOAJ1vSG1xO/+cCU5qG8hyRinYD0Jfc5JWCkbq7iEhENSGFUSor4CrsBl9gVzIeCU8KurwhNo0JSHJs+Ko5dxfsDKHZzebtsT4GXiTMneTRHrZv7dHshjQMmgQqidduxI+ikRAGngo2zbqxZROiQ9FnbUEkCpjvp9LoxPjVKD/uhMiUBT9XfGykJtE4Cz0wGBAZ60ZuI/3ntGPzLTsplFAOTdPaQHwsMIZ5EhXtcMQoiMYRQxc1fMR0QEwmYQLMmBGfx5GXSOCs75+XKXSVfvZnHkUHH6AQVkIMuUBXdohqqI4oe0TN6RW/Wk/VivVsfs9EVa75zhP7A+voBpzCgdg==</latexit>

↵(x, y) = min

✓
1,

p(y)

p(x)

◆

• going up: always accept !
• going down: accept or reject
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MCMC proposals

Tailored proposals

Simple proposals

Tradeoff: 

Example: Gaussian proposal

Stat Comput

Fig. 1 Parallel direction update in DE-MC in two dimensions with 30
parallel chains, each represented by a point (d = 2,N = 30). (a) For
updating the ith chain, which is in state xi , the proposed state is x*,
generated from xi , the difference of the states of two other chains (xR1
and xR2) and a random vector e by (1) with γ = 2.4/(2 × 2)1/2 = 1.2.
(b) The reverse jump from x* to xi is obtained by reversing e and the
order of the two other states

Fig. 2 Parallel direction update in DE-MC in two dimensions.
(a) DE-MC can jump between modes with γ = 1.0 and (b) an out-
lier chain (xi ) may need considerable time to reach the modal region
because the differences within this region are small. In (a) and (b) the
random term e is neglected as it is small compared to the jumps

of γ is 2.38/
√

(2d), with d the number of parameters of
the posterior. This choice is motivated by comparison with
random walk Metropolis with a normal jumping distribu-
tion (RWMN) (Roberts and Rosenthal 2001). This choice
of γ gives, at least for Gaussian and Student target distri-
butions, DE-MC acceptance probabilities close to 0.44 for
d = 1,0.28 for d = 5 and 0.23 for large d (see Sect. 7.84 of
Robert and Casella (2004) for a cautionary note on these ref-
erences acceptance rates). After a burn-in period, the states
of the chains are independent so that convergence of a DE-
MC run can be monitored with the R̂-statistic of Gelman
et al. (2004). DE-MC shares this useful feature with other
population MCMC samplers (Mengersen and Robert 2003).

DE-MC can be effective to explore multimodal densities.
With an occasional choice of γ ≈ 1, a chain can jump be-
tween two disconnected modes (Fig. 2a). If a mode is rep-
resented by at least a single chain, a second chain can be
moved to it in accordance with the posterior mass of the
mode. This simple strategy of DE-MC balances exploration
and exploitation of the space.

For DE-MC to work well the number of chains N must be
larger than d . Our previous work has shown that N = 2d or
3d worked fine for simple unimodal posteriors for d < 50,

say, but that N = 10d to 20d was required for more com-
plicated posteriors (ter Braak 2006). A large N has a dis-
advantage though. When initialized from a wide prior, each
chain must travel to the high density region of the poste-
rior. Although jumps can initially be larger than in RWMN,
the time for all N chains to converge is typically a factor N

larger than for a single chain. For slowly converging adap-
tive chains the performance could even be worse.

There are two other reasons why using a smaller N might
be advantageous. First, if the posterior is unimodal and all
but one chain have converged to the modal region, it might
still take considerable time to also move this outlier chain
to the mode, irrespective of the value of γ (Fig. 2b). Conse-
quently, standard DE-MC has potentially an outlier problem.
Empirically outlier chains occur more often with large N

which is necessary for large d . Second, in a multi-processor
environment, chains could run on individual computational
nodes (processors). The lower the number of nodes required,
the greater the practical applicability of DE-MC for compu-
tationally demanding problems. It would then also be advan-
tageous that the proposal of the ith chain would not require
the updated states of the chains 1, . . . , (i − 1), as they do
in Metropolis-within-Gibbs and thus in standard DE-MC.
There is therefore sufficient scope to further increase the ef-
ficiency and implementation of DE-MC.

One device that allows for the use of smaller N is
to decrease the number of parameters that is simultane-
ously altered in each jump. Rather than performing a full-
dimensional update, one can update blocks of parameters
in turn. With blocks of one parameter, each parameter is up-
dated in turn as in Gibbs sampling. More generally, the para-
meters to be updated jointly can be selected randomly with
some probability CR, the crossover rate (Price et al. 2005;
Vrugt et al. 2008a, 2008b). Preferably, highly correlated pa-
rameters should be updated jointly; so better probabilistic
schemes can be devised. An extreme case is to fix the blocks
of parameters in advance as illustrated in ter Braak (2006)
for a nonlinear mixed-effects model. The model in question
had d = 43 and was sampled with blocks of size one to three
using N = 9. Some computational tricks and special fea-
tures of the model were used to let the method outperform
standard DE-MC using 2d = 86 chains with full-space up-
dates.

This paper explores another way to decrease N , namely
by sampling the difference vectors in the DE-MC jump
from past states, which turns the method into an adaptive
Metropolis sampler (Haario et al. 2001; Roberts and Rosen-
thal 2007, 2008).

It is always of interest to have a larger variety of effi-
cient update schemes. In analogy with adaptive direction
sampling (Gilks et al. 1994), we present a snooker up-
date for DE-MC. Gibbs sampling usually samples along
each coordinate axis in turn (each representing a parame-
ter). A snooker update also samples along one axis at a

Dynamical evolution

Ensemble sampling

If multimodalities are known, propose 
non-local jumps to other modes  

Covariance from Fisher ?
Adaptive covariance from chain ?

Evolve chains in parallel, that will use 
each other to build proposal
Affine-invariant

• narrow: good acceptance, bad 
exploration

• wide: bad acceptance, good 
exploration

Use past of the chain to build proposal
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Parallel tempering

Multimodality issue and ideawith order parameters other than temperature, such as pair
potentials or chemical potentials. Of interest is how to choose
the order parameter whose swapping will give the most efficient
equilibration. It has also become apparent that multi-dimen-
sional parallel tempering is possible. That is, swapping between
a number of parameters in the same simulation, in a multi-
dimensional space of order parameters, is feasible and some-
times advised. The improvement in sampling resulting from the
use of parallel tempering has revealed deficiencies in some of
the most popular force fields used for atomistic simulations,
and it would seem that the use of parallel tempering will be
essential in tests of new and improved force fields.

Parallel tempering can be combined with most other simula-
tion methods, as the exchanges, if done correctly, maintain the
detailed balance or balance condition of the underlying simu-
lation. Thus, there is almost an unlimited scope for the
utilization of the method in computer simulation. This leads
to intriguing possibilities, such as combining parallel tempering
with quantum methods.

2. Theory

2.1 Theory of Monte Carlo parallel tempering

In a typical parallel tempering simulation we have M replicas,
each in the canonical ensemble, and each at a different tem-
perature, Ti. In general T1 o T2 o . . . o TM, and T1 is
normally the temperature of the system of interest. Since the
replicas do not interact energetically, the partition function of
this larger ensemble is given by

Q ¼
YM

i¼1

qi
N!

R
drNi exp½#biUðrNi Þ&; ð1Þ

where qi ¼ PN
j¼1(2pmjkBTi)

3/2 comes from integrating out the
momenta, mj is the mass of atom j, ri

N specifies the positions of
the N particles in system i, bi ¼ 1/(kBTi) is the reciprocal
temperature, and U is the potential energy, or the part of the
Hamiltonian that does not involve the momenta. If the prob-
ability of performing a swap move is equal for all conditions,
exchanges between ensembles i and j are accepted with the
probability

A ¼ min{1, exp[þ(bi # bj)(U(ri
N) # U(rj

N))]}. (2)

Swaps are normally attempted between systems with adjacent
temperatures, j ¼ i þ 1.

Parallel tempering is an exact method in statistical me-
chanics, in that it satisfies the detailed balance or balance
condition,6 depending on the implementation. This is an im-
portant advantage of parallel tempering over simulated anneal-
ing, as ensemble averages cannot be defined in the latter
method. Parallel tempering is complementary to any set of
Monte Carlo moves for a system at a single temperature, and
such single-system moves are performed between each at-
tempted swap. To satisfy detailed balance, the swap moves
must be performed with a certain probability, although per-
forming the swaps after a fixed number of single-temperature
Monte Carlo moves satisfies the sufficient condition of bal-
ance.6 A typical sequence of swaps and single-temperature
Monte Carlo moves is shown in Fig. 2.

Kofke conducted an analysis of the average acceptance rate,
hAi, of exchange trials and argued that this quantity should be
related to the entropy difference between phases.7–9 For sys-
tems assumed to have Gaussian energy distributions, typical of
many systems that are studied using computer simulation, see
Fig. 3, he found the average acceptance ratio, hAi, to be given
by

hAi ¼ erfc
1

2
Cv

! "1=2 1# bj=bi
ð1þ ðbj=biÞ

2Þ1=2

" #
; ð3Þ

where Cv is the heat capacity at constant volume, which is
assumed to be constant in the temperature range between bi
and bj. Simply put, the acceptance rate for the trials depends on
the likelihood that the system sampling the higher temperature
happens to be in a region of phase space that is important at
the lower temperature. This theoretical analysis of the accep-
tance rates becomes useful when considering the optimal
choice of temperatures for a parallel tempering simulation
(see section 2.3).

2.2 Theory of molecular dynamics parallel tempering

In Monte Carlo implementations of parallel tempering, we
need only consider the positions of the particles in the simula-
tion. In molecular dynamics, we must also take into account
the momenta of all the particles in the system. Sugita and
Okamoto proposed a parallel tempering molecular dynamics
method in which after an exchange, the new momenta for
replica i, p(i)0, should be determined as

pðiÞ
0
¼

ffiffiffiffiffiffiffiffiffiffi
Tnew

Told

r
pðiÞ; ð4Þ

where p(i) are the old momenta for replica i, and Told and Tnew

are the temperatures of the replica before and after the swap,
respectively.5 This procedure ensures that the average kinetic
energy remains equal to 3

2NkBT . The acceptance criterion for
an exchange remains the same as for the MC implementation
(eqn (2)) and satisfies detailed balance.
When doing parallel tempering molecular dynamics, one

must take care in the interpretation of the results. A parallel
tempering exchange is an ‘unphysical’ move, and so one cannot
draw conclusions about dynamics. That is, when using parallel
tempering molecular dynamics, one is only really doing a form
of sampling and not ‘true’ molecular dynamics.

2.3 Optimal choice of temperatures

How one chooses both the number of replicas employed in a
parallel tempering simulation and the temperatures of the
replicas are questions of great importance. One wishes to
achieve the best possible sampling with the minimum amount
of computational effort. The highest temperature must be
sufficiently high so as to ensure that no replicas become
trapped in local energy minima, while the number of replicas
used must be large enough to ensure that swapping occurs
between all adjacent replicas. Several suggestions for the
number and temperature of the replicas have been offered. It
is clear from Fig. 3 and eqn (2) that the energy histograms must
overlap for swaps to be accepted. Sugita et al. and Kofke have
proposed that the acceptance probability could be made uni-
form across all of the different replicas, in an attempt to ensure
that each replica spends the same amount of simulation time at
each temperature.5,7,8 Kofke showed that a geometric progres-
sion of temperatures (Ti/Tj ¼ constant) for systems in which Cv

Fig. 2 Schematic representation of parallel tempering swaps between
adjacent replicas at different temperatures. In-between the swaps,
several constant-temperature Monte Carlo moves are performed.
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Parallel tempering

Multimodality issue and ideawith order parameters other than temperature, such as pair
potentials or chemical potentials. Of interest is how to choose
the order parameter whose swapping will give the most efficient
equilibration. It has also become apparent that multi-dimen-
sional parallel tempering is possible. That is, swapping between
a number of parameters in the same simulation, in a multi-
dimensional space of order parameters, is feasible and some-
times advised. The improvement in sampling resulting from the
use of parallel tempering has revealed deficiencies in some of
the most popular force fields used for atomistic simulations,
and it would seem that the use of parallel tempering will be
essential in tests of new and improved force fields.

Parallel tempering can be combined with most other simula-
tion methods, as the exchanges, if done correctly, maintain the
detailed balance or balance condition of the underlying simu-
lation. Thus, there is almost an unlimited scope for the
utilization of the method in computer simulation. This leads
to intriguing possibilities, such as combining parallel tempering
with quantum methods.

2. Theory

2.1 Theory of Monte Carlo parallel tempering

In a typical parallel tempering simulation we have M replicas,
each in the canonical ensemble, and each at a different tem-
perature, Ti. In general T1 o T2 o . . . o TM, and T1 is
normally the temperature of the system of interest. Since the
replicas do not interact energetically, the partition function of
this larger ensemble is given by

Q ¼
YM

i¼1

qi
N!

R
drNi exp½#biUðrNi Þ&; ð1Þ

where qi ¼ PN
j¼1(2pmjkBTi)

3/2 comes from integrating out the
momenta, mj is the mass of atom j, ri

N specifies the positions of
the N particles in system i, bi ¼ 1/(kBTi) is the reciprocal
temperature, and U is the potential energy, or the part of the
Hamiltonian that does not involve the momenta. If the prob-
ability of performing a swap move is equal for all conditions,
exchanges between ensembles i and j are accepted with the
probability

A ¼ min{1, exp[þ(bi # bj)(U(ri
N) # U(rj

N))]}. (2)

Swaps are normally attempted between systems with adjacent
temperatures, j ¼ i þ 1.

Parallel tempering is an exact method in statistical me-
chanics, in that it satisfies the detailed balance or balance
condition,6 depending on the implementation. This is an im-
portant advantage of parallel tempering over simulated anneal-
ing, as ensemble averages cannot be defined in the latter
method. Parallel tempering is complementary to any set of
Monte Carlo moves for a system at a single temperature, and
such single-system moves are performed between each at-
tempted swap. To satisfy detailed balance, the swap moves
must be performed with a certain probability, although per-
forming the swaps after a fixed number of single-temperature
Monte Carlo moves satisfies the sufficient condition of bal-
ance.6 A typical sequence of swaps and single-temperature
Monte Carlo moves is shown in Fig. 2.

Kofke conducted an analysis of the average acceptance rate,
hAi, of exchange trials and argued that this quantity should be
related to the entropy difference between phases.7–9 For sys-
tems assumed to have Gaussian energy distributions, typical of
many systems that are studied using computer simulation, see
Fig. 3, he found the average acceptance ratio, hAi, to be given
by

hAi ¼ erfc
1

2
Cv

! "1=2 1# bj=bi
ð1þ ðbj=biÞ

2Þ1=2

" #
; ð3Þ

where Cv is the heat capacity at constant volume, which is
assumed to be constant in the temperature range between bi
and bj. Simply put, the acceptance rate for the trials depends on
the likelihood that the system sampling the higher temperature
happens to be in a region of phase space that is important at
the lower temperature. This theoretical analysis of the accep-
tance rates becomes useful when considering the optimal
choice of temperatures for a parallel tempering simulation
(see section 2.3).

2.2 Theory of molecular dynamics parallel tempering

In Monte Carlo implementations of parallel tempering, we
need only consider the positions of the particles in the simula-
tion. In molecular dynamics, we must also take into account
the momenta of all the particles in the system. Sugita and
Okamoto proposed a parallel tempering molecular dynamics
method in which after an exchange, the new momenta for
replica i, p(i)0, should be determined as

pðiÞ
0
¼

ffiffiffiffiffiffiffiffiffiffi
Tnew

Told

r
pðiÞ; ð4Þ

where p(i) are the old momenta for replica i, and Told and Tnew

are the temperatures of the replica before and after the swap,
respectively.5 This procedure ensures that the average kinetic
energy remains equal to 3

2NkBT . The acceptance criterion for
an exchange remains the same as for the MC implementation
(eqn (2)) and satisfies detailed balance.
When doing parallel tempering molecular dynamics, one

must take care in the interpretation of the results. A parallel
tempering exchange is an ‘unphysical’ move, and so one cannot
draw conclusions about dynamics. That is, when using parallel
tempering molecular dynamics, one is only really doing a form
of sampling and not ‘true’ molecular dynamics.

2.3 Optimal choice of temperatures

How one chooses both the number of replicas employed in a
parallel tempering simulation and the temperatures of the
replicas are questions of great importance. One wishes to
achieve the best possible sampling with the minimum amount
of computational effort. The highest temperature must be
sufficiently high so as to ensure that no replicas become
trapped in local energy minima, while the number of replicas
used must be large enough to ensure that swapping occurs
between all adjacent replicas. Several suggestions for the
number and temperature of the replicas have been offered. It
is clear from Fig. 3 and eqn (2) that the energy histograms must
overlap for swaps to be accepted. Sugita et al. and Kofke have
proposed that the acceptance probability could be made uni-
form across all of the different replicas, in an attempt to ensure
that each replica spends the same amount of simulation time at
each temperature.5,7,8 Kofke showed that a geometric progres-
sion of temperatures (Ti/Tj ¼ constant) for systems in which Cv

Fig. 2 Schematic representation of parallel tempering swaps between
adjacent replicas at different temperatures. In-between the swaps,
several constant-temperature Monte Carlo moves are performed.
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Parallel temperingReplica exchange
Independent replicas:

<latexit sha1_base64="UdULncGCoFXUotVNhYevCTJSBSs=">AAACFnicbVBLSwMxGMzWV62vqkcvwSK0UMuuFPVSKIgg9FLBPqCtSzabtmGzuyHJSsuyv8KLf8WLB0W8ijf/jenjoK0DgWFmviTfOJxRqUzz20itrK6tb6Q3M1vbO7t72f2DpgwjgUkDhywUbQdJwmhAGooqRtpcEOQ7jLQc72ritx6IkDQM7tSYk56PBgHtU4yUluzsKc+PbKsIu26oZBGO7FoBVmCXi9C1Y69iJfdxLYHc9nTMK9jZnFkyp4DLxJqTHJijbme/9MU48kmgMENSdiyTq16MhKKYkSTTjSThCHtoQDqaBsgnshdP10rgiVZc2A+FPoGCU/X3RIx8Kce+o5M+UkO56E3E/7xOpPqXvZgGPFIkwLOH+hGDKoSTjqBLBcGKjTVBWFD9V4iHSCCsdJMZXYK1uPIyaZ6VrPNS+bacq17P60iDI3AM8sACF6AKbkAdNAAGj+AZvII348l4Md6Nj1k0ZcxnDsEfGJ8/4KydXg==</latexit>

p(x1, . . . , xK) =
KY

k=1

pk(xk)

Propose swap as MH step: ex. 
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(x1, x2, . . . ) ! (x2, x1, . . . )
<latexit sha1_base64="qDnI7fM2J8SWMZWeODUaaM2UF18="></latexit>

↵ = min

✓
1,

p1(x2)p2(x1)

p1(x1)p2(x2)

◆

Tempered likelihoods:
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pk(xk) = ⇡(xk)L(xk)
�k

prior

Swap acceptance:
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�k = 1/Tk

<latexit sha1_base64="rZEELunlgkFUtRLKWgC6T/hkfdw=">AAACVnicbZFfa9swFMVld1277J+7Pu5FLAwS2IJdyraXQWEU9rCHDpa2EGXmWpETpZJspOuyYPwlt5f2o+ylVEk8aNNdEPw4516ke5SVSjqM4+sg3Hq0/Xhn90nn6bPnL15Ge69OXVFZLoa8UIU9z8AJJY0YokQlzksrQGdKnGUXX5b+2aWwThbmBy5KMdYwNTKXHNBLaaQZqHIGaS3nDf1MmZaGMiVy7CXvWmC5BV4zDTjjoOpvTe9XOu83G4rsN8zK6Qz7P2uWCYRU0vd0TfN/Vhp140G8KvoQkha6pK2TNPrNJgWvtDDIFTg3SuISxzVYlFyJpsMqJ0rgFzAVI48GtHDjehVLQ996ZULzwvpjkK7UuxM1aOcWOvOdy1XcprcU/+eNKsw/jWtpygqF4euL8kpRLOgyYzqRVnBUCw/ArfRvpXwGPkX0P9HxISSbKz+E04NB8mFw+P2we3TcxrFLXpM3pEcS8pEcka/khAwJJ3/I3yAMtoKr4CbcDnfWrWHQzuyTexVGtyy+tCs=</latexit>
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1,

✓
L(xj)

L(xi)

◆�i��j
!

Adaptive temperatures to improve swaps
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MH MCMC example: setting

• Simplified waveform model: from PhenomD

• Parameters:

• Whittle likelihood, single-detector

• Uniform priors

Estimated PSD (Welch)Data from GWOSC
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<latexit sha1_base64="FGHD4nnfhTDk300kAcRky0aFwXs=">AAACQHicbVBNaxRBEO2J0cT1I6sevTRZhHhZZpaQ5CJEjOBxA9lsYGez1PTWZJp09wzdNcLSzE/z4k/w5tmLB0W8erJns4SYWNDw+r161dUvq5R0FMdfo7V76/cfbGw+7Dx6/OTpVvfZ81NX1lbgSJSqtGcZOFTS4IgkKTyrLILOFI6zy3etPv6I1snSnNCiwqmGCyNzKYACNeuOU5Jqjr5odvLX/A1/y/HcS56Cqgpo2stAppXkOU+PUBFwavi1ZeYHg+bcpxqosNoPCzSlPmraUbNuL+7Hy+J3QbICPbaq4az7JZ2XotZoSChwbpLEFU09WJJCYdNJa4cViEu4wEmABjS6qV8G0PBXgZnzvLThGOJL9qbDg3ZuobPQ2e7qbmst+T9tUlN+MPXSVDWhEVcP5bXiVPI2TT6XFgWpRQAgrAy7clGABUEh804IIbn95bvgdNBP9vq7x7u9w/erODbZS7bNdljC9tkh+8CGbMQE+8S+sR/sZ/Q5+h79in5fta5FK88L9k9Ff/4CBXOvjw==</latexit>

h̃(f) = Aei↵e2i⇡f�th̃PhenomD
22 (f)
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(M, q,A,�t,↵)

Note: simple amplitude and phase 
factor, replacing extrinsic parameters

<latexit sha1_base64="xFMEpiZZCtPMekQD5vX/bKa6LHg=">AAACG3icbVDLSgMxFM34rPVVdekmWIQKpcyUoi4LIrhwUcE+oDMMdzJpG5p5kGQKZeh/uPFX3LhQxJXgwr8xbQfR1gOBk3Pu5d57vJgzqUzzy1hZXVvf2Mxt5bd3dvf2CweHLRklgtAmiXgkOh5IyllIm4opTjuxoBB4nLa94dXUb4+okCwK79U4pk4A/ZD1GAGlJbdQLfnubRnbLFJQtkcg4gEr2wGogQhSAZMf7lOiP7FkZ26haFbMGfAysTJSRBkabuHD9iOSBDRUhIOUXcuMlZOCUIxwOsnbiaQxkCH0aVfTEAIqnXR22wSfasXHvUjoFyo8U393pBBIOQ48XTndVC56U/E/r5uo3qWTsjBOFA3JfFAv4VhFeBoU9pmgRPGxJkAE07tiMgABROk48zoEa/HkZdKqVqzzSu2uVqxfZ3Hk0DE6QSVkoQtURzeogZqIoAf0hF7Qq/FoPBtvxvu8dMXIeo7QHxif39ExoVc=</latexit>

(dL, ◆,', ra, dec, )

Walkers: 64
Temps: 5
Iters: 1000
Time: 15min
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MH MCMC example: result

Sample waveforms (5 random walkers)

Trace plot
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MH MCMC example: result

Posterior
Max-likelihood waveform
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Outline

• GW signals: the basics

• Noise as a stochastic process

• Introducing matched filtering

• Towards real CBC searches

• Other signals: continuous waves, stochastic 
backgrounds

Part I Part II

• Bayesian parameter estimation basics, 
likelihood

• Parameter space and waveforms

• Fisher matrix approach

• Metropolis-Hastings MCMC, Parallel 
tempering and example PE

•PE toolbox

• PE results from LVK

• Future detectors and their challenges
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Qualifying PE results: convergence

Trace plots
Help identify burn-in phase

Gelman-Rubin

Autocorrelation length

R: in-chain and between-chain variance
Should have R=1
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⌧f =
1X

⌧=�1
⇢f (⌧)
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⇢̂f (⌧) = ĉf (⌧)/ĉf (0)

<latexit sha1_base64="oelIo2AODqDTCrC/iH7aiKOtO0w="></latexit>

ĉf (⌧) =
1

N � ⌧
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Qualifying PE results: quantile-quantile plots

• Idea: the true value must be in 
the x% confidence interval x% 
of the time

12 G. Ashton & C. Talbot

into an order of magnitude reduction in wall-time. To understand
why, we need to discuss the parallelisation strategies available.

As discussed in Section 2.9, we have two available levels of par-
allelisation: combining independent runs and multiprocessing using
=cores processors. For the ������� sampler, reductions in wall-time
can only be achieved via multiprocessing. This is because it is not
possible to configure a nested sampler to run part of the full analy-
sis (i.e. to only produce a small subset of the required total number
of independent samples). A simple model for the wall-time of the
������� run which agrees with our measured wall-time is:

) = 28 hrs
✓

=✓
160 ⇥ 106

◆ ⇣ C✓
10 ms

⌘ ⇣ =cores

16

⌘�1
, (27)

where =✓ is the number of likelihood evaluations (cf. Table 2) and
C✓ is the approximate per-likelihood evaluation time for the BBH A
likelihood. Here, we use 16-core processors: below we will discuss
the potential scaling to larger multiprocessing pools.

On the other hand, for B����-MCMC we can parallelise using
independent runs and multiprocessing. We run several independent
runs, each producing 400 independent samples. In a HTC environ-
ment (and assuming access to resources is not limited), these can
be run at the same time so that the total analysis wall time is given
by the wall-time of any individual run. Using Eq. (20) and perfectly
matching =cores to =temps:

) ⇡ 10 hrs
©≠
´
=e�

samples

400
™Æ
¨
⇣ C✓
10ms

⌘ ⇣ n

0.0017%

⌘�1 ⇣ <

0.75

⌘�1 ⇣ =cores

8

⌘�1
,

(28)

where we use the actual e�ciency from Table 2 and multi-processing
speed-up factor from Section 2.9. Both Eq. (27) and Eq. (28) agree
with the empirically measured values (up to errors expected for vary-
ing access to resources in a HTC environment).

The net result is that the B����-MCMC sampler is less e�cient,
but can be setup to enable a shorter wall time by utilising independent
runs. Some of this ine�ciency arises from the sampler itself, some
from the burn-in ine�ciency. For this configuration, the burn-in
ine�ciency, Eq. (16), is a few percent; further parallelisation (in
terms of more independent runs) would increase this ine�ciency.

For the ������� sampler, reducing the wall-time can only be
achieved via access to a larger multiprocessing pool. The ability to
do this is restricted by the available hardware: =cores of 8 to 16 are
typical in most HTC environments though modern CPUs with up to
128 cores do exist which could provide significant speed ups. Beyond
this, massively parallelised nested sampling can leverage multiple
CPUs in a HPC environment: in Smith et al. (2020), processing pools
including several hundred cores have been used providing two orders
of magnitude of speed up. (We caution that we have not verified
the validity of Eq. (27) for such massively-parallel environments).
However, access to such resources requires synchronised usage of a
dedicated HPC environment.

To investigate the potential for bias in the B����-MCMC sam-
pler, in Fig. 5, we show the results of a parameter-parameter (PP)
test (Cook et al. 2006; Talts et al. 2018) for BBH systems. This is
an important test, typically it fails when one or more of the pro-
posal distributions does not respect detailed balance. In this test, we
simulate 100 BBH signals drawn from an astrophysical prior dis-
tribution, analyse each using the B����-MCMC sampler, and then
check the consistency of the reported credible intervals. Specifically,
Fig. 5 shows the number of events in a given confidence interval as a
function of the confidence interval. We find that the B����-MCMC
sampler is unbiased at the level probed by this test.

Figure 5. A parameter-parameter test for the B����-MCMC sampler for
simulated BBH systems. We plot the fraction of simulated events found
within the confidence interval (C.I.) as a function of the C.I. For an unbiased
sampling from the posterior distribution, lines of this plot are diagonal: we
add three gray shaded regions showing the 1, 2, and 3 � f quantiles. To
quantify if the results are consistent with an unbiased sampling, we calculate
a p-value of the probability that they are unbiased. The p-value for each
individual parameter is given in the legend and a combined p-value is given
in the title. Under an unbiased result, we would expect the p-value to be a
draw from uniform distribution on [0, 1]. Since all individual parameters (and
the combined result) are greater than 1/15 (a nominal threshold based on the
number of parameters), we conclude the sampler is unbiased, at least at the
level probed by 100 simulations.

4.4 Fiducial binary neutron star: BNS A

We simulate a fiducial binary neutron star (BNS) merger using
the IMRPhenomPv2_NRTidalwaveform (Dietrich et al. 2017, 2019)
which includes matter e�ects from the two neutron stars. The simu-
lation parameters of the system, BNS A, listed in Table 3 are much
lower in mass than that of the BBH systems previously studied. The
result of this lower-mass is that the signal spends a longer duration
in the observable band of the detectors (typically, above 20 Hz). To
capture this, we analyse 128 s of data. Necessarily, this results in
a significant increase in the time required to analyse the likelihood
and hence overall wall-time. To mitigate this, we use the Reduced-
Order-Quadrature (ROQ) method (Antil et al. 2012; Canizares et al.
2013, 2015; Smith et al. 2016; Qi & Raymond 2020) with the ba-
sis provided by Baylor et al. (2019) to decrease the per-likelihood
evaluation cost.

The simulated signal has small spin components aligned along
the angular momentum axis, an arbitrarily selected choice of tidal
deformability parameters, and nearly equal mass components. In the
specific noise realisation used, the network matched-filter SNR is
⇠ 18. We analyse the signal using both the ������� and B����-
MCMC samplers using the configurations described in Table 2. The
analyses are identical to those of the BBH A analysis, except, we use
the IMRPhenomPv2_NRTidalwaveform model (through the ROQ
basis), use only distance marginalization, and restrict the spins to a
low-spin configuration (dimensionless spin magnitude less than 0.05
(Abbott et al. 2019)).

As with the BBH case, the Bayesian evidence estimates (see Ta-
ble 2 for the signal vs. noise Bayes factor) disagree. Again, we con-
clude this is due to the known bias in the parallel-tempered evidence
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Bilby

• Simulate a number of PE runs, 
different noise realizations and 
systems

• Expected deviations from unity 
known:
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Gibbs sampling

• decomposing between fast and slow 
parameters

• sampling across superposed sources

• caveat: inefficient with strong correlations

Gibbs sampling

Usage

Update successively parameters:
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Elimination of extrinsic parameters and F-statistic

• Marginalize over time

• Marginalize over phase (not 
possible with HM)

Likelihood marginalization

Likelihood optimization (F-stat)

• If quantities affect linearly the signal, 
loglikelihood is quadratic in them and 
optimization is simple

• Not related to posterior, but very useful for 
search (reduced dimensions)

[arXiv:1409.7215]
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On the choice of parameters for sampling

• If degeneracies are known 
(extrinsic), include jump 
proposals

• Find analytical parameter 
maps/Jacobian that will 
‘Gaussianize’ the 
posterior

If possible, sample in what the detector observes ! 
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Nested sampling

• Decompose space in isolikelihood contours, 
replace integral by 1D integral

See Review [arXiv:2205.15570]
a | The NS evidence identity. The colours represent contours of a two-
dimensional likelihood function. Rather than summing over little cubes
(left), we combine cubes of similar likelihood together and sum over
them (right). µ1 µ1

µ1

µ
2

L 1
L 2

L 3

L 4

0 X4 X3 X2 X1 1

L
(X

)

Accumulate evidence
Z =P

L¢X

b | NS on a two dimensional problem. We show the dead points and
their iso-likelihood contours (left) and the corresponding contributions
to the evidence integral (right). The volumes Xi are estimated statistically
in NS. c | Compression in one iterate of NS.

Figure 1 | Illustrations of NS algorithm.

1.3 Nested sampling

As the multi-dimensional integral in eq. (7) is impractical in
high dimension, some sort of statistical estimation is inevitable.
NS starts with an ensemble of nlive random locations£ drawn
from the prior,º(£), each of which has its likelihood L(£) which
we can place in ascending order. Crudely, if we discarded the
lowest half of the values, the survivors would be random sam-
ples taken within the restricted volume L > Median[L], which
would statistically be roughly half the original volume. This
allows us to make a statistical estimate of the volume variable in
eq. (7). Repeating that niter times would yield compression by a
factor of about 2niter . This is the exponential behaviour required
to overcome the curse of dimensionality.

Thus NS works by statistical estimates of the compression,
which is a general and fundamental operation that can be used
in various ways not limited to those in table 1. The evidence
identity in eq. (6) isn’t required in every application; many ap-
plications only use the compression in eq. (7). We present sci-
entific applications in Applications.

1.4 Formulation

We now present the NS algorithm in more detail. We assume
that there are no regions of constant likelihood resulting in like-

lihood plateaus (see Limitations and optimizations for further
discussion). The NS algorithm begins by drawing an ensem-
ble of nlive samples from the prior. We compute the likelihood
for each sample. We denote the smallest likelihood by L? and
we discard that point. The remaining live points are now dis-
tributed over a compressed volume; we denote the factor by
which the volume compressed by t . Finally, a replacement
point is drawn from the prior subject to L > L?, that is, from the
constrained prior,

º?(£) /
(
º(£) if L(£) > L?

0 otherwise.
(9)

This leaves a new ensemble with nlive samples obeying a likeli-
hood constraint L > L?.

As they are drawn from the constrained prior, the volumes X
associated with the live points are uniformly distributed. Thus
the compression associated with the discarded outermost sam-
ple, t , corresponds to the smallest of nlive uniform random
variables. This follows a Beta(nlive,1) distribution,

P (t ) = nlivet nlive°1. (10)

The first factor accounts for the fact that any live point could
be the outermost and the second factor for the fact that nlive °1

3

Compute evidence 
and obtain samples
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Box 1 | Bayesian inference

Although NS is a general purpose algorithm for integration, its major
application has been integrals in Bayesian inference, and we describe
NS using that language. In Bayesian inference [5–11] our state of
knowledge is quantified by probability and we learn from data by
updating probabilities using Bayes’ theorem,

Pr(A |B) = Pr(B | A)Pr(A)
Pr(B)

.

To use this to learn from data about a model and its parameters, we
write it as

P (£) = L(£)º(£)
Z

,

where the prior, º(£) ¥ Pr(£) represents what was known about a
model’s parameters before seeing the data and the posterior, P (£) ¥
Pr(£ |D), represents what is known after learning from the data. The
observed data, D, was encoded into the likelihood function, L(£) ¥
Pr(D |£).

The denominator, Z ¥ Pr(D), is the evidence value that appears in
Bayesian model comparison [12]. It may be written,

Z =
Z

L(£)º(£)d£,

and so is also known as the marginal likelihood and as the normalizing
constant, since it normalizes the posterior such that

R
P (£)d£ = 1.

The ratio of evidences computed for different models is known as a
Bayes factor,

B10 =
Z1

Z0
.

The Bayes factor tells us how we must update the relative plausibility
of two models in light of data.

that the integrand is positive, L(£) ∏ 0.
Often, Z may be a physical quantity such as the total mass

of an object distributed with density L across volumes dµ(£).
Whilst NS is a general method for integration, for concreteness,
we view all such applications through the lens of Bayesian in-
ference (see box 1), with dµ(£) ¥ º(£)d£ seen as an element
of prior probability with º the prior, normalized by its nature
to

R
º(£)d£= 1. The integrand, L, is the modulating likelihood

function (hence the symbol) and Z is the evidence. In scien-
tific inference problems, the integral could be over tens if not
hundreds of parameters, required to model fundamental ef-
fects as well as the calibration and systematics of complicated
experimental measurements [13].

We may rewrite the integrand through the elementary fac-
torization known as Bayes’ theorem,

L(£)£º(£) = Z £P (£), (2)

where

P (£) = L(£)º(£)
Z

, (3)

is the posterior, normalized to
R

P (£)d£ = 1. Notation apart,

however, all we are doing here is decomposing the integrand
into a magnitude Z and a shape P (£).

Historically, Bayesian computation focused on only the
shape P (£), partly owing to controversies around Bayesian
model comparison such as its sensitivity to the choices of prior [12],
and partly due to computational difficulties [14]. However,
shapes and magnitudes both matter, especially in the general
setting of multi-dimensional integration beyond Bayesian model
comparison. NS [1, 2] surmounts the challenge by computing
shapes and magnitudes simultaneously.

1.2 Simplifying multi-dimensional integrals

Before introducing NS, let us attempt to simplify the general in-
tegral in eq. (1). Consider traditional Riemann-style integration.
This decomposes the space into volume elements ¢£, typi-
cally small cubes, and performs a sum over them. Small cubes,
however, rapidly become infeasible in multi-dimensional inte-
gration because their cost grows exponentially with dimension
— this is the “curse of dimensionality.”

We don’t, however, need to decompose our space into little
cubes; our cells can be any shape we want. The integrals needed
for quantification,

Z =
Z

L(£)º(£)d£= lim
|¢£|!0

X
L(£)º(£)¢£, (4)

are defined as limiting sums over volume elements which should
be small enough to keep P (£) almost constant regardless of
shape. We may therefore combine the cells in which the inte-
grand is almost constant. Schematically, we may write

Z =
X

L(X )¢X , (5)

where ¢X is the volume of cells that share likelihood L(X )
weighted by the prior º(£). This is illustrated schematically in
fig. 1a and works whether the integrand is uni- or multi-modal.

We can reach eq. (5) more concretely by noting that the
evidence is the expectation of a non-negative random variable,
such that it may be written as

Z =
Z

X (L)dL, (6)

where the volume variable X ,

X (L?) =
Z

L>L?

º(£)d£, (7)

is the volume enclosed by contour L?. This result can be readily
proven by integration by parts (see also sec. 21 in ref. [17]).
Applying integration by parts again to eq. (6), we obtain the
familiar NS evidence identity,

Z =
Z1

0
L(X )dX , (8)

providing that L(X ), the inverse of X (∏), indeed exists and that
the evidence is finite. This formalizes the schematic eq. (5). We
discuss this result more formally in box 2.

2

• Introduce set of live points that 
will be iteratively replaced, 
weighted replaced points 
become posterior samples

• Sampling constrained prior: 
region sampling, step sampling

Box 1 | Bayesian inference

Although NS is a general purpose algorithm for integration, its major
application has been integrals in Bayesian inference, and we describe
NS using that language. In Bayesian inference [5–11] our state of
knowledge is quantified by probability and we learn from data by
updating probabilities using Bayes’ theorem,

Pr(A |B) = Pr(B | A)Pr(A)
Pr(B)

.

To use this to learn from data about a model and its parameters, we
write it as

P (£) = L(£)º(£)
Z

,

where the prior, º(£) ¥ Pr(£) represents what was known about a
model’s parameters before seeing the data and the posterior, P (£) ¥
Pr(£ |D), represents what is known after learning from the data. The
observed data, D, was encoded into the likelihood function, L(£) ¥
Pr(D |£).

The denominator, Z ¥ Pr(D), is the evidence value that appears in
Bayesian model comparison [12]. It may be written,

Z =
Z

L(£)º(£)d£,

and so is also known as the marginal likelihood and as the normalizing
constant, since it normalizes the posterior such that

R
P (£)d£ = 1.

The ratio of evidences computed for different models is known as a
Bayes factor,

B10 =
Z1

Z0
.

The Bayes factor tells us how we must update the relative plausibility
of two models in light of data.

that the integrand is positive, L(£) ∏ 0.
Often, Z may be a physical quantity such as the total mass

of an object distributed with density L across volumes dµ(£).
Whilst NS is a general method for integration, for concreteness,
we view all such applications through the lens of Bayesian in-
ference (see box 1), with dµ(£) ¥ º(£)d£ seen as an element
of prior probability with º the prior, normalized by its nature
to

R
º(£)d£= 1. The integrand, L, is the modulating likelihood

function (hence the symbol) and Z is the evidence. In scien-
tific inference problems, the integral could be over tens if not
hundreds of parameters, required to model fundamental ef-
fects as well as the calibration and systematics of complicated
experimental measurements [13].

We may rewrite the integrand through the elementary fac-
torization known as Bayes’ theorem,

L(£)£º(£) = Z £P (£), (2)

where

P (£) = L(£)º(£)
Z

, (3)

is the posterior, normalized to
R

P (£)d£ = 1. Notation apart,

however, all we are doing here is decomposing the integrand
into a magnitude Z and a shape P (£).

Historically, Bayesian computation focused on only the
shape P (£), partly owing to controversies around Bayesian
model comparison such as its sensitivity to the choices of prior [12],
and partly due to computational difficulties [14]. However,
shapes and magnitudes both matter, especially in the general
setting of multi-dimensional integration beyond Bayesian model
comparison. NS [1, 2] surmounts the challenge by computing
shapes and magnitudes simultaneously.

1.2 Simplifying multi-dimensional integrals

Before introducing NS, let us attempt to simplify the general in-
tegral in eq. (1). Consider traditional Riemann-style integration.
This decomposes the space into volume elements ¢£, typi-
cally small cubes, and performs a sum over them. Small cubes,
however, rapidly become infeasible in multi-dimensional inte-
gration because their cost grows exponentially with dimension
— this is the “curse of dimensionality.”

We don’t, however, need to decompose our space into little
cubes; our cells can be any shape we want. The integrals needed
for quantification,

Z =
Z

L(£)º(£)d£= lim
|¢£|!0

X
L(£)º(£)¢£, (4)

are defined as limiting sums over volume elements which should
be small enough to keep P (£) almost constant regardless of
shape. We may therefore combine the cells in which the inte-
grand is almost constant. Schematically, we may write

Z =
X

L(X )¢X , (5)

where ¢X is the volume of cells that share likelihood L(X )
weighted by the prior º(£). This is illustrated schematically in
fig. 1a and works whether the integrand is uni- or multi-modal.

We can reach eq. (5) more concretely by noting that the
evidence is the expectation of a non-negative random variable,
such that it may be written as

Z =
Z

X (L)dL, (6)

where the volume variable X ,

X (L?) =
Z

L>L?

º(£)d£, (7)

is the volume enclosed by contour L?. This result can be readily
proven by integration by parts (see also sec. 21 in ref. [17]).
Applying integration by parts again to eq. (6), we obtain the
familiar NS evidence identity,

Z =
Z1

0
L(X )dX , (8)

providing that L(X ), the inverse of X (∏), indeed exists and that
the evidence is finite. This formalizes the schematic eq. (5). We
discuss this result more formally in box 2.

2

a | The NS evidence identity. The colours represent contours of a two-
dimensional likelihood function. Rather than summing over little cubes
(left), we combine cubes of similar likelihood together and sum over
them (right).

b | NS on a two dimensional problem. We show the dead points and
their iso-likelihood contours (left) and the corresponding contributions
to the evidence integral (right). The volumes Xi are estimated statistically
in NS.

Uniformly distributed live points

Remove worst

Draw replacement

0.0 0.5 1.0
X

Compression, t ªØ(nlive,1)

c | Compression in one iterate of NS.

Figure 1 | Illustrations of NS algorithm.

1.3 Nested sampling

As the multi-dimensional integral in eq. (7) is impractical in
high dimension, some sort of statistical estimation is inevitable.
NS starts with an ensemble of nlive random locations£ drawn
from the prior,º(£), each of which has its likelihood L(£) which
we can place in ascending order. Crudely, if we discarded the
lowest half of the values, the survivors would be random sam-
ples taken within the restricted volume L > Median[L], which
would statistically be roughly half the original volume. This
allows us to make a statistical estimate of the volume variable in
eq. (7). Repeating that niter times would yield compression by a
factor of about 2niter . This is the exponential behaviour required
to overcome the curse of dimensionality.

Thus NS works by statistical estimates of the compression,
which is a general and fundamental operation that can be used
in various ways not limited to those in table 1. The evidence
identity in eq. (6) isn’t required in every application; many ap-
plications only use the compression in eq. (7). We present sci-
entific applications in Applications.

1.4 Formulation

We now present the NS algorithm in more detail. We assume
that there are no regions of constant likelihood resulting in like-

lihood plateaus (see Limitations and optimizations for further
discussion). The NS algorithm begins by drawing an ensem-
ble of nlive samples from the prior. We compute the likelihood
for each sample. We denote the smallest likelihood by L? and
we discard that point. The remaining live points are now dis-
tributed over a compressed volume; we denote the factor by
which the volume compressed by t . Finally, a replacement
point is drawn from the prior subject to L > L?, that is, from the
constrained prior,

º?(£) /
(
º(£) if L(£) > L?

0 otherwise.
(9)

This leaves a new ensemble with nlive samples obeying a likeli-
hood constraint L > L?.

As they are drawn from the constrained prior, the volumes X
associated with the live points are uniformly distributed. Thus
the compression associated with the discarded outermost sam-
ple, t , corresponds to the smallest of nlive uniform random
variables. This follows a Beta(nlive,1) distribution,

P (t ) = nlivet nlive°1. (10)

The first factor accounts for the fact that any live point could
be the outermost and the second factor for the fact that nlive °1

3
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FIG. 6. Credible region contours for all candidate events in the plane of total mass M and mass ratio q. Each contour
represents the 90% credible region for a di↵erent event. We highlight the previously published candidate events: GW190412,
GW190425, GW190521 and GW190814, the potential NSBH GW190426 152155, and finally GW190924 021846, which is most
probably the least massive system with both masses > 3 M�. The dashed lines delineate regions where the primary/secondary
can have a mass below 3 M�. For the region above the m2 = 3 M� line, both objects in the binary have masses above 3 M�.

FIG. 7. Credible region contours for all candidate events in the plane of chirp mass M and e↵ective inspiral spin �e↵ . Each
contour represents the 90% credible region for a di↵erent event. We highlighted the previously published candidate events (cf.
Fig. 6), as well as GW190517 055101 and GW190514 065416, which have the highest probabilities of having the largest and
smallest �e↵ respectively.
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Figure 8. Credible-region contours in the plane of total mass M and mass ratio q for O3b candidates with pastro > 0.5
plus GW200105 162426. Each contour represents the 90% credible region for a di↵erent candidate. Highlighted contours
are for the NSBH candidates GW191219 163120, GW200105 162426 and GW200115 042309; the NSBH or low-mass BBH
candidate GW200210 092254; GW191204 171526, which has inferred �e↵ > 0; GW200225 060421, which has 85% probability
that �e↵ < 0, and GW200220 061928, which probably has the most massive source of the O3b candidates. We highlight with
italics GW200105 162426 as it has pastro < 0.5, as well as GW191219 163120 because of potential uncertainties in its pastro and
because it has significant posterior support outside of mass ratios where the waveform models have been calibrated. Results for
GW200308 173609 and GW200322 091133 are indicated with dashed lines to highlight that these include a prior-dominated
mode at large distances and high masses. The dotted lines delineate regions where the primary and secondary can have a mass
below 3M�. For the region above the m2 = 3M� line, both objects in the binary have masses above 3M�. The small island
at M ⇠ 175M� is part of the (nearby) contour for GW200208 222617.

although we cannot exclude the possibility that the
low-likelihood peaks describe the sources (assuming that
the signals are astrophysical).

In presenting results for GW200308 173609 and
GW200322 091133, we show the full posterior distribu-
tions in figures, but in Table IV and in the discussion
we consider the high-likelihood modes that are not prior
dominated. To select the relevant modes, we use a cut
on the likelihood (a rough proxy for the matched-filter
SNR), and only consider regions of the posterior prob-
ability distribution with a likelihood above the chosen
threshold. Results for these candidates are highlighted
with an asterisk in Table IV and dashed lines in the fig-
ures. Figure 7 shows a comparison of results with and
without this selection. For GW200322 091133, there is
still multimodality after the lowest likelihood mode is
removed by the likelihood cut. Using a di↵erent prior,
such as a population-informed prior [107, 110, 151–155],
that has a stronger preference for masses more consistent
with other GW observations, and a weaker preference for
high masses and large distances, would also suppress the
low-likelihood peaks.

A. Masses

Masses are typically the best constrained binary pa-
rameters. They are the dominant properties in set-
ting the frequency evolution of the signal, with lower
(higher) mass systems merging at higher (lower) frequen-
cies. While we are typically interested in the source
masses, it is the redshifted masses (1 + z)mi, where z

is the source redshift, that are measured by the detec-
tors [93]. The source masses are calculated by combining
the inferred redshifted mass and luminosity distance (see
Appendix E for the assumed cosmology).

Combinations of the two component masses (such as
the chirp mass) may be more precisely measured than the
individual component masses [138–140, 156]. However,
component masses are most informative about the nature
of the source, and indicate whether the compact object
is more likely to be a BH or a NS. The maximum NS
mass is currently uncertain, with estimates ranging over
2.1–2.7M� [157–162]. We use 3M� as a robust upper
limit of the maximum NS mass [9, 10], and split the can-
didates into two categories: unambiguous BBHs where,
assuming that the signal is astrophysical, both compo-
nents of the source were BHs (m2 > 3M� at 97% prob-
ability), and potential NS binaries (in our case, poten-
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Hz. The priors on spin orientation for the precessing model
is uniform on the 2-sphere. For the non-precessing model,
the prior on the spin magnitudes may be interpreted as the
dimensionless spin projection onto L̂ having a uniform dis-
tribution [�1, 1]. This range includes binaries where the
two spins are strongly antialigned relative to one another.
Many such antialigned-spin comparable-mass systems are
unstable to large-angle precession well before entering our
sensitive band [82, 83] and could not have formed from an
asymptotically spin antialigned binary. We could exclude
those systems if we believe the binary is not precessing.
However, we do not make this assumption here and instead
accept that the models can only extract limited spin infor-
mation about a more general, precessing binary.

We also need to specify the prior ranges for the
amplitude and phase error functions �Ak(f ;

~#) and
��k(f ;

~#). The calibration during the time of observa-
tion of GW150914 is characterised by a 1-� statistical
uncertainty of no more than 10% in amplitude and 10

�

in phase [1, 38]. We use zero-mean Gaussian priors on
the values of the spline at each node with widths corre-
sponding to the uncertainties quoted above [39]. Calibra-
tion uncertainties therefore add 10 parameters per instru-
ment to the model used in the analysis. For validation pur-
poses we also considered an independent method that as-
sumes frequency-independent calibration errors [84], and
obtained consistent results.

Results— The results of the analysis using binary coa-
lescence waveforms are posterior PDFs for the parameters
describing the GW signal and the model evidence. A sum-
mary is provided in Table I. For the model evidence, we
quote (the logarithm of) the Bayes factor Bs/n = Z/Zn,
which is the ratio of the evidence for a coherent signal hy-
pothesis divided by that for (Gaussian) noise [45]. At the
leading order, the Bayes factor and the optimal signal-to-
noise ratio ⇢ = [

P
khhM

k |hM
k i]1/2 are related by lnBs/n ⇡

⇢
2
/2 [85].
Before discussing parameter estimates in detail, we

consider how the inference is affected by the choice of
compact-binary waveform model. From Table I, we see
that the posterior estimates for each parameter are broadly
consistent across the two models, despite the fact that they
are based on different analytical approaches and that they
include different aspects of BBH spin dynamics. The mod-
els’ log Bayes factors, 288.7±0.2 and 290.1±0.2, are also
comparable for both models: the data do not allow us to
conclusively prefer one model over the other [88]. There-
fore, we use both for the Overall column in Table I. We
combine the posterior samples of both distributions with
equal weight, in effect marginalising over our choice of
waveform model. These averaged results give our best es-
timate for the parameters describing GW150914.

In Table I, we also indicate how sensitive our results are
to our choice of waveform. For each parameter, we give
systematic errors on the boundaries of the 90% credible

FIG. 1. Posterior PDFs for the source-frame component masses
msource

1 and msource
2 , where msource

2  msource
1 . In the

1-dimensional marginalised distributions we show the Overall
(solid black), IMRPhenom (blue) and EOBNR (red) PDFs; the
dashed vertical lines mark the 90% credible interval for the Over-
all PDF. The 2-dimensional plot shows the contours of the 50%

and 90% credible regions plotted over a colour-coded posterior
density function.

intervals due to the uncertainty in the waveform models
considered in the analysis; the quoted values are the 90%

range of a normal distribution estimated from the variance
of results from the different models.4 Assuming normally
distributed error is the least constraining choice [89] and
gives a conservative estimate. The uncertainty from wave-
form modelling is less significant than statistical uncer-
tainty; therefore, we are confident that the results are ro-
bust against this potential systematic error. We consider
this point in detail later in the paper.

The analysis presented here yields an optimal coherent
signal-to-noise ratio of ⇢ = 25.1

+1.7
�1.7. This value is higher

than the one reported by the search [1, 3] because it is ob-
tained using a finer sampling of (a larger) parameter space.

GW150914’s source corresponds to a stellar-mass BBH
with individual source-frame masses msource

1 = 36
+5
�4 M�

and msource
2 = 29

+4
�4 M�, as shown in Table I and Figure 1.

4 If X were an edge of a credible interval, we quote systematic uncertainty
±1.64�sys using the estimate �2

sys = [(XEOBNR � XOverall)2 +

(XIMRPhenom � XOverall)2]/2. For parameters with bounded ranges,
like the spins, the normal distributions should be truncated. However, for
transparency, we still quote the 90% range of the uncut distributions. These
numbers provide estimates of the order of magnitude of the potential sys-
tematic error.

GW150914 O3a

O3b

8

FIG. 4. Posterior probability densities of the masses, spins and distance to the three events GW150914, LVT151012 and GW151226. For the
two dimensional distributions, the contours show 50% and 90% credible regions. Top left: component masses msource

1 and msource
2 for the three

events. We use the convention that msource
1 � msource

2 , which produces the sharp cut in the two-dimensional distribution. For GW151226 and
LVT151012, the contours follow lines of constant chirp mass (M source = 8.9+0.3

�0.3 M� and M source = 15.1+1.4
�1.1 M� respectively). In all three

cases, both masses are consistent with being black holes. Top right: The mass and dimensionless spin magnitude of the final black holes.
Bottom left: The effective spin and mass ratios of the binary components. Bottom right: The luminosity distance to the three events.

a greater impact upon the inspiral. We find that smaller spins
are favoured, and place 90% credible bounds on the primary
spin a1  0.7 for GW150914, a1  0.7 for LVT151012, and
a1  0.8 for GW151226. In the case of GW151226, we infer
that at least one of the components has a spin of � 0.2 at the
99% credible level.

While the individual component spins are poorly con-
strained, there are combinations that can be better inferred.
The effective spin ceff, as defined in Equation 6, is a mass-
weighted combination of the spins parallel to the orbital an-
gular momentum [71–73]. It is +1 when both the spins are
maximal and parallel to the angular momentum, �1 when
both spins are maximal and antiparallel to the angular mo-
mentum, and 0 when there is no net mass-weighted aligned
spin. Systems with positive ceff complete more cycles when
inspiralling from a given orbital separation than those with
negative ceff [70, 110]. While ceff has a measurable effect
on the inspiral, this is degenerate with that of the mass ratio
as illustrated for the lower mass inspiral-dominated signals in
Fig. 4.

Observations for all three events are consistent with small
values of the effective spin: |ceff|  0.17, 0.28 and 0.35 at
90% probability for GW150914, LVT151012 and GW151226
respectively. This indicates that large parallel spins aligned or
antialigned with the orbital angular momentum are disfavored.

It may be possible to place tighter constraints on each com-
ponent’s spin by using waveforms that include the full effects
of precession [39]. This will be investigated in future analy-
ses.

All three events have final black holes with spins of ⇠ 0.7,
as expected for mergers of similar-mass black holes [111,
112]. The final spin is dominated by the orbital angular mo-
mentum of the binary at merger. Consequently, it is more pre-
cisely constrained than the component spins and is broadly
similar across the three events. The masses and spins of the
final black holes are plotted in Fig. 4.

The spin of the final black hole, like its mass, is calcu-
lated using fitting formulae calibrated against numerical rel-
ativity simulations. In [38] we used a formula which only in-
cluded contributions from the aligned components of the com-

O1

Chirp mass is best determined at low 
masses
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FIG. 5. Left: PDFs (solid black line) for the �p and �e↵ spin parameters compared to their prior distribution (green line). The
dashed vertical lines mark the 90% credible interval. The 2-dimensional plot shows probability contours of the prior (green) and
marginalised PDF (black). The 2-dimensional plot shows the contours of the 50% and 90% credible regions plotted over a colour-
coded PDF. Right: PDFs for the dimensionless component spins cS1/(Gm2

1) and cS2/(Gm2
2) relative to the normal to the orbital

plane L̂, marginalized over uncertainties in the azimuthal angles. The bins are constructed linearly in spin magnitude and the cosine of
the tilt angles cos

�1
(Ŝi · L̂), where i = {1, 2}, and, therefore, by design have equal prior probability.

on the spins (magnitude and orientation) of the BHs of
the binary and could produce super-kicks for spins in the
orbital plane of the binary [111–113]. Unfortunately, the
weak constraints on the spins (magnitude and direction) of
GW150914 prevent us from providing a meaningful limit
on the kick velocity of the resulting BH.

Finally, we can cast the results into PDFs of the strain
at the two instruments p(~h(~#)|~d) and compare them to
the posterior estimates p(~h|~d) obtained using the minimal-
assumption wavelet model [81]. The waveforms are shown
in Figure 6. There is remarkable agreement between the
actual data and the reconstructed waveform under the two
model assumptions. As expected, the uncertainty is greater
for the minimal-assumption reconstruction due to greater
flexibility in its waveform model. The agreement between
the reconstructed waveforms using the two models can be
quantified through the noise-weighted inner product that
enters Eq. (5), and it is found to be 94

+2
�3%, consistent

with expectations for the signal-to-noise ratio at which
GW150914 was observed.

Discussion— We have presented measurements of the
heaviest stellar-mass BHs known to date, and the first
stellar-mass BBH. The system merges into a BH of ⇡
60 M�. So far, stellar-mass BHs of masses ⇡ 10 M�
have been claimed using dynamical measurement of Galac-
tic X-ray binaries [114]. Masses as high as 16–20 M� and
21–35 M� have been reported for IC10 X-1 [115, 116]
and NGC300 X-1 [117], respectively; however, these mea-

surements may have been contaminated by stellar winds as
discussed in [118] and references therein. Our results at-
test that BBHs do form and merge within a Hubble time.
We have constrained the spin of the primary BH of the bi-
nary to be a1 < 0.7 and we have inferred the spin of the
remnant BH to be af ⇡ 0.7. Up to now, spin estimates of
BH candidates have relied on modelling of accretion disks
to interpret spectra of X-ray binaries [119]. In contrast,
GW measurements rely only on the predictions of general
relativity for vacuum spacetime. Further astrophysical im-
plications of these results are discussed in [94, 120].

The statistical uncertainties with which we have charac-
terised the source properties and parameters, reflect the fi-
nite signal-to-noise ratio of the observation of GW150914
and the error budget of the strain calibration process. The
latter degrades primarily the estimate of the source loca-
tion. If we assume that the strain was perfectly calibrated,
i.e. hM

= h, see Eqs. (1) and (4), the 50% and 90%

credible regions for sky location would become 48 deg
2

and 150 deg
2, compared to the actual results of 140 deg

2

and 590 deg
2, respectively. The physical parameters show

only small changes with the marginalisation over cali-
bration uncertainty, for example, the final mass M

source
f

changes from 62
+4
�4 M� including calibration uncertainty

to 62
+4
�3 M� assuming perfect calibration, and the final

spin af changes from 0.67
+0.05
�0.07 to 0.67

+0.04
�0.05. The effect

of calibration uncertainty is to increase the overall parame-
ter range at given probability, but the medians of the PDFs

8

Figure 5. Posterior distributions for the precessing SNR,
⇢p (green) and the optimal SNR in the (3,3) sub-dominant
multipole moment, ⇢ (orange). The grey dotted line shows
the expected distribution for Gaussian noise.

able from the prior distribution. The spin of the less
massive object, �2, remains unconstrained; the poste-
rior distribution is broadly consistent with the prior.

The final mass Mf and final dimensionless spin �f of
the merger remnant are estimated under the assump-
tion that the secondary is a BH. By averaging several
fits calibrated to numerical relativity (Hofmann et al.
2016; Johnson-McDaniel et al. 2016; Healy & Lousto
2017; Jiménez-Forteza et al. 2017), we infer the final
mass and spin of the remnant BH to be 25.6+1.1

�0.9 M� and
0.28+0.02

�0.02, respectively. The final spin is lower than for
previous mergers (Abbott et al. 2019a, 2020d), as ex-
pected from the low primary spin and smaller orbital
contribution due to the asymmetric masses.

4.2. Evidence for Higher-order Multipoles

The relative importance of a subdominant multipole
moment increases with mass ratio. Each subdominant
multipole moment has a di↵erent angular dependence
on the emission direction. With significant evidence
for multipoles other than the dominant (`,m) = (2, 2)
quadrupole, we gain an independent measurement of the
inclination of the source. This allows for the distance-
inclination degeneracy to be broken (Cutler & Flanagan
1994; Abbott et al. 2016f; Usman et al. 2019; Kalaghatgi
et al. 2020). Measuring higher-order multipoles there-
fore gives more precise measurements of source parame-
ters (Van Den Broeck & Sengupta 2007a,b; Kidder 2008;
Blanchet et al. 2008; Mishra et al. 2016; Kumar et al.
2019).

GW190412 was the first event where there was sig-
nificant evidence for higher-order multipoles (Payne
et al. 2019; Kumar et al. 2019; Abbott et al. 2020d).
GW190814 exhibits stronger evidence for higher-order
multipoles, with log10 B ' 9.6 in favor of a higher-
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Figure 6. Two-dimensional posterior probability for the
tilt-angle and spin-magnitude for the primary object (left)
and secondary object (right) based on the Combined sam-
ples. The tilt angles are 0� for spins aligned and 180� for
spins anti-aligned with the orbital angular momentum. The
tiles are constructed linearly in spin magnitude and the co-
sine of the tilt angles such that each tile contains identical
prior probability. The color indicates the posterior proba-
bility per pixel. The probabilities are marginalized over the
azimuthal angles.

multipole vs. a pure quadrupole model. The (`,m) =
(3, 3) is the strongest subdominant multipole, with
log10 B ' 9.1 in favor of a signal model including
both the (`,m) = (2, 2) and (3, 3) multipole moments.
GW190814’s stronger evidence for higher multipoles is
expected given its more asymmetric masses and the
larger network SNR.

The orthogonal optimal SNR of a subdominant mul-
tipole is calculated by decomposing each multipole into
components parallel and perpendicular to the domi-
nant harmonic (Mills & Fairhurst 2020; Abbott et al.
2020d). We infer that the orthogonal optimal SNR of
the (`,m) = (3, 3) multipole is 6.6+1.3

�1.4, as shown in Fig-
ure 5. This is the strongest evidence for measuring a
subdominant multipole to date (Payne et al. 2019; Ku-
mar et al. 2019; Abbott et al. 2020d).

Finally, we perform two complementary analyses in-
volving time–frequency tracks in the data to provide fur-
ther evidence for the presence of higher multipoles in the
signal. In the first approach (also outlined in Abbott
et al. 2020d, Section 4) we predict the time–frequency

GW150914
GW1908144

low as the likelihood is insignificantly small outside the
allowed prior region. However, Kullback-Leibler diver-
gences [103] calculated between prior and posterior are
sensitive to this choice. Full prior specifications can be
found in the data accompanying this paper [104].
The signal models we use to sample the BBH pa-

rameter space are enhanced versions of the models that
have been used in past analyses (e.g., [7]). We em-
ploy models from the e↵ective-one-body (EOB) [105–108]
family that are constructed by completing an analyti-
cal inspiral-merger-ringdown description which builds on
post-Newtonian (PN) [109–111] and black-hole perturba-
tion theory, with numerical-relativity information. The
phenomenological family [112, 113] on the other hand,
is based on a frequency-domain description of hybridized
EOB-inspiral and numerical-relativity merger. The latest
developments used here include the e↵ects of higher mul-
tipoles in precessing models both in the EOBNR family
(SEOBNRv4PHM, [33, 114, 115]) and the phenomeno-
logical family (IMRPhenomPv3HM, [23, 24]).
All model variants that we use in the analysis of

GW190412 are detailed in Table I. In order to test for
imprints of spin-precession and higher multipoles in the
data, we also perform analyses using models without spin
precession and/or without higher multipoles. To verify
the robustness of our results against waveform system-
atics we also performed an analysis using the numerical-
relativity surrogate NRHybSur3dq8 [27] that includes the
e↵ect of higher multipoles, but is limited to spins aligned
with the angular momentum. This surrogate model
is constructed from numerical-relativity waveforms ex-
tended with EOB-calibrated PN waveforms.

C. Masses

In Table II we summarize the inferred values of the
source parameters of GW190412. The statistical un-
certainty is quantified by the equal-tailed 90% credi-
ble intervals about the median of the marginalized one-
dimensional posterior distribution of each parameter. We
report the results obtained with the two most complete
signal models – those members of the EOBNR and Phe-
nom family that include both the e↵ects of precession
and higher multipoles (see Table I). As a conservative
estimate, and because we do not favor one model over
the other, we combine the posteriors of each model with
equal weight, which is equivalent to marginalizing over a
discrete set of signal models with a uniform probability.
The resulting values are provided in the last column of
Table II, and we refer to those values in the text unless
explicitly stated otherwise.
The component masses for this system in the source

frame are m1 = 29.7+5.0
�5.3M� and m2 = 8.4+1.7

�1.0M�. They
are consistent with the BH mass ranges of population
models inferred from the first two LIGO and Virgo ob-
serving runs [7]. However, GW190412 is particularly in-
teresting for its measured mass ratio of q = 0.28+0.13

�0.07.

FIG. 2. The posterior distribution for the mass ratio q and ef-
fective spin �e↵ of GW190412. We show the two-dimensional
marginalized distribution as well as the one-dimensional
marginalized distribution of each parameter along the axes
for two di↵erent signal models that each include the e↵ects
of precessing spins and higher multipoles. The indicated two-
dimensional area as well as the horizontal and vertical lines
along the axes, respectively, indicate the 90% credible regions.

Figures 2 and 3 illustrate that the mass ratio inferred
for GW190412 strongly disfavors a system with compa-
rable masses. We exclude q > 0.5 with 99% probability.
In Section VI we show that the asymmetric component
mass measurement is robust when analyzed using a prior
informed by the already-observed BBH population.

The posteriors shown in Fig. 2 for the two precessing,
higher multipole models are largely overlapping, but dif-
ferences are visible. The EOBNR PHM model provides
tighter constraints than Phenom PHM, and the peak of
the posterior distributions are o↵set along a line of high
correlation in the q–�e↵ plane. This mass-ratio–spin de-
generacy arises because inspiral GW signals can partly
compensate the e↵ect of a more asymmetric mass ra-
tio with a higher e↵ective spin [123–127]. The e↵ective
spin [107, 128, 129] is the mass-weighted sum of the indi-
vidual spin components ~S1 and ~S2 perpendicular to the
orbital plane, or equivalently projected along the direc-
tion of the Newtonian orbital angular momentum, ~LN ,

�e↵ =
1

M

 
~S1

m1

+
~S2

m2

!
·

~LN

k~LNk

, (2)

with M = m1 +m2.
GW190412 is in a region of the parameter space that

has not been accessed through observations before; and
we find that the two models give slightly di↵erent, yet

GW190412

• Largely undetermined spins 
for many BBH events

• Aligned spin/mass ratio 
correlation

• A few detection of aligned 
spins

• NSBH events: strong 
constraints on primary spin
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PE results from LVK: distance/inclination

6

TABLE II. Inferred parameter values for GW190412 and their
90% credible intervals, obtained using precessing models in-
cluding higher multipoles.

parametera EOBNR PHM Phenom PHM Combined

m1/M� 31.7+3.6
�3.5 27.5+4.7

�4.1 29.7+5.0
�5.3

m2/M� 8.0+0.9
�0.7 9.0+1.6

�1.1 8.4+1.7
�1.0

M/M� 39.7+3.0
�2.7 36.5+3.5

�2.7 38.1+4.0
�3.7

q 0.25+0.06
�0.04 0.33+0.12

�0.09 0.28+0.13
�0.07

Mf/M� 38.6+3.1
�2.8 35.3+3.6

�2.8 37.0+4.1
�3.9

�f 0.68+0.04
�0.04 0.66+0.06

�0.07 0.67+0.05
�0.07

mdet

1 /M� 36.5+4.2
�4.2 31.5+5.6

�4.9 34.2+5.8
�6.5

mdet

2 /M� 9.2+0.9
�0.7 10.3+1.7

�1.2 9.7+1.8
�1.1

Mdet/M� 45.7+3.5
�3.3 41.8+4.3

�3.3 43.9+4.7
�4.7

�e↵ 0.28+0.07
�0.08 0.21+0.09

�0.10 0.25+0.09
�0.11

�p 0.31+0.14
�0.15 0.29+0.26

�0.16 0.30+0.19
�0.15

�1 0.46+0.12
�0.15 0.38+0.22

�0.29 0.43+0.16
�0.26

DL/Mpc 740+120

�130
730+160

�200
730+140

�170

z 0.15+0.02
�0.02 0.15+0.03

�0.04 0.15+0.03
�0.03

✓̂JN 0.71+0.23
�0.21 0.76+0.40

�0.29 0.73+0.34
�0.24

⇢H 9.5+0.1
�0.2 9.5+0.2

�0.3 9.5+0.2
�0.3

⇢L 16.2+0.1
�0.2 16.1+0.2

�0.3 16.2+0.2
�0.3

⇢V 3.7+0.2
�0.5 3.5+0.4

�1.3 3.6+0.3
�1.0

⇢HLV 19.1+0.1
�0.2 19.0+0.2

�0.3 19.1+0.2
�0.3

a
Symbols: mi: individual mass; M = m1 +m2; superscript

“det” refers to the detector-frame (redshifted) mass, while

without subscript, masses are source-frame masses, assuming a

standard cosmology detailed in Appendix B of [7]; q = m2/m1;

Mf , �f : mass and dimensionless spin magnitude of the remnant

BH, obtained through numerical-relativity fits [119–122]; �e↵ ,

�p: e↵ective and precessing spin parameter; �1: dimensionless

spin magnitude of more massive BH; DL: luminosity distance;

z: redshift; ✓̂JN : inclination angle (folded to [0,⇡/2]); ⇢X
matched-filter SNRs for the Hanford, Livingston and Virgo

detectors, indicated by subscript. ⇢HLV: network SNR.

formative prior [132]. Collecting more observations will
enable us to make more confident statements on BH spins
in the future.

The parameter �e↵ only contains information about
the spin components perpendicular to the orbital plane.
The in-plane spin components cause the orbital plane to
precess [133], but this e↵ect is di�cult to observe, espe-
cially when the inclination angle is near 0 or ⇡. Us-
ing models with higher multipoles, however, we con-
strain the inclination of GW190412 exceptionally well
and put stronger constraints on the e↵ect of precession
than in previous binaries [7]. The strength of precession
is parameterized by an e↵ective precession parameter,
0  �p < 1, defined by [79]

�p = max

(
k~S1?k

m2

1

,
k~S2?k

m2

2

)
, (3)

FIG. 4. The posterior distribution for the luminosity dis-
tance, DL, and inclination, ✓JN (angle between the line-of-
sight and total angular momentum), of GW190412. We il-
lustrate the 90% credible regions as in Fig. 2. By comparing
models that include either the dominant multipole (and no
precession), higher multipoles and no precession, or higher
multipoles and precession, we can see the great impact higher
multipoles have on constraining the inclination and distance.
All models shown here are part of the EOBNR family.

where ~Si? = ~Si � (~Si ·
~LN )/k~LNk and  = q(4q+3)/(4+

3q). Large values of �p correspond to strong precession.
Fig. 5 shows that the marginalized one-dimensional

posterior of �p is di↵erent from its global prior distribu-
tion. The Kullback-Leibler divergence [103], DKL, for the
information gained from the global prior to the posterior
is 0.96+0.03

�0.03 bits and 0.52+0.02
�0.02 bits for the EOBNR PHM

and Phenom PHM model, respectively. Those values are
larger than what we found for any observation during
the first two observing runs (see Table V in Appendix B
of [7]). Since the prior we use introduces non-negligible
correlations between mass ratio, �e↵ and �p, we check if
the observed posterior is mainly derived from constraints
on �e↵ and q. We find that this is not the case, as a prior
restricted to the 90% credible bounds of q and �e↵ (also
included in Fig. 5) is still significantly di↵erent from the
posterior, with DKL = 0.97+0.03

�0.03 bits (0.54+0.02
�0.02 bits) for

the EOBNR PHM (Phenom PHM) model. We constrain
�p 2 [0.15, 0.49] at 90% probability, indicating that the
signal does not contain strong imprints of precession, but
very small values of �p . 0.1 are also disfavored. The
results obtained with the EOBNR PHM model are more
constraining than the Phenom PHM results. We return
to the question if GW190412 contains significant imprints
of precession below, and in the context of Bayes factors
in Sec. IVA.

GW190412
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FIG. 5. The posterior density of the precessing spin parame-
ter, �p, obtained with the two models that include both the
e↵ects of precession and higher multipoles. In addition, we
show the prior probability of �p for the global prior parame-
ter space, and restricted to the 90% credible intervals of �e↵

and q as given in the “Combined” column of in Table II.

The asymmetric masses of GW190412 means that the
spin of the more massive BH dominates contributions to
�e↵ and �p. Therefore, we obtain that the spin magni-
tude of the more massive BH is �1 = 0.43+0.16

�0.26, which
is the strongest constraint from GWs on the individual
spin magnitude of a BH in a binary so far [7]. The spin
magnitude of the less massive BH remains largely uncon-
strained.
To further explore the presence of precession in the

signal, we perform the following analysis. Gravitational
waveforms from precessing binaries can be decomposed
into an expansion in terms of the opening angle between
the total and orbital angular momenta [134, 135]. Con-
sidering only ` = 2 modes, this expansion contains five
terms, each not showing the characteristic phase and am-
plitude modulations of a precessing signal. When the
spin component that lies in the binary’s orbital plane is
relatively small, the angle between the total angular mo-
mentum and the orbital angular momentum is small as
well [136], and higher-order contributions in this expan-
sion may be neglected. As a result, a precessing waveform
can be modeled by the sum of the leading two contribu-
tions, where the amplitude and phase modulations of a
precessing signal arise from the superposition of these
terms.
In order to identify precession, we therefore require be-

ing able to measure both of these terms. We quantify the
measurability of precession ⇢p by how much power there
is in the sub-dominant contribution. The distribution of
⇢p is shown in Fig. 6. In the absence of any precession in
the signal, we expect ⇢2

p
to follow a �2-distribution with

two degrees of freedom. Using the inferred posterior dis-
tributions, our analysis shows that ⇢p = 2.86+3.43

�1.56. We
may interpret this as moderate support for precession as
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FIG. 6. The probability distribution of the precessing SNR,
⇢p (blue) and the orthogonal optimal SNR, ⇢, contained in the
strongest higher multipole, (`, m) = (3, 3) (orange). We also
show the expected distribution from Gaussian noise (dotted
line) and the 3-� level (dashed line). The results indicate that
there is marginal support for precession, but the posterior
supports a clearly measurable higher multipole.

the median exceeds the 90% confidence interval expected
from noise, but a non-negligible fraction of the ⇢p poste-
rior lies below. This calculation assumes a signal domi-
nated by the ` = 2 multipole. However, we have verified
that the contribution of higher multipoles to the mea-
surement of spin-precession is subdominant by a factor
of ⇠5.

IV. HIGHER MULTIPOLES

Signal models that include higher multipoles are
needed to infer the strongest constraints on GW190412’s
source properties. This is because if the data contain
significant imprints of higher multipoles, the appropriate
models can fit the data better than dominant-mode mod-
els, leading to a higher statistical likelihood. Conversely,
if the data would not contain imprints of higher multi-
poles, using more complex models allows us to disfavor
configurations in which clear imprints of higher multi-
poles are predicted [22, 130, 131].
In this section, we analyze how strong the imprints of

higher multipoles are in GW190412 and ask if their con-
tributions in the data are significantly stronger than ran-
dom noise fluctuations. We address this question using
four di↵erent approaches, each coming with its unique
set of strength and caveats.

A. Bayes Factors and Matched-Filter SNR

We may first ask if higher-multipole models actually fit
the data better than dominant-multipole models. This
can be quantified by the matched-filter network SNR,
⇢HLV, which is based on the sum of the squared inner

GW190412

• GW190412: strong signal with high mass 
ratio q~4

• Distance-inclination degeneracy is broken 
by higher modes and precession

• Evidence for 33 mode in the data
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Sky localization and rapid localization

• Main information: triangulation by measuring

• Secondary information: amplitude in each detector

•  With two detectors, time delays give a ring on the sky

• Low-latency localization crucial even if approximate: Bayestar 

In the mid-1960s, gamma-ray bursts (GRBs) were discovered
by the Vela satellites, and their cosmic origin was first established
by Klebesadel et al. (1973). GRBs are classified as long or short,
based on their duration and spectral hardness(Dezalay et al. 1992;
Kouveliotou et al. 1993). Uncovering the progenitors of GRBs
has been one of the key challenges in high-energy astrophysics
ever since(Lee & Ramirez-Ruiz 2007). It has long been
suggested that short GRBs might be related to neutron star
mergers (Goodman 1986; Paczynski 1986; Eichler et al. 1989;
Narayan et al. 1992).

In 2005, the field of short gamma-ray burst (sGRB) studies
experienced a breakthrough (for reviews see Nakar 2007; Berger
2014) with the identification of the first host galaxies of sGRBs
and multi-wavelength observation (from X-ray to optical and
radio) of their afterglows (Berger et al. 2005; Fox et al. 2005;
Gehrels et al. 2005; Hjorth et al. 2005b; Villasenor et al. 2005).
These observations provided strong hints that sGRBs might be
associated with mergers of neutron stars with other neutron stars
or with black holes. These hints included: (i) their association with
both elliptical and star-forming galaxies (Barthelmy et al. 2005;
Prochaska et al. 2006; Berger et al. 2007; Ofek et al. 2007; Troja
et al. 2008; D’Avanzo et al. 2009; Fong et al. 2013), due to a very
wide range of delay times, as predicted theoretically(Bagot et al.
1998; Fryer et al. 1999; Belczynski et al. 2002); (ii) a broad
distribution of spatial offsets from host-galaxy centers(Berger
2010; Fong & Berger 2013; Tunnicliffe et al. 2014), which was
predicted to arise from supernova kicks(Narayan et al. 1992;
Bloom et al. 1999); and (iii) the absence of associated
supernovae(Fox et al. 2005; Hjorth et al. 2005c, 2005a;
Soderberg et al. 2006; Kocevski et al. 2010; Berger et al.
2013a). Despite these strong hints, proof that sGRBs were
powered by neutron star mergers remained elusive, and interest
intensified in following up gravitational-wave detections electro-
magnetically(Metzger & Berger 2012; Nissanke et al. 2013).

Evidence of beaming in some sGRBs was initially found by
Soderberg et al. (2006) and Burrows et al. (2006) and confirmed

by subsequent sGRB discoveries (see the compilation and
analysis by Fong et al. 2015 and also Troja et al. 2016). Neutron
star binary mergers are also expected, however, to produce
isotropic electromagnetic signals, which include (i) early optical
and infrared emission, a so-called kilonova/macronova (hereafter
kilonova; Li & Paczyński 1998; Kulkarni 2005; Rosswog 2005;
Metzger et al. 2010; Roberts et al. 2011; Barnes & Kasen 2013;
Kasen et al. 2013; Tanaka & Hotokezaka 2013; Grossman et al.
2014; Barnes et al. 2016; Tanaka 2016; Metzger 2017) due to
radioactive decay of rapid neutron-capture process (r-process)
nuclei(Lattimer & Schramm 1974, 1976) synthesized in
dynamical and accretion-disk-wind ejecta during the merger;
and (ii) delayed radio emission from the interaction of the merger
ejecta with the ambient medium (Nakar & Piran 2011; Piran et al.
2013; Hotokezaka & Piran 2015; Hotokezaka et al. 2016). The
late-time infrared excess associated with GRB 130603B was
interpreted as the signature of r-process nucleosynthesis (Berger
et al. 2013b; Tanvir et al. 2013), and more candidates were
identified later (for a compilation see Jin et al. 2016).
Here, we report on the global effort958 that led to the first joint

detection of gravitational and electromagnetic radiation from a
single source. An ∼ 100 s long gravitational-wave signal
(GW170817) was followed by an sGRB (GRB 170817A) and
an optical transient (SSS17a/AT 2017gfo) found in the host
galaxy NGC 4993. The source was detected across the
electromagnetic spectrum—in the X-ray, ultraviolet, optical,
infrared, and radio bands—over hours, days, and weeks. These
observations support the hypothesis that GW170817 was
produced by the merger of two neutron stars in NGC4993,
followed by an sGRB and a kilonova powered by the radioactive
decay of r-process nuclei synthesized in the ejecta.

Figure 1. Localization of the gravitational-wave, gamma-ray, and optical signals. The left panel shows an orthographic projection of the 90% credible regions from
LIGO (190 deg2; light green), the initial LIGO-Virgo localization (31 deg2; dark green), IPN triangulation from the time delay between Fermi and INTEGRAL (light
blue), and Fermi-GBM (dark blue). The inset shows the location of the apparent host galaxy NGC 4993 in the Swope optical discovery image at 10.9 hr after the
merger (top right) and the DLT40 pre-discovery image from 20.5 days prior to merger (bottom right). The reticle marks the position of the transient in both images.

958 A follow-up program established during initial LIGO-Virgo observations
(Abadie et al. 2012) was greatly expanded in preparation for Advanced LIGO-
Virgo observations. Partners have followed up binary black hole detections,
starting with GW150914 (Abbott et al. 2016a), but have discovered no firm
electromagnetic counterparts to those events.

2

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.
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PE challenges: systematics, exceptional events

• GW190521 was an exceptionally massive 
BBH merger

• Surprising properties: in-plane spin ?
• Suggestion (to be confirmed) that 

eccentricity might be important

coalescence rate [38]. The remnant of GW190521 fulfills
the above definition of an IMBH.
GW190521 was detected by searches for quasicircular

binary coalescences, and there is no evidence in the data for
significant departures from such a signal model. However,
for any transient with high inferred masses, there are few
cycles observable in ground-based detectors, and therefore
alternative signal models may also fit the data. This is
further addressed in the companion paper [39] that also
provides details about physical parameter estimation, and
the astrophysical implications of the observation of GWs
from this massive system.
Observation.—On May 21, 2019 at 03:02:29 UTC, the

LIGO Hanford (LHO), LIGO Livingston (LLO), and Virgo
observatories detected a coincident transient signal. A
matched-filter search for compact binary mergers,
PYCBC LIVE [40,41,42], reported the transient with a
network signal-to-noise ratio (SNR) of 14.5 and a false-
alarm rate of 1 in 8 yr, triggering the initial alert. Aweakly
modeled transient search based on coherent wave burst
(CWB) [43] in its IMBH search configuration [35] reported
a signal with a network SNR of 15.0 and a false-alarm rate
lower than 1 in 28 yr. Two other matched-filter pipelines,
SPIIR [44] and GSTLAL [45], found consistent candidates
albeit with higher false-alarm rates. The identification,
localization, and classification of the transient as a binary
BH merger were reported publicly within ≈6 min, with the
candidate name S190521g [46,47].

A second significant GW trigger occurred on the same
day at 07:43:59 UTC, S190521r [48]. Despite the short
time separation, the inferred sky positions of GW190521
and S190521r are disjointed at high confidence, and so the
events are not related by gravitational lensing. Further
discussions pertaining to gravitational lensing and
GW190521 are presented in the companion paper [39].
GW190521, shown in Fig. 1, is a short transient signal

with a duration of approximately 0.1 s and around four
cycles in the frequency band 30–80 Hz. A frequency of
60 Hz at the signal peak and the assumption that the source
is a compact binary merger imply a massive system.
Data.—The LIGO and Virgo strain data are conditioned

prior to their use in search pipelines and parameter
estimation analyses. During online calibration of the data
[53], narrow spectral features (lines) are subtracted using
auxiliary witness sensors. Specifically, we remove from the
data the 60 Hz U.S. mains power signature (LIGO), as well
as calibration lines (LIGO and Virgo) that are intentionally
injected into the detectors to measure the instruments’
responses. During online calibration of Virgo data, broad-
band noise in the 40–1000 Hz frequency range is subtracted
from the data [54]. The noise-subtracted data produced by
the online calibration pipelines are used by online search
pipelines and initial parameter estimation analyses.
Subsequent to the subtraction conducted within the

online calibration pipeline, we perform a secondary offline
subtraction [55] on the LIGO data with the goal of

FIG. 1. The GW event GW190521 observed by the LIGO Hanford (left), LIGO Livingston (middle), and Virgo (right) detectors.
Times are shown relative to May 21, 2019 at 03:02:29 UTC. The top row displays the time-domain detector data after whitening by each
instrument’s noise amplitude spectral density (light blue lines); the point estimate waveform from the CWB search [43] (black lines); the
90% credible intervals from the posterior probability density functions of the waveform time series, obtained via Bayesian inference
(LALINFERENCE [49]) with the NRSur7dq4 binary BH waveform model [50] (orange bands), and with a generic wavelet model
(BayesWave [51], purple bands). The ordinate axes are in units of noise standard deviations. The bottom row displays the time-
frequency representation of the whitened data using the Q transform [52].
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binaries. The NRSur7dq4 results are summarized in
Table I. Results for all three models are presented in the
companion paper [39].
Figure 2 shows our estimated 90% credible regions for

the individual masses of GW190521. We estimate indivi-
dual components with ðm1; m2Þ ¼ ð85þ21−14 ; 66

þ17
−18Þ M⊙ and

a total mass 150þ29−17 M⊙. This makes GW190521 the most
massive binary BH observed to date, as expected from its
short duration and low peak frequency. To quantify
compatibility with the PISN mass gap, we find the
probability of the primary component being below
65 M⊙ to be 0.32%. The estimated mass and dimensionless
spin magnitude of the remnant object areMf ¼ 142þ28−16 M⊙
and χf ¼ 0.72þ0.09−0.12 respectively. The posterior forMf shows
no support below 100 M⊙, making the remnant the first
conclusive direct observation of an IMBH.
The left panel of Fig. 3 shows the posterior distributions

for the magnitude and tilt angle of the individual spins,
measured at a reference frequency of 11 Hz. All pixels in
this plot have equal prior probability. While we obtain
posteriors with strong support at the χ ¼ 1 limit imposed by
cosmic censorship [91], these also show non-negligible
support for zero spin magnitudes. In addition, the maxi-
mum posterior probability corresponds to large angles
between the spins and the orbital angular momentum.
Large spin magnitudes and tilt angles would lead to a
strong spin-orbit coupling, causing the orbital plane to

FIG. 2. Posterior distributions for the progenitor masses of
GW190521 according to the NRSur7dq4 waveform model. The
90% credible regions are indicated by the solid contour in the
joint distribution and by solid vertical and horizontal lines in
the marginalized distributions.

FIG. 3. Left: posterior distribution for the individual spins of GW190521 according to the NRSur7dq4 waveform model. The radial
coordinate in the plot denotes the dimensionless spin magnitude, while the angle denotes the spin tilt, defined as the angle between the
spin and the orbital angular momentum of the binary at reference frequency of 11 Hz. A tilt of 0° indicates that the spin is aligned with
the orbital angular momentum. A nonzero magnitude and a tilt away from 0° and 180° imply a precessing orbital plane. All bins have
equal prior probability. Right: posterior distributions for the effective spin and effective in-plane spin parameters. The 90% credible
regions are indicated by the solid contour in the joint distribution, and by solid vertical and horizontal lines in the marginalized
distributions. The large density for tilts close to 90° leads to large values for χp and low values for χeff.
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binaries. The NRSur7dq4 results are summarized in
Table I. Results for all three models are presented in the
companion paper [39].
Figure 2 shows our estimated 90% credible regions for

the individual masses of GW190521. We estimate indivi-
dual components with ðm1; m2Þ ¼ ð85þ21−14 ; 66

þ17
−18Þ M⊙ and

a total mass 150þ29−17 M⊙. This makes GW190521 the most
massive binary BH observed to date, as expected from its
short duration and low peak frequency. To quantify
compatibility with the PISN mass gap, we find the
probability of the primary component being below
65 M⊙ to be 0.32%. The estimated mass and dimensionless
spin magnitude of the remnant object areMf ¼ 142þ28−16 M⊙
and χf ¼ 0.72þ0.09−0.12 respectively. The posterior forMf shows
no support below 100 M⊙, making the remnant the first
conclusive direct observation of an IMBH.
The left panel of Fig. 3 shows the posterior distributions

for the magnitude and tilt angle of the individual spins,
measured at a reference frequency of 11 Hz. All pixels in
this plot have equal prior probability. While we obtain
posteriors with strong support at the χ ¼ 1 limit imposed by
cosmic censorship [91], these also show non-negligible
support for zero spin magnitudes. In addition, the maxi-
mum posterior probability corresponds to large angles
between the spins and the orbital angular momentum.
Large spin magnitudes and tilt angles would lead to a
strong spin-orbit coupling, causing the orbital plane to

FIG. 2. Posterior distributions for the progenitor masses of
GW190521 according to the NRSur7dq4 waveform model. The
90% credible regions are indicated by the solid contour in the
joint distribution and by solid vertical and horizontal lines in
the marginalized distributions.

FIG. 3. Left: posterior distribution for the individual spins of GW190521 according to the NRSur7dq4 waveform model. The radial
coordinate in the plot denotes the dimensionless spin magnitude, while the angle denotes the spin tilt, defined as the angle between the
spin and the orbital angular momentum of the binary at reference frequency of 11 Hz. A tilt of 0° indicates that the spin is aligned with
the orbital angular momentum. A nonzero magnitude and a tilt away from 0° and 180° imply a precessing orbital plane. All bins have
equal prior probability. Right: posterior distributions for the effective spin and effective in-plane spin parameters. The 90% credible
regions are indicated by the solid contour in the joint distribution, and by solid vertical and horizontal lines in the marginalized
distributions. The large density for tilts close to 90° leads to large values for χp and low values for χeff.

PHYSICAL REVIEW LETTERS 125, 101102 (2020)

101102-5

GW190521

[arXiv:2009.05641]
[arXiv:2009.04771]



47

PE challenges: systematics, exceptional events

• Examples with disagreement 
between waveform models…

• Need improvement in models ?

the energy radiated in the merger is given by M−Mf. The key
analysis elements described above, including parameter estima-
tion sampling algorithms, PSD estimates, and waveform models,
all potentially introduce systematic uncertainties. Different
choices for these elements can affect the results but in most
cases these changes are significantly smaller than the statistical
uncertainties. Below, we highlight the more significant differ-
ences in the results associated with waveform models.

2.2. Primary and Secondary BH Components

In Table 1 we summarize the source properties of GW190521.
Results are quoted as the median and symmetric 90% credible
interval of the marginalized posterior distributions for each
parameter, and for each of the three GW signal models. The
measurements are marginalized over uncertainty in the data
calibration. In the rest of this paper we quote source properties
derived using NRSurPHM, unless explicitly stated otherwise.

Figure 1. Posterior distributions on the individual source-frame masses (left) and effective spin parameters (right) according to the three waveform models employed.
The one-dimensional distributions include the posteriors for the three waveform models, and the dashed lines mark their 90% credible interval. The two-dimensional
plot shows the 90% credible regions for each waveform model, with lighter-blue shading showing the posterior distribution for the NRSurPHM model. The black
lines in the right panel show the prior distributions.

Table 1
Source Properties for GW190521: Median Values with 90% Credible Intervals That Include Statistical Errors

Waveform Model NRSurPHM PhenomPHM SEOBNRPHM

Primary BH mass m1(Me)
Secondary BH mass m2(Me)
Total BBH mass M(Me)
Binary chirp mass (Me)
Mass ratio q=m2/m1

Primary BH spin χ1

Secondary BH spin χ2

Primary BH spin tilt angle
Secondary BH spin tilt angle
Effective inspiral spin parameter χeff

Effective precession spin parameter χp

Remnant BH mass Mf(Me)
Remnant BH spin χf

Radiated energy Erad(Me c2)
Peak Luminosity ℓpeak(erg s−1) ×1056

Luminosity distance DL(Gpc)
Source redshift z
Sky localization 774 862 1069
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Masses.—The estimated mass posterior distributions are
shown in the left panel of Figure 1 for the three GW signal
models. The primary BH mass of GW190521 is m1= Me,
making it the highest-mass component BH known to date in
GW astronomy. The mass of the secondary BH is inferred to be
m2= Me. The primary BH of GW190521 is more
massive (median value) than any remnant BH reported in
GWTC-1 except for GW170729 (Abbott et al. 2019i); the
secondary BH of GW190521 is also more massive than any
primary BH in GWTC-1.

These source-frame masses have been redshift corrected, as
discussed above, using a value of the Hubble parameter
H0=67.9 from Planck 2015. However, recent measurements
of H0 using nearby Cepheid distance standards obtain a precise
value of H0=74.03±1.42 km s−1 Mpc−1 (Riess et al. 2019),
9%higher than the Planck value. Using the latter value along
with the other cosmological parameters from Planck 2015
increases the median value of the redshift by 7%and reduces
the estimated source-frame masses by 3%. These shifts are
significantly smaller than statistical or other systematic
uncertainties, including those affecting the astrophysical
interpretation discussed throughout this paper.

While the low-mass cutoff of the PI mass gap is uncertain
(see Section 5.1), the primary BH of GW190521 offers strong
evidence for the existence of BHs in the mass gap. If the PI gap
begins at 50Me (65Me), we find that the primary BH has only
a < 0.1% (0.3%) probability of being below the mass gap,
while the secondary BH has 6.6% (46.2%) probability of also
being below the mass gap.

The SEOBNRPHM model supports a higher primary mass
and more asymmetric mass ratio for GW190521: within 90%
credible intervals, m1 and m2 can be as high as 141 Me and
92Me respectively, while support for the mass ratio extends
down to q∼0.32. While the upper limit of the PI mass gap
remains uncertain, adopting 120Me as the high-mass end of
the gap, we find the probability that the primary BH of
GW190521 is beyond the gap of 12% when using the
SEOBNRPHM model. The corresponding probabilities using
the NRSurPHM and PhenomPHM models are 0.9%and
2.3%, respectively.

The probability that at least one of the BHs in GW190521 is
in the range 65–120Me is 99.0%, using the NRSur PHM
model. The corresponding probabilities using the SEOBNR
PHM and Phenom PHM models are 90.2%and 98.0%,
respectively.
We measure the total binary mass of GW190521 to be

M= Me making it the highest-mass binary observed
via GWs to date. The binary chirp mass is Me, a
factor of ∼2 higher than the first BBH detection, GW150914
(Abbott et al. 2016a, 2019i). GW190521 is consistent with a
nearly equal mass binary with mass ratio q=m2/m1=

(90% credible interval).
In the detector frame, the measured masses are

Me, Me,M
det= Me, and

Me, using the NRSurPHM model. These results are very
nearly the same for all three models.
Spins.—Due to its high total mass, GW190521 is the shortest-

duration signal (approximately 0.1 s) recorded so far in the LIGO
and Virgo detectors. With only around four cycles (two orbits) in
the frequency band 30–80 Hz (Abbott et al. 2020b), information
about spin evolution during the coalescence is limited. Still,
analyses of GW190521 indicate that GW signal models including
effects of spin–orbit precession are mildly preferred over those
that omit such effects (i.e., allow only spins aligned with the
orbital axis), with a -Bayes factor of +0.65 +−0.06 for the
NRSurPHM model allowing generic BH spins versus limiting
the effects of spin to the aligned components.
In the disk plots of Figure 2, we show constraints on the

spins of the component BHs of GW190521 in terms of their
dimensionless magnitudes χ1 and χ2 and polar angles (tilts)
with respect to the orbital angular momentum, and ,
defined at a fiducial GW frequency of 11 Hz. Median values
from all three waveform models suggest in-plane spin
components with high spin magnitudes for both the BHs.
Within the 90% credible intervals given in Table 1, however,
the constraints on the dimensionless BH spin magnitudes
remain uninformative. For our preferred model NRSurPHM,
the 90% bounds on spin magnitude extend from χ1,2∼0.1 to
0.9. The constraints on the tilt angles of these spins are also
relatively broad.

Figure 2. Posterior probabilities for the dimensionless component spins, and , relative to the orbital angular momentum axis . Shown here for
the three waveform models (left to right: NRSur PHM, Phenom PHM, and SEOBNR PHM). The tilt angles are 0° for spins aligned with the orbital angular
momentum and 180° for spins anti-aligned. Probabilities are marginalized over the azimuthal angles. The pixels have equal prior probability, being equally spaced in
the spin magnitudes and the cosines of tilt angles. The spin orientations are defined at a fiducial GW frequency of 11 Hz.
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TABLE I. Waveform models used in this paper. We indicate which multipoles are included for each model. For precessing
models, the multipoles correspond to those in the co-precessing frame.

family short name full name precession multipoles (`, |m|) ref.

EOBNR

EOBNR SEOBNRv4 ROM ⇥ (2, 2) [57]

EOBNR HM SEOBNRv4HM ROM ⇥ (2, 2), (2,1), (3, 3), (4, 4), (5, 5) [26, 32]

EOBNR P SEOBNRv4P X (2, 2), (2, 1) [33, 114, 115]

EOBNR PHM SEOBNRv4PHM X (2, 2), (2, 1), (3, 3), (4, 4), (5, 5) [33, 114, 115]

Phenom

Phenom IMRPhenomD ⇥ (2, 2) [116, 117]

Phenom HM IMRPhenomHM ⇥ (2, 2), (2, 1), (3, 3), (3, 2), (4, 4), (4, 3) [22]

Phenom P IMRPhenomPv2/v3a X (2, 2) [23, 118]

Phenom PHM IMRPhenomPv3HM X (2, 2), (2, 1), (3, 3), (3, 2), (4, 4), (4, 3) [24]

NR surrogate NRSur HM NRHybSur3dq8 ⇥ `  4, (5, 5) but not (4, 0), (4, 1) [27]

a
The recently improved, precessing model IMRPhenomPv3 is used in Sec. IVA to calculate Bayes factors. For consistency with

previous analyses and computational reasons, the tests presented in Sec. VA use IMRPhenomPv2 instead.

FIG. 3. The one-dimensional posterior probability density
for the mass ratio q of GW190412, obtained with a suite of
di↵erent signal models. The vertical lines above the bottom
axes indicate the 90% credible bounds for each signal model.

largely consistent results. However, this is the first
time that systematic model di↵erences are not much
smaller than statistical uncertainties. We tested the ori-
gin of these di↵erences by repeating the analysis with
an extended suite of signal models, as shown in Fig. 3.
The results indicate that the mass-ratio measurement
of GW190412 is robust against modeling systematics,
and the di↵erent treatments of higher multipoles in the
EOBNR and Phenom families may account for some of
the observed di↵erences. We also see that the NRSur HM
model and the EOBNR HM model agree well with each
other, while the Phenom HM model deviates slightly.
This is consistent with the fact that the NRSur HM
and EOBNR HM models have some features in common.
In NRSur HM, the PN inspiral part of the waveform is
calibrated to EOB waveforms, and in EOBNR HM the

merger and ringdown part of the waveform is calibrated
to a subset of the numerical-relativity simulations used
in the construction of NRSur HM. Further studies will be
needed to fully understand the systematics visible here
and mitigate them as models improve.

D. Orientation and Spins

The contribution of higher multipoles in the gravita-
tional waveform is important for the parameter estima-
tion of systems with small mass ratios [130, 131]. In
Fig. 4 we show the marginalized two-dimensional pos-
terior distribution for luminosity distance and inclina-
tion obtained using signal models either without higher
multipoles, with higher multipoles, or with higher mul-
tipoles and spin-precession. The degeneracy between lu-
minosity distance and inclination angle that is present in
the results obtained without higher multipoles is broken
when higher multipoles are included. The inclusion of
precession e↵ects helps to constrain the 90% credible re-
gion further. Results obtained with the Phenom family
show the same degeneracy breaking when higher multi-
poles are included, but the 90% credible region obtained
with Phenom PHM has some remaining small support
for ✓JN > ⇡/2.

We constrain the spin parameter �e↵ of GW190412’s
source to be 0.25+0.09

�0.11. After GW151226 and
GW170729 [2, 7, 34], this is the third BH binary we
have identified whose GW signal shows imprints of at
least one nonzero spin component, although recently an-
other observation of a potentially spinning BH binary
was reported [11]. However, inferred spins are more sen-
sitive than other parameters (e.g., component masses)
to the choice of the prior. A re-analysis of GW events
with a population-informed spin prior recently suggested
that previous binary component spins measurements may
have been overestimated because of the use of an unin-

GW190521

GW190412
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ral range, which quantifies the average distance at which
a fiducial 1.4M� + 1.4M� BNS could be detected with a
signal-to-noise ratio (SNR) of 8 [20–22]. During O3b the
median BNS inspiral range for LIGO Livingston, LIGO
Hanford and Virgo was 133 Mpc, 115 Mpc and 51 Mpc,
respectively. In Fig. 1 we show the growth in the num-
ber of candidates in the LVK catalog across observing
runs. Here, the search sensitivity is quantified by the
BNS time–volume, which should be approximately pro-
portional to the number of detections [3]. This is defined
as the observing time multiplied by the Euclidean sen-
sitive volume for the detector network [22]. For O1 and
O2, the observing time includes periods when at least
two detectors were observing, and the Euclidean sensi-
tive volume is the volume of a sphere with a radius equal
to the BNS inspiral range of the second most sensitive
detector in the network. For O3, to account for the po-
tential of single-detector triggers, the observing time also
includes periods when only one detector was observing,
and the radius of the Euclidean sensitive volume is the
greater of either (i) the BNS inspiral range of the second
most sensitive detector, or (ii) the BNS inspiral range of
the most sensitive detector divided by 1.5 (correspond-
ing to a SNR threshold of 12) [3]. As the sensitivity of
the detector network improves [23], the rate of discovery
increases.

Further searches for GW transients in O3b data have
been conducted focusing on: intermediate-mass black
hole (IMBH) binaries (with a component & 65M� and a
final BH & 100M�) [24], signals coincident with gamma-
ray bursts [25], cosmic strings [26], and both minimally
modeled short-duration (. O(1) s, such as from super-
novae explosions) [27] and long-duration (& O(1) s, such
as from deformed magnetars or from accretion-disk insta-
bilities) [28] signals. However, no high-significance can-
didates for types of signals other than the CBCs reported
here have yet been found.

We begin with an overview of the status of the Ad-
vanced LIGO and Advanced Virgo detectors during O3b
(Sec. II), and the properties and quality of the data used
in the analyses (Sec. III). We report the significance of
the candidates identified by template-based and mini-
mally modeled search analyses, and compare this set of
candidates to the low-latency public GW alerts issued
during O3b (Sec. IV). We describe the inferred astro-
physical parameters for the O3b candidates (Sec. V). Fi-
nally, we show the consistency of reconstructed wave-
forms with those expected for CBCs (Sec. VI). In the
Appendices, we review public alerts and their multimes-
senger follow-up (Appendix A); we describe commission-
ing of the observatories for O3b (Appendix B); we de-
tail data-analysis methods used to assess data quality
(Appendix C), search for signals (Appendix D) and in-
fer source properties (Appendix E), and we discuss the
di�culties in assuming a source type when performing a
minimally modeled search analyses (Appendix F). A data
release associated with this catalog is available from the
Gravitational Wave Open Science Center (GWOSC) [29];
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Figure 1. The number of CBC detection candidates with
a probability of astrophysical origin pastro > 0.5 versus the
detector network’s e↵ective surveyed time–volume for BNS
coalescences [3]. The colored bands indicate the di↵erent ob-
serving runs. The final data sets for O1, O2, O3a and O3b
consist of 49.4 days, 124.4 days, 149.8 days (177.2 days) and
125.5 days (142.0 days) with at least two detectors (one de-
tector) observing, respectively. The cumulative number of
probable candidates is indicated by the solid black line, while
the blue line, dark blue band and light blue band are the me-
dian, 50% confidence interval and 90% confidence interval for
a Poisson distribution fit to the number of candidates at the
end of O3b.

this includes calibrated strain time-series around signif-
icant candidates, detection-pipeline results, parameter-
estimation posterior samples, source localizations, and
tables of inferred source parameters.

II. INSTRUMENTS

The Advanced LIGO [1] and Advanced Virgo [2] in-
struments are kilometer-scale laser interferometers [30–
32]. The advanced generation of interferometers be-
gan operations in 2015, and observing periods have
been alternated with commissioning periods [23]. After
O1 [13, 33] and O2 [14], the sensitivity of the interfer-
ometers has improved significantly [3, 34]. The main im-
provements were the adjustment of in-vacuum squeezed-
light sources, or squeezers, for the LIGO Hanford and
LIGO Livingston interferometers and the increase of the
laser power in the Virgo interferometer. The instrumen-
tal changes leading to improved sensitivities during O3b
are discussed in Appendix B.

Figure 2 shows representative sensitivities during O3b
for LIGO Hanford, LIGO Livingston and Virgo, as char-
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Figure 7. Marginal posterior distributions for the source chirp mass M, mass ratio q, e↵ective inspiral spin �e↵ , e↵ective
precession spin �p and luminosity distance DL for O3b candidates with pastro > 0.5 plus GW200105 162426. The vertical
extent of each colored region is proportional to one-dimensional marginal posterior distribution at a given parameter value
for the corresponding event. We highlight with italics GW200105 162426 as it has pastro < 0.5, as well as GW191219 163120
because of potential uncertainties in its pastro and because it has significant posterior support outside of mass ratios where the
waveform models have been calibrated. Results for GW200308 173609 and GW200322 091133 include a prior-dominated mode
at large distances and high masses: the hatched posterior probability distribution shown on the lower half of the plots for these
candidates exclude these low-likelihood, prior-dominated modes. Colors correspond to the date of observation.
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FIG. 9. The empirical cumulative density function F̂ =
P

k Pk(x)/N of observed binary parameter distributions (derived
from the single-event cumulative distributions Pk(x) for each parameter x) are shown in black for primary mass (left), e↵ective
inspiral spin (center), and redshift (right). All binaries used in this study with FAR< 1/4yr are included, and each is analyzed
using our fiducial noninformative prior. For comparison, the gray bands show the expected observed distributions, based on
our previous analysis of GWTC-2 BBH. Solid lines show the medians, while the shading indicates a 90% credible interval on
the empirical cumulative estimate and selection-weighted reconstructed population, respectively. GW190814 is excluded from
this analysis.
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FIG. 10. The astrophysical BBH primary mass (left) and mass ratio (right) distributions for the fiducial PP model, showing
the di↵erential merger rate as a function of primary mass or mass ratio. The solid blue curve shows the posterior population
distribution (PPD) with the shaded region showing the 90% credible interval. The black solid and dashed lines show the PPD
and 90% credible interval from analyzing GWTC-2 as reported in [11]. The vertical gray band in the primary mass plot shows
90% credible intervals on the location of the mean of the Gaussian peak for the fiducial model.

m1 2 [5, 20]M� m1 2 [20, 50]M� m1 2 [50, 100]M� All BBH

m2 2 [5, 20]M� m2 2 [5, 50]M� m2 2 [5, 100]M�

PP 23.4+12.9
�8.6 4.5+1.8

�1.3 0.2+0.1
�0.1 28.1+14.8

�10.0

BGP 20.0+10.0
�8.0 6.4+3.0

�2.1 0.74+1.2
�0.46 33.0+16.0

�10.0

FM 21.1+10.7
�8.3 4.1+2.0

�1.4 0.2+0.3
�0.1 26.0+11.5

�8.7

PS 27+12
�9.4 3.6+1.5

�1.1 0.2+0.18
�0.1 32+14

�9.6

Merged 12.8 – 40 0.098 – 6.3 2.5 – 0.5 17.3 – 45

TABLE IV. Merger rates in Gpc�3 yr�1 for BBH binaries, quoted at the 90% credible interval, for the PP model and for three
non-parametric models (Binned Gaussian process, Flexible mixtures, Power Law + Spline). Rates are given for three
ranges of primary mass, m1 as well as for the entire BBH population. Despite di↵erences in methods, the results are consistent
among the models. BGP assumes a non-evolving merger rate in redshift. The merger rate for PP, FM, and PS is quoted at a
redshift value of 0.2, the value where the relative error in merger rate is smallest.
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FIG. 13. Constraints on the evolution of the BBH merger
rate with redshift. Top: Posterior on the power-law index
 governing the BBH rate evolution, which is presumed to
take the form R(z) / (1 + z). The blue histogram shows
our latest constraints using GWTC-3 ( = 2.7+1.8

�1.9), while
the dashed distribution shows our previous constraints under
GWTC-2. Bottom: Central 50% (dark blue) and 90% (light
blue) credible bounds on the BBH merger rate R(z). The
dashed line, for reference, is proportional to the rate of cosmic
star formation [155]; we infer that R(z) remains consistent
with evolution tracing star formation.

mass, mmin, that characterizes the primary mass scale
above which a power-law distribution exists. The min-
imum mass is mmin = 2.2+0.28

�0.22M�, with an extremely

sharp turn-on of �m = 0.38+1.2
�0.35M�. By contrast, if we

remove the two low-mass events, we find a minimum BH
mass of mmin = 2.5+0.67

�0.44M�, which is consistent with a

mass gap, and a broader turn-on of �m = 7.8+1.9
�4.0M�.

It is the secondary masses, m2 of these events which is
in tension with the remainder of the population. This
is clearly demonstrated in Fig. 14 where the secondary
masses are shown by the shaded regions. A single mini-
mum BH mass is imposed upon all BH, and therefore it is
the secondary masses of low-mass or asymmetric binaries
have the strongest impact on our inference of mmin.

These analyses imply two key results about the com-

FIG. 14. The posterior distribution on the minimum mass
truncation hyper-parameter, mmin, inferred with the PP
model. The posteriors are shown both including and exclud-
ing the two BBH mergers containing low mass secondaries,
GW190814 and GW190917. The cuto↵ at mmin = 2 M� cor-
responds to the lower bound of the prior distribution. The
inclusion of either of these two events significantly impacts
the distribution. The shaded regions indicate the 90% credi-
ble interval on the m2 posterior distribution for the two outlier
events, GW190814 (purple) and GW190917 (grey).

pact binary population. On the one hand, the binary
black hole population excluding highly asymmetric sys-
tems GW190814 is well-defined, and the analyses car-
ried out in this section well-suited to characterizing the
bulk of the BBH population. On the other hand, the
existence of GW190814 implies the existence of a sub-
population of highly asymmetric binaries, disconnected
from the BBH population but potentially connected to
the recently-identified population of NSBH.

VII. SPIN DISTRIBUTION OF BLACK HOLES
IN BINARIES

Compared to our previous work [11], we find two key
new conclusions for black hole spins: that the spin dis-
tribution broadens above 30M�, and that the mass ra-
tio and spin are correlated. Adopting previous coarse-
grained models, we find consistent conclusions as our
analysis of GWTC-2; notably, we still conclude that a
fraction of events probably have negative �e↵ .

The component spins of binary black holes may of-
fer vital clues as to the evolutionary pathways that
produce merging BBHs [177–184]. The magnitudes of
BBH spins are expected to be influenced by the nature
of angular momentum transport in stellar progenitors
[172, 185, 186], processes like tides [183, 187, 188] and
mass transfer that operate in binaries, and the environ-
ment in which the binary itself is formed. Their direc-
tions, meanwhile, may tell us about the physical pro-
cesses by which binaries are most often constructed; we
expect BBHs born from isolated stellar evolution to pos-
sess spins preferentially aligned with their orbital angular
momenta, while binaries that are dynamically assembled

Mass ratio

Rate(z)



3

The measurement of the GW polarization is cru-
cial for inferring the binary inclination. This in-
clination, ◆, is defined as the angle between the
line of sight vector from the source to the detec-
tor and the orbital angular momentum vector of
the binary system. For electromagnetic (EM) phe-
nomena it is typically not possible to tell whether a
system is orbiting clockwise or counter-clockwise
(or, equivalently, face-on or face-off), and sources
are therefore usually characterized by a viewing
angle: min (◆, 180� � ◆). By contrast, GW mea-
surements can identify the sense of the rotation,
and thus ◆ ranges from 0 (counter-clockwise) to
180 deg (clockwise). Previous GW detections by
LIGO had large uncertainties in luminosity dis-
tance and inclination (Abbott et al. 2016a) because
the two LIGO detectors that were involved are
nearly co-aligned, preventing a precise polariza-
tion measurement. In the present case, thanks to
Virgo as an additional detector, the cosine of the
inclination can be constrained at 68.3% (1�) con-
fidence to the range [�1.00,�0.81] corresponding
to inclination angles between [144, 180] deg. This
implies that the plane of the binary orbit is almost,
but not quite, perpendicular to our line of sight
to the source (◆ ⇡ 180 deg), which is consistent
with the observation of a coincident GRB (LVC,
GBM, & INTEGRAL 2017 in prep.; Goldstein et
al. 2017, ApJL, submitted; Savchenko et al. 2017,
ApJL, submitted). We report inferences on cos ◆
because our prior for it is flat, so the posterior is
proportional to the marginal likelihood for it from
the GW observations.

EM follow-up of the GW sky localization re-
gion (Abbott et al. 2017c) discovered an opti-
cal transient (Coulter et al. 2017; Soares-Santos
et al. 2017; Valenti et al. 2017; Arcavi et al. 2017;
Tanvir et al. 2017; Lipunov et al. 2017) in close
proximity to the galaxy NGC 4993. The location
of the transient was previously observed by the
Distance Less Than 40 Mpc (DLT40) survey on
2017 July 27.99 UT and no sources were found
(Valenti et al. 2017). We estimate the probability

Figure 1. GW170817 measurement of H0. Marginal-
ized posterior density for H0 (blue curve). Constraints
at 1- and 2� from Planck (Planck Collaboration et al.
2016) and SHoES (Riess et al. 2016) are shown in
green and orange. The maximum a posteriori value
and minimal 68.3% credible interval from this PDF is
H0 = 70.0+12.0

�8.0 km s�1Mpc�1. The 68.3% (1�) and
95.4% (2�) minimal credible intervals are indicated by
dashed and dotted lines.

of a random chance association between the opti-
cal counterpart and NGC 4993 to be 0.004% (see
the Methods section for details). In what follows
we assume that the optical counterpart is associ-
ated with GW170817, and that this source resides
in NGC 4993.

To compute H0 we need to estimate the back-
ground Hubble flow velocity at the position of
NGC 4993. In the traditional electromagnetic cal-
ibration of the cosmic “distance ladder” (Freed-
man et al. 2001), this step is commonly carried
out using secondary distance indicator informa-
tion, such as the Tully-Fisher relation (Sakai et al.
2000), which allows one to infer the background
Hubble flow velocity in the local Universe scaled
back from more distant secondary indicators cal-
ibrated in quiet Hubble flow. We do not adopt
this approach here, however, in order to preserve
more fully the independence of our results from
the electromagnetic distance ladder. Instead we
estimate the Hubble flow velocity at the position

52

Results from LIGO/Virgo: cosmology

• Cosmology with an EM 
counterpart: GW170817

• Dark sirens: cross-
correlation with galaxy 
catalogs

• Spectral sirens: learn 
source-frame mass from 
feature in mass distribution

26 Abbott et al.

Figure 9. Hubble constant posterior for several cases. Gray
dotted line: posterior obtained using all dark standard sirens
without any galaxy catalog information and fixing the BBH
population model. Orange dashed line: posterior using all
dark standard sirens with GLADE+ K–band galaxy catalog in-
formation and fixed population assumptions. Black solid
line: posterior from GW170817 and its EM counterpart.
Blue solid line: posterior combining dark standard sirens
and GLADE+ K–band catalog information (orange dashed line)
with GW170817 and its EM counterpart (black solid line).
The pink and green shaded areas identify the 68% CI con-
straints onH0 inferred from the CMB anisotropies (Ade et al.
2016) and in the local Universe from SH0ES (Riess et al.
2019) respectively.

Figure 10. Evolution of the Hubble parameter predicted
from the most preferred mass model Power Law + Peak
(blue lines). The yellow shaded area indicates the 90% CL
contours identified by the uniform priors on H0, ⌦m and w0

while the blue shaded area indicates the 90% CL contours
from the posterior of the preferred mass model. The dashed
lines indicate the median of the prior and posterior for H(z)
respectively.

Figure 11. Systematic e↵ects on the inference of the Hubble
constant due to the choice of di↵erent values for the mean µg

of the Gaussian component in the source mass model, and
other population model parameters (upper panel) and dif-
ferent choices for the luminosity band and weighting scheme
adopted for the GLADE+ galaxy catalog (lower panel). The
pink and green shaded areas identify the 68% CI constraints
on H0 inferred from the CMB anisotropies (Ade et al. 2016)
and in the local Universe from SH0ES (Riess et al. 2019)
respectively.

we explored the e↵ect of its variation is the � parameter
in the rate evolution model. In the same plot one can
see the H0 posterior for � = 2.59. This parameter has a
stronger e↵ect on the H0 posterior, making the posterior
less informative and at the same time moving its peak
to higher values.
The galaxy catalog brings additional information only

for GW190814, due to the much better sky localization
(⇠ 18 deg2) for this event; this has the e↵ect of providing
more support for the H0 tension region.
In Fig. 12, we show how population assumptions im-

pact the hierarchical likelihood calculation as a func-
tion of H0, for the hypotheses that the host galaxy is

GW measure luminosity distance; if able to get redshift 
information, constrain dL(z) and cosmological parameters

Constraints on the cosmic expansion history from GWTC–3 23

Figure 6. Posterior distributions for H0 obtained by com-
bining the H0 posteriors from the 42 BBH detections
and the H0 posterior inferred from the bright standard
siren GW170817. The pink and green shaded areas iden-
tify the 68% CI constraints on H0 inferred from the CMB
anisotropies (Ade et al. 2016) and in the local Universe from
SH0ES (Riess et al. 2019) respectively.

We now discuss constraints on H0 when we fix the
source population model but employ galaxy surveys to
infer statistical redshift information using the pixelated
gwcosmo code (Gray et al. 2020). Our analysis in-
corporates 47 GW events, comprising 42 BBH detec-
tions, GW190814, the two BNS events GW170817 and
GW190425, and the two NSBH events GW200105 and
GW200115. We include all galaxies of the GLADE+ cata-
log that lie inside the 99.9% estimated sky area of each
event. We use the GLADE+ K–band data in this analysis,
adopting luminosity weights for each galaxy. For a more
in-depth discussion about the impact of our BH popula-
tion assumptions and choice of photometric bands, see
Sec. 5.2.
To describe the distribution of BH primary masses, we

use a Power Law + Peak source mass model where
we fix population parameters to the median values ob-
tained in the joint cosmological and population anal-
ysis described in Sec. 4.1. For the rate evolution we
adopt � = 4.59, k = 2.86 and zp = 2.47, while for the
Power Law + Peak model we use ↵ = 3.78, � = 0.81,
mmax = 112.5M�, mmin = 4.98M�, �m = 4.8M�
µg = 32.27M�, �g = 3.88M� and �g = 0.03. For the
NS source mass model we consider a uniform distribu-
tion between mmin1M� and mmax = 3M� consistently
with (Abbott et al. 2021d). We evaluate GW selection
e↵ects using LIGO and Virgo sensitivities during the
O1, O2, and O3 runs.
In Fig. 7 (page 24) we show the posteriors for all of

the GW events considered in this analysis for the K–

band. For many of the O3 events, the H0 inference
is dominated by the likelihood based on the hypothe-
sis that the host galaxy is not in the catalog (referred
to as out-of-catalog). The out-of-catalog term domi-
nates for sources that are localized at redshifts at which
the GLADE+ galaxy catalog has low completeness fraction
(see Fig. 3). This is the case for most of the GW sources
which are BBHs observed at large luminosity distances.
Another interesting trend observed in Fig. 7 is that, for
lower values of H0, the in-catalog likelihood terms tend
to dominate because for low H0 values the GW events
are placed at smaller redshifts where the galaxy catalog
is more complete, as shown in Fig. 3.
For most of these events, the number of galaxies

present in the sky localization volume is large enough
that the redshift information is still dominated by pop-
ulation assumptions (Section 5.2). GW190814 is the
only event for which there is a su�ciently small num-
ber of galaxies in its sky localization area of about 18
deg2. Its small area makes this event partially more
informative on the value of H0 in comparison to the
other GW events. We can see in Fig. 7 that, out of all
the GW events, the most informative posterior on H0

(compared to the zero galaxy catalog completeness pos-
terior) is from GW190814, provided that the luminos-
ity weighting scheme is applied. We have verified that
the H0 posterior with the K–band and using luminos-
ity weights does not depend on the faint end magnitude
limit used for the analysis. For this event, we infer anH0

constraint of 67+46
�28 km s�1 Mpc�1 (MAP and HDI). We

quote the maximum a posteriori probability (MAP) and
the corresponding highest density interval (HDI) values
in the analysis.
Fig. 8 shows the redshift distribution of galaxies in

the 90% CI sky area of GW190814 (top panel) and the
galaxy catalog completeness (bottom panel), compared
to the predicted distribution for a prior that is uniform
in comoving volume. We observe that for the K–band
the H0 support results from an excess of galaxies, with
respect to the uniform in comoving volume prior, around
z ⇠ 0.051. Switching o↵ the luminosity weighting as-
sumption decreases the contribution of this excess of
galaxies since the completeness is estimated to be lower.
The same excess is not visible in the BJ–band as more
galaxies are reported in this band and some luminous
galaxies with measured K–band apparent magnitudes
do not have measured apparent magnitudes for the BJ–
band.
Despite the cases where there is a significant in-

catalog contribution, the final H0 result is nevertheless
dominated by the BBHs population assumptions which
are contributing to the out-of-catalog likelihood terms
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3G detectors

Computational challenge !

Events/yr (low-
median-high):

Detections 
(2 CE+1ET):

•BBH: 60k-90k-150k
•BNS: 300k-1000k-3000k
•BBH: 93%
•BNS: 35%

[Cosmic Explorer]

[Cosmic Explorer]

[arXiv:2102.07544]
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3G detectors

• Popcorn nature of combined signals
• Superposition problem
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FIG. 2. We present a simulated time series of duration 104

seconds illustrating the character of the BBH and BNS signals
in the time domain. In red we show a simulated BNS back-
ground corresponding to the median rate as shown in Figure 1,
and in green we display the median BBH background. We do
not show any detector noise, and do not remove some loud
and close events that would be detected individually. The re-
gion in the black box, from 1800 – 2600 seconds, is shown in
greater detail in the inset. The BNS time series is continuous
as it consists of a superposition of overlapping signals. On the
other hand the BBH background (in green) is popcorn-like,
and the signals do not overlap. Remarkably, even though the
backgrounds have very di↵erent structure in the time domain,
the energy in both backgrounds are comparable below 100 Hz,
as seen in Figure 1.
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Figure 5. Gravitational wave signal from a NS-NS merger at a distance 100 Mpc, as it sweeps across
the detector-accessible frequency range. From [42] (figure courtesy of Jocelyn Read, based on results
presented in [43]).

matter phenomena beyond the inspiral. Witnessing the tidal disruption of a NS by a BH for a
variety of systems will yield further insights into the properties of NS matter under extremes
of gravity, and tracking the violent collision of two NSs and its aftermath will provide an
exceptional window onto fundamental properties of matter in a completely unexplored regime,
at higher temperatures and yet greater densities than encountered in individual NSs.

The outcome of a binary NS merger strongly depends on the parameters. It is either a
short-lived hypermassive NS that is temporarily stabilized by rotational e↵ects yet ultimately
collapses to a BH, or a BH that forms immediately upon merger, or a temporary supra-
massive NS that settled to a NS remnant. The emitted GWs are distinct for the di↵erent
scenarios and contain copious information on the complex microphysics. To fully capitalize on
the enormous science potential with GWs from NS binaries systems will require accurately
measuring both the GWs from the inspiral that determine the progenitor properties (e.g.
masses, spins, cold NS matter, orbital eccentricity) and the GW signatures of the new physics
encountered at the merger and its aftermath, as 3G detectors such as ET will enable. Figure
5 illustrates the potential of ET for detecting these e↵ects, compared to current 2G detectors,
for a NS binary at a typical distance of 100 Mpc (see also [44]). The 2G detectors such as
Advanced LIGO/Virgo are largely limited to observing the long inspiral, dominated by the
center-of-mass dynamics of the NSs, with glimpses of the tidal e↵ects which become important
a higher frequencies, and are insensitive to the details of the merger and post-merger epochs.
By contrast, a detector such as ET, besides observing the inspiral phase and the onset of tidal
e↵ects with much higher signal-to-noise ratio, will also clearly observe the final merger and
post-merger signals and enable detailed insights into the fundamental properties of nuclear
matter in a large swath of unexplored regimes in the QCD phase diagram.

The coalescence events of NS-NS and NS-BH systems also have key significance as
the production site of elements heavier than iron in the cosmos. Heavy elements can be
synthesized from the neutron-rich material expelled during the merger or tidal disruption of
NSs or through winds from the remnant accretion disk. The subsequent radioactive decay
of the freshly synthesized elements powers leads to an electromagnetic transient known as
a kilonova. Multi-messenger observations of a large sample of NS binaries will provide the
unique opportunity to study heavy element formation at its production site, to determine
how the initial conditions of an astrophysical binary system map to the final nucleosynthetic

– 9 –

[Read&al 2013]

• Post-merger BNS signal
• Analysis of very long-lived BNS
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LISA instrument
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JU JT FYUSFNFMZ MJLFMZ UIBU BOZ NJTTJPO TJ[FE UP ĕU XJUIJO
JU XPVME CF TJHOJĕDBOUMZ DPNQSPNJTFE JO UFSNT PG DB�
QBCJMJUZ� 4JNJMBSMZ
 JU JT MJLFMZ UIBU UIF DPOTUSBJOUT BOE
DPNQMFYJUZ PG B MBVODI UP (FPTUBUJPOBSZ 5SBOTGFS 0S�
CJU
 DPNCJOFE XJUI UIF OFFE UP ĕOE B TVJUBCMF QBSUOFS

NBLF B TIBSFE "SJBOF ��� MBVODI VOBUUSBDUJWF�

��� $PODFQU PG 0QFSBUJPOT

&BDI 4�$ JT FRVJQQFE XJUI JUT PXO QSPQVMTJPO NPEVMF
UP SFBDI UIF EFTJSFE PSCJU� %VSJOH UIJT DSVJTF QIBTF

DIFDLPVU BOE UFTUJOH PG TPNF FRVJQNFOU DPVME BMSFBEZ
CFHJO� 0ODF UIF 4�$ IBWF CFFO JOTFSUFE JOUP UIFJS DPS�
SFDU PSCJUT BOE UIF QSPQVMTJPO NPEVMFT KFUUJTPOFE
 UIF
UISFF 4�$ NVTU CF QSFQBSFE UP GPSN B TJOHMF XPSL�
JOH PCTFSWBUPSZ CFGPSF TDJFODF PQFSBUJPOT DBO CF FT�
UBCMJTIFE� ćJT JODMVEFT UIF SFMFBTF PG UIF UFTU NBTTFT
BOE FOHBHJOH UIF %SBH�'SFF "UUJUVEF $POUSPM 4ZTUFN
	%'"$4
� ćJT QSPDFTT
 DPOTUFMMBUJPO BDRVJTJUJPO BOE
DBMJCSBUJPO
 JT EFTDSJCFE JO 4FDUJPO ������ 'PMMPXJOH
BDRVJTJUJPO BOE DBMJCSBUJPO
 -*4" XPVME FOUFS UIF QSJ�
NBSZ TDJFODF NPEF� "U UIJT UJNF
 BMM UFTU NBTTFT JOTJEF
UIF UISFF 4�$ XJMM CF JO GSFF GBMM BMPOH UIF MJOFT PG TJHIU
CFUXFFO UIF 4�$� $BQBDJUJWF TFOTPST TVSSPVOEJOH FBDI
UFTU NBTT XJMM NPOJUPS UIFJS QPTJUJPO BOE PSJFOUBUJPO
XJUI SFTQFDU UP UIF 4�$� %'"$4 XJMM VTF NJDSP�/FXUPO
UISVTUFST UP TUFFS UIF 4�$ UP GPMMPX UIF UFTUNBTTFT BMPOH
UIF UISFF USBOTMBUJPOBM EFHSFFT�PG�GSFFEPN
 VTJOH JO�
UFSGFSPNFUSJD SFBEPVU XIFSF BWBJMBCMF
 BOE DBQBDJUJWF
TFOTJOH GPS UIF SFNBJOJOH EFHSFFT�PG�GSFFEPN� &MFD�
USPTUBUJD BDUVBUPST BSF VTFE UP BQQMZ UIF SFRVJSFE GPSDFT
BOE UPSRVFT JO BMM PUIFS EFHSFFT PG GSFFEPN UP UIF UFTU
NBTTFT� -BTFS JOUFSGFSPNFUSZ JT VTFE UP NPOJUPS UIF
EJTUBODF DIBOHFT CFUXFFO UIF UFTU NBTTFT BOE UIF PQ�
UJDBM CFODI 	0#
 JOTJEF FBDI 4�$� ćFTF UFDIOPMPHJFT
IBWF CFFO EFNPOTUSBUFE CZ UIF -*4" 1BUIĕOEFS NJT�
TJPO�
ćF MPOH�CBTFMJOF MBTFS JOUFSGFSPNFUFS PS TDJFODF JO�
UFSGFSPNFUFS JT VTFE UP NFBTVSF DIBOHFT JO UIF EJT�
UBODF CFUXFFO UIF PQUJDBM CFODIFT XIJMF B UIJSE JO�
UFSGFSPNFUFS TJHOBM NPOJUPST UIF EJČFSFOUJBM MBTFS GSF�
RVFODZ OPJTF CFUXFFO UIF UXP MPDBM MBTFS TZTUFNT� "MM
JOUFSGFSPNFUFS TJHOBMT BSF DPNCJOFE PO HSPVOE UP EF�
UFSNJOF UIF EJČFSFOUJBM EJTUBODF DIBOHFT CFUXFFO UXP
QBJST PG XJEFMZ TFQBSBUFE UFTU NBTTFT� 4DJFODF .PEF
XPVME GFBUVSF OFBS�DPOUJOVPVT PQFSBUJPO PG UIF TZTUFN
BU UIF EFTJHO TFOTJUJWJUZ� ćF TZTUFN EFTJHO TIPVME CF
TVDI UIBU
 JO TDJFODF NPEF
 FYUFSOBM QFSUVSCBUJPOT UP
UIF TZTUFN BSFNJOJNJTFE BOE JO QBSUJDVMBS UIF CBTFMJOF
EFTJHO EPFT OPU SFRVJSF TUBUJPO LFFQJOH PS PSCJU DPS�
SFDUJPO NBOPFVWSFT� *O MJOF XJUI UIF TDJFODF SFRVJSF�
NFOUT PO EBUB MBUFODZ
 DPNNVOJDBUJPOT XPVME PDDVS
PODF QFS EBZ GPS B EVSBUJPO PG BQQSPYJNBUFMZ � IPVST�
ćFSF BSF UXP QSJODJQBM FWFOUT XIJDI XJMM DBVTF TPNF
EJTSVQUJPO UP UIF TDJFODF NPEF PG PQFSBUJPOT� UIFTF
BSF SF�QPJOUJOH PG UIF BOUFOOBT BOE SF�DPOĕHVSBUJPO
PG UIF MBTFS MPDLJOH UP NBJOUBJO UIF CFBU OPUFT XJUIJO
UIF QIBTFNFUFS CBOEXJEUI
 UIFTF BSF DPWFSFE JO NPSF
EFUBJM JO 4FDUJPOT ��� BOE ��� SFTQFDUJWFMZ� *O BEEJUJPO
UP UIF NBJO TDJFODF NPEF
 B TQFDJBM QSPUFDUFE QFSJPE

-*4" o �� .*44*0/ 130'*-& 1BHF ��

yslr “ 1

2

1

1 ´ k̂ ¨ nl

nl ¨ phptsq ´ hptrqq ¨ nl

From spacecraft s to 
spacecraft r through link s: y “ �⌫{⌫

Response time and frequency-dependent:

Tslr =
i⇡fL

2
sinc [⇡fL (1� k · nl)] exp [i⇡f (L+ k · (pr + ps))]nl · P · nl(tf )
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 + Time-delay interferometry (TDI)

7

f = 10−3 Hz f = 2 × 10−2 Hz f = 5 × 10−2 Hz f = 10−1 Hz
Binary N 1PN N 1PN N 1PN Doppler N 1PN Doppler

WD–WD 0 0 24† 0 - -

WD–NS 0 0 69† 0 - -

WD–BH 0 0 190† 0 - -

NS–NS 0 0 240† 0 6.9 × 103 3.4 0 9.3 × 104 78 2.7

NS–BH 0 0 740 0.33 2.2 × 104 19.0 0.66 3.5 × 105 640 8.5

TABLE I: Contributions to the evolution of GW frequency for various types of compact, stellar-mass binaries (white dwarfs with
m = 0.35M", neutron stars with m = 1.4M", and black holes with m = 6M"), for selected (initial) GW frequencies within the
LISA band. The contributions are expressed as GW cycles over one year of evolution, and the effects of Newtonian-order (N)
and first post–Newtonian-order (1PN) terms are shown separately. The column labeled “Doppler” reports the integrated phase
shift (in cycles) due to the increased Doppler shifting of the source as the frequency increases [see Eq. (45)], where significant.
At f = 10−3 Hz there is no significant evolution of GW frequency over one year. The symbol “†” indicates that the Taylor
expansion of the phase given by Eq. (21) is accurate to within a quarter of a cycle. Numbers are not shown where a binary of
a given class cannot exist at a given frequency. Some of the conclusions that can be drawn from this table are apparent also in
Figs. 10 and 12 of Ref. [20]: up to about 1 mHz, LISA cannot differentiate (using one year of data) between a monochromatic
binary and a chirping binary (see Fig. 10 of Ref. [20]); above that frequency, chirping becomes appreciable (one additional GW
cycle over a year in this table corresponds to a frequency shift of one bin in Fig. 12 of Ref. [20]), but we see that it can still be
modeled faithfully by the linear-chirp model of Eq. (21).

In Table I, for binaries consisting of various combinations of white dwarfs (WDs, with m = 0.35M!), neutron stars
(NSs, with m = 1.4M!), and black holes (BHs, with m = 6M!), and for various fiducial GW frequencies within
the LISA band, we show the contributions to the evolution of GW frequency over one year caused by terms at the
Newtonian (N) and first post–Newtonian (1PN) order. The table shows that at frequencies smaller or equal to 10−3

Hz, the evolution of frequency is negligible. At frequencies approaching 10 mHz, the change in frequency becomes
significant, and needs to be included in the model of the signal; however, only the first derivative of the frequency is
needed up to about 50 mHz. In binaries with WDs of mass ∼ 0.35M!, above ∼ 20 mHz the WDs fill their Roche
lobe, and the dynamical evolution of the system is then determined by tidal interaction between the stars. In binaries
with either a NS or a BH, post–Newtonian effects become important at about ∼ 50 mHz. At 1 Hz and above, these
binaries will coalesce in less than 1 yr; furthermore, population studies [25] suggest that the expected number of
binaries above 50 mHz containing neutron stars and black holes is negligible. (The effects of frequency evolution in
the LISA response to GW signals from inspiraling binaries are also discussed in Ref. [26].)

Therefore, for sufficiently small binary masses, for sufficiently small GW frequencies (and definitely for all non-
tidally-interacting binaries that contain WDs), we can approximate the phase of the signal by Taylor-expanding it,
and then neglecting terms of cubic and higher order. The resulting expression for the signal phase φs(t) is

φs(t) " ωt + 1
2 ω̇t2, where ω̇ =

48

5

(
GMc

2c3

)5/3

ω11/3. (21)

E. TDI responses

The response of the second-generation TDI observables to a transverse–traceless, plane GW is obtained by setting
yij(t) = yGW

ij (t) [according to Eqs. (12) and (13)] in the TDI expressions of Ref. [9, 10]. For instance, the GW response
of the second-generation TDI observable X1 is given by

XGW
1 =

[

(yGW
31 + yGW

13,2) + (yGW
21 + yGW

12,3),22 − (yGW
21 + yGW

12,3) − (yGW
31 + yGW

13,2),33

]

︸ ︷︷ ︸

XGW(t)

−
[

(yGW
31 + yGW

13,2) + (yGW
21 + yGW

12,3),22 − (yGW
21 + yGW

12,3) − (yGW
31 + yGW

13,2),33

]

,2233
︸ ︷︷ ︸

XGW(t−2L2−2L3)#XGW(t−4L)

. (22)

As anticipated above, here we are disregarding the effects introduced by the time dependence of light travel times,
and by the rotation-induced difference between clockwise and counterclockwise light travel times [27]. Each of the
two terms delimited by square brackets in Eq. (22) corresponds to the GW response of the first-generation Michelson
observable X [2]. The TDI observables X2 and X3 are obtained by cyclical permutation of indices in Eq. (22).

Analogous to 2 LIGO in 
motion at low frequencies only

Doppler delay from orbit, 
change in orientation



57

LISA sources

� *OUSPEVDUJPO

ćF HSPVOECSFBLJOH EJTDPWFSZ PG (SBWJUBUJPOBM 8BWFT
	(8T
 CZ HSPVOE�CBTFE MBTFS JOUFSGFSPNFUSJD EFUFD�
UPST JO ���� JT DIBOHJOH BTUSPOPNZ <�> CZ PQFOJOH
UIF IJHI�GSFRVFODZ HSBWJUBUJPOBM XBWF XJOEPX UP PC�
TFSWF MPX NBTT TPVSDFT BU MPX SFETIJę� ćF 4FOJPS
4VSWFZ $PNNJUUFF 	44$
 <�> TFMFDUFE UIF -� TDJFODF
UIFNF
 ćF (SBWJUBUJPOBM 6OJWFSTF <�>
 UP PQFO UIF ���
UP ���N)[ (SBWJUBUJPOBM 8BWF XJOEPX UP UIF 6OJ�
WFSTF� ćJT MPX�GSFRVFODZ XJOEPX JT SJDI JO B WBSJFUZ
PG TPVSDFT UIBU XJMM MFU VT TVSWFZ UIF 6OJWFSTF JO B OFX
BOE VOJRVF XBZ
 ZJFMEJOH OFX JOTJHIUT JO B CSPBE SBOHF
PG UIFNFT JO BTUSPQIZTJDT BOE DPTNPMPHZ BOE FOBCMJOH
VT JO QBSUJDVMBS UP TIFE MJHIU PO UXP LFZ RVFTUJPOT� 	�

)PX
 XIFO BOE XIFSF EP UIF ĕSTU NBTTJWF CMBDL IPMFT
GPSN
 HSPX BOE BTTFNCMF
 BOE XIBU JT UIF DPOOFDUJPO
XJUI HBMBYZ GPSNBUJPO 	�
 8IBU JT UIF OBUVSF PG HSBW�
JUZ OFBS UIF IPSJ[POT PG CMBDL IPMFT BOE PO DPTNPMPHJ�
DBM TDBMFT 
8F QSPQPTF UIF -*4" NJTTJPO JO PSEFS UP SFTQPOE UP
UIJT TDJFODF UIFNF JO UIF CSPBEFTU XBZ QPTTJCMF XJUIJO
UIF DPOTUSBJOFE CVEHFU BOE HJWFO TDIFEVMF� -*4" FO�
BCMFT UIF EFUFDUJPO PG (8T GSPN NBTTJWF CMBDL IPMF
DPBMFTDFODFT XJUIJO B WBTU DPTNJD WPMVNF FODPNQBTT�
JOH BMM BHFT
 GSPN DPTNJD EBXO UP UIF QSFTFOU
 BDSPTT
UIF FQPDIT PG UIF FBSMJFTU RVBTBST BOE PG UIF SJTF PG
HBMBYZ TUSVDUVSF� ćF NFSHFS�SJOHEPXO TJHOBM PG UIFTF
MPVE TPVSDFT FOBCMFT UFTUT PG &JOTUFJO�T (FOFSBM ćFPSZ
PG 3FMBUJWJUZ 	(3
 JO UIF EZOBNJDBM TFDUPS BOE TUSPOH�
ĕFME SFHJNF XJUI VOQSFDFEFOUFE QSFDJTJPO� -*4" XJMM
NBQ UIF TUSVDUVSF PG TQBDFUJNF BSPVOE UIF NBTTJWF
CMBDL IPMFT UIBU QPQVMBUF UIF DFOUSFT PG HBMBYJFT VTJOH
TUFMMBS DPNQBDU PCKFDUT BT UFTU QBSUJDMF�MJLF QSPCFT� ćF
TBNF TJHOBMT XJMM BMTP BMMPX VT UP QSPCF UIF QPQVMBUJPO
PG UIFTF NBTTJWF CMBDL IPMFT BT XFMM BT BOZ DPNQBDU PC�
KFDUT JO UIFJS WJDJOJUZ� " TUPDIBTUJD (8 CBDLHSPVOE PS
FYPUJD TPVSDFT NBZ QSPCF OFX QIZTJDT JO UIF FBSMZ 6OJ�
WFSTF� "EEFE UP UIJT MJTU PG TPVSDFT BSF UIF OFXMZ EJTDPW�
FSFE -*(0�7JSHP IFBWZ TUFMMBS�PSJHJO CMBDL IPMF NFSH�
FST
 XIJDIXJMM FNJU(8T JO UIF -*4"CBOE GSPN TFWFSBM
ZFBST VQ UP B XFFL QSJPS UP UIFJS NFSHFS
 FOBCMJOH DPPS�
EJOBUFE PCTFSWBUJPOT XJUI HSPVOE�CBTFE JOUFSGFSPNF�
UFST BOE FMFDUSPNBHOFUJD UFMFTDPQFT� ćF WBTU NBKPSJUZ
PG TJHOBMT XJMM DPNF GSPN DPNQBDU HBMBDUJD CJOBSZ TZT�
UFNT
 XIJDI BMMPX VT UP NBQ UIFJS EJTUSJCVUJPO JO UIF
.JMLZ 8BZ BOE JMMVNJOBUF TUFMMBS BOE CJOBSZ FWPMVUJPO�
-*4" CVJMET PO UIF TVDDFTT PG -*4" 1BUIĕOEFS
	-1'
 <�>
 UXFOUZ ZFBST PG UFDIOPMPHZ EFWFMPQNFOU

BOE UIF (SBWJUBUJPOBM 0CTFSWBUPSZ "EWJTPSZ 5FBN
	(0"5
 SFDPNNFOEBUJPOT� -*4" XJMM VTF UISFF BSNT

BOE UISFF JEFOUJDBM TQBDFDSBę 	4�$
 JO B USJBOHVMBS GPS�
NBUJPO JO B IFMJPDFOUSJD PSCJU USBJMJOH UIF &BSUI CZ
BCPVU ��○� ćF FYQFDUFE TFOTJUJWJUZ BOE TPNF QPUFO�
UJBM TJHOBMT BSF TIPXO JO 'JHVSF ��

'JHVSF �� &YBNQMFT PG (8 TPVSDFT JO UIF GSF�
RVFODZ SBOHF PG -*4"
 DPNQBSFE XJUI JUT TFOTJ�
UJWJUZ GPS B ��BSNDPOĕHVSBUJPO� ćFEBUB BSF QMPU�
UFE JO UFSNT PG EJNFOTJPOMFTT ADIBSBDUFSJTUJD TUSBJO
BNQMJUVEF� <�>� ćF USBDLT PG UISFF FRVBMNBTT CMBDL
IPMF CJOBSJFT
 MPDBUFE BU z = 3 XJUI UPUBM JOUSJO�
TJD NBTTFT 107
 106 BOE 105M⊙
 BSF TIPXO� ćF
TPVSDF GSFRVFODZ 	BOE 4/3
 JODSFBTFT XJUI UJNF

BOE UIF SFNBJOJOH UJNF CFGPSF UIF QMVOHF JT JOEJ�
DBUFE PO UIF USBDLT� ćF � TJNVMUBOFPVTMZ FWPMW�
JOH IBSNPOJDT PG BO &YUSFNF .BTT 3BUJP *OTQJSBM
TPVSDF BU z = 1.2 BSF BMTP TIPXO
 BT BSF UIF USBDLT PG
B OVNCFS PG TUFMMBS PSJHJO CMBDL IPMF CJOBSJFT PG UIF
UZQF EJTDPWFSFE CZ -*(0� 4FWFSBM UIPVTBOE HBMBD�
UJD CJOBSJFT XJMM CF SFTPMWFE BęFS B ZFBS PG PCTFS�
WBUJPO� 4PNF CJOBSZ TZTUFNT BSF BMSFBEZ LOPXO

BOE XJMM TFSWF BT WFSJĕDBUJPO TJHOBMT� .JMMJPOT PG
PUIFS CJOBSJFT SFTVMU JO B ADPOGVTJPO TJHOBM�
 XJUI B
EFUFDUFE BNQMJUVEF UIBU JT NPEVMBUFE CZ UIF NP�
UJPO PG UIF DPOTUFMMBUJPO PWFS UIF ZFBS� UIF BWFSBHF
MFWFM JT SFQSFTFOUFE BT UIF HSFZ TIBEFE BSFB�

"O PCTFSWBUPSZ UIBU DBO EFMJWFS UIJT TDJFODF JT EF�
TDSJCFE CZ B TFOTJUJWJUZ DVSWF XIJDI
 CFMPX �N)[
 XJMM
CF MJNJUFE CZ BDDFMFSBUJPO OPJTF BU UIF MFWFM EFNPO�
TUSBUFE CZ -1'� *OUFSGFSPNFUSZ OPJTF EPNJOBUFT BCPWF
�N)[
 XJUI SPVHIMZ FRVBM BMMPDBUJPOT GPS QIPUPO TIPU
OPJTF BOE UFDIOJDBM OPJTF TPVSDFT� 4VDI B TFOTJUJWJUZ
DBO CF BDIJFWFE XJUI B ���NJMMJPO LN BSN�MFOHUI DPO�
TUFMMBUJPO XJUI �� DN UFMFTDPQFT BOE �8 MBTFS TZTUFNT�
ćJT JT DPOTJTUFOU XJUI UIF (0"5 SFDPNNFOEBUJPOT
BOE
 CBTFE PO UFDIOJDBM SFBEJOFTT BMPOF
 B MBVODINJHIU
CF GFBTJCMF BSPVOE ����� 8F QSPQPTF BNJTTJPO MJGFUJNF
PG � ZFBST FYUFOEBCMF UP �� ZFBST GPS -*4"�

1BHF � -*4" o �� */530%6$5*0/

[arXiv:1702.00786]

• Massive black holes binaries 
(MBHBs)

• Population of galactic 
binaries (DWD), confusion 
background

• Extreme mass ratio inspirals 
(EMRIs)

• Stellar-mass black hole 
binaries (SBHBs)

• Cosmological backgrounds ?
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LISA: data

• 1st challenge (Radler): single class of 
sources

• 2nd challenge (Sangria): MBHBs, 
GBs, noise

[LDC Sangria][LDC Sangria]

LISA Data Challenges (LDC)Superposition of sources !
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FIG. 13. The UCB search as one component of a global
fit. The residuals from each source analysis block are passed
along to the next analysis in a sequence of Gibbs updates.
New data is incorporated into the fit during the mission. The
noise model and instrument models are updated on a regular
basis.

We will extend the waveform model to allow for more
complicated signals including eccentric white dwarf bina-
ries, hierarchical systems and stellar mass binary black
holes which are the progenitors of the merging systems
observed by ground-based interferometers [57], and de-
velop infrastructure to jointly analyze multimessenger
sources simultaneously observable by both LISA and EM
observatories [1, 13, 14, 18].
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LISA: global fit

• Raw dimensionality untractable
• Gibbs sampling across different source types
• Orthogonality between signals
• Noise has to be estimated as well (no signal-free segments)

Global fit [LDC Sangria]
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LISA: challenges for MBHBs

• Very high SNRs, challenge for waveform 
modelling

• At high M, merger-dominated signals 
• High spins ? Strong precession ?
• Eccentricities might be large
• Effect of superposition with other signals ?
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LISA: challenges for GBs

• Number of signals: millions in total, 
~10000 resolvable !

• Important source confusion in the 
middle of the frequency range

• Techniques: transdimensional 
MCMC (Reversible Jump MCMC)
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FIG. 10. Top panel: Power spectrum for 24 months of simulated TDI-A channel used to test the algorithm performance on
multi-source data, with inferred residual (light blue) and noise level (green) posteriors, showing 50 and 90% credible intervals.
Bottom panel: Reconstructed waveform posteriors (using the same credible intervals) discretely identified after the 24 month
analysis and post-processing zoomed in to a narrower bandwidth of the top panel, including two adjacent analysis windows.
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FIG. 11. Two-dimensional marginalized posteriors for a sin-
gle analysis window of the full test segment of simulated data
around 4 mHz after 12 months of observing time by LISA.
The analysis was built up from 1.5, 3, and 6 month observa-
tions. Gray circles mark the parameter values of the injected
sources. The top panel shows the frequency-amplitude plane,
and the bottom panel shows the sky location in ecliptic coor-
dinates. Contours enclose the 1 and 2� posterior probability
regions for each discrete source found in the catalog produc-
tion, and the color scheme is consistent with Fig. 10.

of the source population, both within and beyond the
galaxy, matures.

The main areas in need of further work are: (1) Com-
bining the galactic binary analysis with analyses for other
types of sources; (2) Better noise modeling, including
non-stationarity on long and short timescales; (3) Han-
dling gaps in the data; (4) More realistic instrument re-
sponse modeling and TDI generation; (5) Further im-
provements to the convergence time of the pipeline.

Figure 13 shows one possible approach for incorpo-
rating the galactic analysis as part of a global fit. In
this scheme, the analyses for each source type, such as
super massive black hole binaries (SMBH), stellar ori-
gin (LIGO-Virgo) binaries (SOBH), un-modeled grav-

itational waves (UGW), extreme mass ratio inspirals
(EMRI), and stochastic signals (Stochastic) are cycled
through, which each analysis block passing updated
residuals (i.e., the data minus the current global fit) along
to the next analysis block. New data is added to the anal-
ysis as it arrives. The noise model and the instrument
model (e.g., spacecraft orbital parameters, calibration
parameters, etc.) are regularly updated. This blocked
Gibbs scheme has the advantage of allowing compart-
mentalized development, and should be fairly e�cient
given that the overlap between di↵erent signal types is
small.

A more revolutionary change to the algorithm is on
the near horizon, where we will switch to computing
the waveforms and the likelihood using a discrete time-
frequency wavelet representation. A fast wavelet do-
main waveform and likelihood have already been devel-
oped [54]. This change of basis allows us to properly
model the non-stationary noise from the unresolved sig-
nals which are modulated by the LISA orbital motion, as
well as any long-term non-stationarity in the instrument
noise. Rectangular grids in the time-frequency plane are
possible using wavelet wave packets [55] which make it
easy to add new data as observations continue, instead
of needing the new data samples to fit into a particular
choice for the wavelet time-frequency scaling, e.g. being
2n or a product of primes. Wavelets are also ideal for
handling gaps in the data as they have built-in window-
ing that suppresses spectral leakage with minimal loss of
information. The time-frequency likelihood [54] also en-
able smooth modeling of the dynamic noise power spec-
trum S(f, t) using BayesLinetype methods extended to
two dimensions.

Convergence of the sampler will be improved by in-
cluding directed jumps in the extrinsic parameters when
using the F statistic proposal (as opposed to the uni-
form draws that are currently used). The e↵ectiveness
of the posterior-based proposals can be improved by in-

[arXiv:2004.08464]

[arXiv:2004.08464]
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LISA: challenges for EMRIs

• Complex signals, modelled in perturbative 
GR (frontier: 2nd order self-force)

• Long-lived signals
• Very rich harmonic structure
• Strong multimodality in parameter space

[arXiv:2109.14254]

[credit: Lorenzo Speri, Ollie Burke]
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TABLE I: Values of the UCB source parameters used in
the simulations. While any other parameter remains the

same, the sources in the 3 data sets di↵er from their
amplitudes (first row) and frequencies (second row). All

sources have the same SNR of about 46.

Parameter Value

Amplitude [strain ⇥10�20] 15, 2.0, 0.2

Frequency [mHz] 0.1, 0.2, 0.5

Ecliptic latitude [rad] 0.47

Ecliptic longitude [rad] 4.19

Inclination [rad] 0.179

Initial phase [rad] 5.78

Polarization [rad] 3.97

possible on the gap times, and that all operations may
not last the same time, we allow both the gap time loca-
tions and their duration to randomly vary. The gap start
times follow a periodic pattern with deviations modeled
by a Gaussian distribution with a standard deviation of
1 day. The duration is also a Gaussian distribution with
mean 1 hour and standard deviation 10 minutes.

The second gap pattern models unplanned interrup-
tions, due to any glitch events preventing the instru-
ment from properly acquiring the measurement. Based
on LISA Pathfinder feedback, these kind of events are
likely to occur at an average rate of 0.78/day [6]. To be
conservative, we assume 1 event per day. The number of
events in a given interval is assumed to follow a Poisson
distribution, so that the intervals between gaps follow an
exponential distribution. We assume that each gap lasts
about 10 minutes, with a standard deviation of 1 minute.
In the following we label the two gap patterns “five-day
periodic gaps” and “daily random gaps” respectively, and
we summarize their characteristics in Table II.

TABLE II: Two types of gap patterns are considered:
one models planned events such as antenna operation
gaps, while the second one models unplanned events

such as glitch masking.

Five-day periodic gaps Daily random gaps

Occurrence 5 days ± 1 day 1 day ± 1 hour

Duration 1 hour ± 10 min 10 min ± 1 min

Loss fraction 0.8% 0.7%

It is worth noting that the two gap patterns have al-
most the same loss fraction (less than 1%) but strong
di↵erences in gap occurrences and duration. A visual in-
sight is provided in Fig.1 where we plot an extract of a
simulated data representing TDI X amplitude as a func-
tion of time, expressed in fractional frequency. Data lying
inside gaps are plotted in gray for five-day periodic gaps
and in red for daily random gaps. The remaining ob-

servations are shown in black. This plot highlights the
di↵erence of gap occurrences in the two patterns.

FIG. 1: Segment of a simulated times series with
observed data in black, missing data in gray for five-day

periodic gaps and in red for Daily random gaps. In
scenario A, gaps are 5 times longer and 5 times less

frequent than in scenario B.

C. Optimization of windowing

As mentioned in Sec. III, the impact of gaps can be
mitigated using a window function smoothly decaying at
the gap edges. Hence we have to choose the amount of
smoothness. For a given source, a given noise and a given
gap pattern, it is actually possible to find an optimal
value. In this section we present a way to perform such
an optimization and adopt it in the simulations as our
baseline to assess the impact of gaps.

We use a Tukey-like window, such that each segment of
available data of length Ts is tappered with the a window
function parametrized by the smoothing time tw:

wTs(t) ⌘

8
>>>><

>>>>:

1
2

h
1 � cos

⇣
2⇡ t

2tw

⌘i
0  t < tw

1 tw  t < Ts � tw
1
2

h
1 � cos

⇣
2⇡ t�Ts+2tw

2tw

⌘i
Ts � tw  t < Ts

0 otherwise,
(37)

such that the full window function is

w(t) =
NsX

s=1

wTs (t � ts) , (38)

where ts is the starting time of segment s (i.e. the end
of the previous gap). In order to choose the optimal
smoothing time tw (i.e. the time controlling the transi-
tion length between 0 to 1 and conversely), we can resort
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LISA: non-stationarity and gaps

• Non-stationarity background from double 
WD in the galaxy

• Instrumental non-stationarity over long 
times

• Glitches (as seen in LISA Pathfinder)

13

Five-day periodic gaps Daily random gaps

FIG. 4: Results of PSD estimations with gapped data, with five-day periodic gaps (left-hand side) and daily random
gaps (right-hand side). Dotted red curves show PSD estimates obtained with the windowing method, and dashed

blue curves the ones obtained with the DA method. They are compared to the true PSD represented by solid green
curves. The window method estimates are a↵ected by leakage e↵ects due to the gapped observation window, while
the DA method yields an unbiased estimates in most of the frequency band. Black and gray solid lines respectively
represent periodograms of complete data and periodograms of gapped data. The peaked curves in orange shades

correspond to GW sources at 0.1 mHz, 0.2 mHz and 0.5 mHz. For a 1-year integration time, their signal stand out of
the noise with five-day periodic gaps, but is overwhelmed by noise leakage with daily random gaps for f0 = 0.1 mHz.
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FIG. 5: Results of one gap imputation draw in the time
domain after the MCMC chains have reach stationarity.
This draw is obtained for a periodic gap pattern and a
source frequency f0 = 0.1 mHz. The noise statistics
are preserved inside the gap, allowing us to accurately

sample the PSD when Fourier-transforming the
imputed data. The zoomed inset shows the GW signal
(green) and the estimated conditional mean µm|o inside
the gap (dashed orange), taking into account both noise
correlations and deterministic signal. The colored area

represents the conditional 99%-confidence interval.

black curve), the frequencies are well resolved for �f > 1
nHz, where the two posterior distributions start to be
superimposed, as their standard deviations is about 2.5
nHz.

In the case of periodic gaps, this behavior is observed
for both windowing and DA methods, although the sta-
tistical error increases by about 30 % in the case of the
windowing method. In the case of random gaps, the pos-
teriors are much more spread when using the windowing
method, making impossible to resolve the frequencies for
separations of 10 nHz and below. The posteriors obtained
with the DA method are very similar to the complete
data case, restoring the frequency resolution power to a
level comparable with full-data resolution.

The frequency estimates can be compared to the val-
ues obtained for the estimated Bayes factors, plotted in
Fig. 7. As in Fig. 6, they are ordered by decreasing sep-
arations between the 2 source frequencies injected in the
simulated data. We show the case of a complete data
series (black vertical bars), along with gapped data with
the windowing method (gray) and the DA method (blue).
The top and bottom panels correspond to periodic and
random gaps respectively. For periodic gaps, although
the windowing method yields smaller values of B21 than
the DA method, the Bayes factor significantly favor a 2-
source model, both in the case of complete and masked
data, regardless of the method used. For �f = 0.1 nHz
the value that we compute with the windowing method
gets closer to the positive threshold (indicated by the
red dashed horizontal line) which we set to B21 = 20

[arXiv:1907.04747]

Non-stationarity Data gaps

• Both scheduled and 
unscheduled

• Mask/taper data ?
• Inpainting methods ?
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LDC Sangria: first steps of a global fit

Instr. noise

MBHBs

GBs

[APC/L2IT, in prep.]

see also [arXiv:2301.03673]
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LDC Sangria: first steps of a global fit

Instr. noise

MBHBs

GBs
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1st subtraction 
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[APC/L2IT, in prep.]

see also [arXiv:2301.03673]
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LDC Sangria: first steps of a global fit

Instr. noise
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1st PE resid.

[APC/L2IT, in prep.]

see also [arXiv:2301.03673]
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LDC Sangria: first steps of a global fit

Instr. noise

MBHBs

GBs
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1st subtraction 

resid.

GBs
1st PE resid.

MBHBs
1st PE resid.

+ 2nd PE GBs

+ 2nd PE MBHBs

[APC/L2IT, in prep.]

see also [arXiv:2301.03673]
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LDC Sangria: preview of results

[arXiv:2301.03673]

2

for GLASS we use the simulated data released in the
second round of the LISA Data Challenges (Challenge
LDC2a-v2) [13]. The simulated data contain Gaussian
detector noise; a simulated population of Milky Way
ultra compact binaries (UCBs); 35 galactic UCBs al-
ready discovered by electromagnetic observations, the so-
called “verification binaries” (VGBs); and a population
of merging massive black hole binaries (MBHBs).
The philosophy of GLASS is to incorporate indepen-

dently developed, stochastic sampling algorithms de-
signed to address di↵erent facets of the full LISA anal-
ysis. GLASS is then e↵ectively an overarching umbrella
that manages the interfaces, matches data formats, and
orchestrates how the di↵erent samplers will work together
to converge and adequately cover the target, high dimen-
sional, joint posterior distribution function.
GLASS uses a four-component model to fit the simu-

lated LDC2a-v2 data. The UCB, VGB, and MBHB mod-
els each employ analytic template waveforms to fit the
detectable sources, while the noise level, including the
unresolved astrophysical foreground from the galactic bi-
naries, is fit with a phenomenological model. The param-
eters of the four model components are optimized using
a blocked Metropolis Hastings (MH) algorithm. The test
data set spans one year of simulated LISA observations
however our analysis processes the data sequentially, an-
alyzing increasingly large strides of the “observed” time
series as we envision would be done during mission oper-
ations. Results from the analysis of the LDC2a-v2 data
are compared to the input populations to assess the per-
formance of the algorithm.
Figure 1 summarizes the LDC2a-v2 results by show-

ing the combined reconstructed model components rep-
resented as the amplitude spectral density of the time
delay interferometry (TDI) A channel [14]. The orig-
inal data are shown in gray in the background of the
figure. The purple lines are the posteriors of the re-
constructed UCB waveforms while orange are the recon-
structed VGBs. The magenta broadband curves are the
reconstructed massive black hole signals, and the light
blue curve is the noise model. Note that at low frequency
the credible 50 and 90% credible intervals are visible in
the black hole signals while otherwise the credible inter-
vals on the reconstructions are too narrow to be visible
in this plot. This figure represents the key result of this
study: We are demonstrating a prototype pipeline able to
simultaneously fit thousands of overlapping signals of dif-
ferent morphology and an a priori unknown noise level.

The remainder of this paper will provide a detailed de-
scription of the algorithm and a demonstration of the per-
formance. Section II describes the analysis architecture,
and how the di↵erent modules are integrated together
into a global fit pipeline. Section IIIA describes the
noise model and sampling algorithm, adapted from the
BayesLine algorithm used for LIGO-Virgo noise model-
ing [15]. Section III B summarizes updates to the galac-
tic binary sampler GBMCMC first described in Ref [16],

FIG. 1: Median reconstructed global fit model components
for the full 12 month LDC2a-v2 data, shown as the ASD in
the TDI A channel. Gray is the residual, purple are the UCB
detections, orange or the fits to the known binaries, magenta
are the MBHB mergers, and light blue is the noise model.

while Section III C specifies the configuration changes for
GBMCMC to perform targeted analysis of known binaries.
Section IIID describes how the MBHBMCMC massive black
hole sampler from Ref [17] was adapted for this work.
Section IV presents the evolving results from 1.5, 3, 6,
and 12 month analyses of the LDC2a-v2 data before we
conclude in Section V with a development road map to
improve GLASS’s capabilities in order to analyze increas-
ingly realistic LISA data.

II. THE GLASS ARCHITECTURE

The central engine of GLASS is a blocked Markov Chain
Monte Carlo sampler [18]. In the blocked sampling
scheme, a subset of the model parameters (a block) is
updated while holding all other parameters fixed. Di↵er-
ent blocks are updated independently in sequence, and
the process cycles until the sampler has converged. For
the LISA Global Fit problem, blocked MH samplers have
two advantages. First, they work well for high dimension
spaces when parameter correlations are confined to rela-
tively small and a priori identified sub spaces. Second,
they are naturally modular, turning the daunting task of
building an algorithm equal to the complexity of LISA
data into a well defined set of components that are de-
veloped independently and then integrated.
The blocked MH scheme in GLASS is hierarchical where

the top level blocks, which we will refer to as “modules,”
are the joint set of parameters for the di↵erent model
components i.e., blocks for the noise, VGB, UCB, and
MBHB parameter sets. The sampling within the VGB
and MBHB modules is further grouped into blocks by
individual sources, while the UCB module has one more
layer of hierarchy–where model parameters are grouped
by narrow-band frequency segments, and then by indi-
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VGB analyses are shown in orange. Throughout the re-
mainder of the paper the same color scheme will be used
to identify di↵erent model components: Blue for noise,
purple for UCBs, orange for VGBs, and magenta for MB-
HBs.

FIG. 5: Same as Fig. 1 but focused on a narrow frequency
band near 6 mHz. The known binary in this segment of data
(orange) is representative of how HM Cnc will appear in the

LISA data.

For the headline demonstration of GLASS at work,
Fig. 5 shows the reconstructed components of each part
of the data model. The figure is showing the same con-
tent as Fig. 1 but zoomed in to a narrow interval around
6 mHz containing one of the loudest currently known
sources, HM Cnc [29], shown in orange. Here we can see
all of the model components on display, with a densely-
packed collection of UCBs in addition to HM Cnc all
overlapping one another (purple), and the MBHB merg-
ers sweeping through the band (magenta). The gray
curve depicting the residual after all model components
have been subtracted from the data is fit by noise model
shown in blue. Note that in this figure the uncertainty
in the reconstructions is thinner than the line widths in
the figure, as all of the sources in this interval have high
signal to noise ratio (S/N).

Broadening the aperture to the full analysis band of
the demonstration, Fig. 6 shows the original data’s ASD
which is dominated by the UCBs and is thus shown in
purple. Removing the resolved UCBs (and VGBs) leaves
the magenta residual containing a bump in the spectrum
from the combined signals of the MBHBs. The final (light
blue) residual is after all of the resolved GW signals in the
fit are subtracted from the data. The remaining bump
in the residual spanning ⇠3 ⇥ 10�4 to ⇠5 ⇥ 10�3 Hz is
due to the foreground of un-resolvable UCBs.

As described above the analysis is repeated on increas-
ingly long epochs of the full data set, starting with the
first 1.5 months of observations going up to the full year
of data. Analyses are conducted each time the data vol-
ume has doubled, resulting in analyses of 1.5, 3, 6, and
12 month segments. As the observing time increases the

FIG. 6: ASD of the data including all signals (purple), after
removing the fit to the resolvable UCBs leaving behind only
the MBHBs (magenta), and then the final residual after all

signals in the fit are removed (light blue).

FIG. 7: Number of UCB (top) and MBHB (bottom)
detections as a function of observation time. The UCB
detection number is the number of candidates from the
maximum a posteriori model after clustering samples by

waveform match and then selecting candidates with z > 0.5
(lightest shade), z > 0.9 (medium shade), and those that
uniquely correspond to a source in the injected population

with a match of m > 0.9. See Sec. IVB for a full
explanation of the match.

number of detectable signals grows. For UCBs, which
are continuous sources, this is due to the source building
signal power over time and the improving frequency res-
olution of the data. The MBHBs are transient sources
so longer observation times provide more opportunity to
catch a black hole merger in the act. Fig. 7 shows the
number of candidate detections in the source catalogs for
the UCB (purple, left) and MBHB (magenta, right) mod-
els as the observing time increases. The drop in the total
number of UCB detection candidates between 1.5 and 3

All signals recovered FD Superposed GB identification
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The future of GWDA

GPUs

Machine learning

Wavelet domain

• computation paradigm of the future
• see also new languages with autograd, Jax

• applications to glitch identification
• applications in waveform modelling
• simulation-based inference for PE

• more compact representation for chirps
• fast chirplet transform instead of DFT
• natural framework for non-stationarity

12

main waveforms as a starting point. Remarkably, it turns
out that waveforms can be generated more e�ciently in
the wavelet domain: the computational cost scales as the
square root of the number of data points, as opposed to
linearly, or worse, for the time and frequency domains.

Let us assume that the waveform templates for binary
systems can be expressed in the form

h(t) = <

X

k

Ak(t)e
i k(t) , (37)

or equivalently

h̃(f) =
X

k

Ak(f)e
i⇥k(f) . (38)

Here the amplitude and phase are taken to include con-
tributions from the instrument response in addition to
contributions from the evolution of the binary system.
The series does not have to be harmonic, though that
will often be the case [56]. The fast wavelet transform is
applied term by term in the sums. In some cases only a
few terms are needed to accurately model the signal, such
as for comparable mass spin-aligned binaries on quasi-
circular orbits. In other cases a large number of terms will
be needed, such as for system on highly eccentric orbits
with large mass ratios. The e�ciency of the rapid wavelet
transforms degrades as the number of terms in the sum
increases, eventually reaching the point where there are
no savings to be gained over directly transforming the
full signal. Similar considerations apply when computing
frequency domain waveforms for eccentric binaries [17].

FIG. 14. An illustration of the time-frequency decomposi-
tion of a single term in the expansion of the signal from a
binary merger. The horizontal (light blue) shaded region in-
dicates where fast time-domain transforms are most e�cient,
while the vertical (light red) shaded region indicates where
fast frequency-domain transforms are most e�cient.

Figure 14 illustrates the time-frequency evolution of
one term in the sums (37), (38). During the early inspi-
ral (horizontal shaded region) the signal evolves slowly in

time, and fast time-domain transforms are most e�cient.
During the late inspiral, merger and ringdown (vertical
shaded region) the signal evolves rapidly in frequency,
and fast-frequency domain transforms are most e�cient.
In each region there are (at least) two fast methods for
computing the wavelet transform. The first method,
sparse sampling, involves no approximations and is typ-
ically one or two orders of magnitude faster than the
direct transform. The second method employs a local
Taylor series expansion of the amplitude and phase, and
interpolation over a look-up table. The second method is
typically two to three orders of magnitude faster than the
direct transform. The computational savings are greatest
for long-lived signals, such as binary Neutron star merg-
ers for ground based detectors and systems with masses
below 105M� for space based detectors.

A. Fast Wavelet Waveforms: Sparse Sampling

The sparse sampling technique employs a stationary-
phase inspired time-frequency mapping defined:

tk(f) =
1

2⇡

d⇥k(f)

df

fk(t) =
1

2⇡

d k(t)

dt
, (39)

and similarly for the time and frequency derivatives:

t
0
k(f) =

1

2⇡

d
2⇥k(f)

d2f

ḟk(t) =
1

2⇡

d
2 k(t)

d2t
. (40)

The sparse sampling approach can be understood as a
form of heterodyning, or equivalently, a stationary phase
evaluation. At time tk = n�T the signal has a frequency
fk ⇡ m�F for some specific m. Alternatively, the sig-
nal has frequency fk = m�F at some time tk ⇡ n�T

for some specific n. At these instances, the oscillatory
factors in equations (14) and (17) largely cancel the os-
cillations due to the phase terms ei k(t) or ei⇥k(f). Since
the summands are then slowly varying, the sums can be
evaluated using a much sparser sampling in time or fre-
quency, thereby significantly reducing the computational
cost. Time-domain sparse sampling is most e�cient in
regions where the signal is slowly evolving in frequency:
ḟkTw < �F , where Tw is the duration of the wavelet
window function. Frequency-domain sampling is most
e�cient in regions where the signal is rapidly evolving in
frequency: t

0
kFw < �T , where Fw is the bandwidth of

the wavelet window function.
Sparse sampling in the time domain works by reducing

the sample cadence such that the time samples are spaced
by p�t, where p is some power of two. The larger the p

the greater the savings in computational cost. The down-
sampling is limited by how rapidly the amplitude and
heterodyned phase vary. Significant savings (p = 256 or
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Figure 3. Comparison of (a) detector-frame component mass
and (b) sky position posteriors from DINGO (colored) and
LALInference (gray) for eight GWTC-1 events. 90% credible
regions shown.

For true posteriors, the percentiles should be uniformly
distributed, so the CDF should be diagonal. Kolmogorov-
Smirnov test p-values are indicated in the legend, with
combined p-value of 0.46. This shows that DINGO is
performing properly on simulated data.

We now proceed to our main result, which is a demon-
stration of performance on real events. We perform infer-
ence on the eight GWTC-1 BBH events compatible with
our prior, using both DINGO and LALInference MCMC.
For DINGO, generation of 50,000 sample points with 30
GNPE iterations takes roughly 1 minute. Comparisons of
inferred component masses and sky position for all events
show good agreement (see Fig. 3), including multimodal-
ity for the sky position. The one exception is GW170104,
where the mass posterior is slightly flatter. Nevertheless,
90% credible intervals are in good agreement.

For quantitative comparisons, we compute the Jensen-
Shannon divergence (JSD) [49] between DINGO and
LALInference one-dimensional marginalized posteriors
(see Fig. 4). This is a symmetric divergence that mea-
sures the di↵erence between two probability distributions,
with values ranging from 0 to ln(2) ⇡ 0.69 nat. We find a
mean JSD across all events and parameters of 0.0009 nat,
which is slightly higher than the variation (0.0007 nat)
found between LALInference runs with identical settings
but di↵erent random seeds [19]. By comparing such LAL-
Inference runs, Ref. [19] also established a maximum JSD
of 0.002 nat for indistinguishability; our results are ap-
proaching this threshold, with two events below for all
parameters, and the others with one to three parame-
ters above. The slight visible disagreement between mass
posteriors for GW170104 is also reflected in larger JSDs.
For comparison, we note that PSD variations (see Supple-
mental Material) and the choice of waveform model [19]
both impact the JSD at a much higher level (0.02 nat).
Additional comparisons between samplers, including pos-
teriors for all events, are provided in the Supplemental
Material.
Conclusions.—In this Letter, we introduced DINGO

and applied it to perform extremely fast Bayesian pa-
rameter inference for gravitational waves observed by the
LIGO and Virgo detectors. We analyzed eight GWTC-1
events, and showed excellent agreement with standard
algorithms, with inference times reduced by factors of 103–
104. This was achieved by conditioning on the detector
noise characteristics and making a number of architecture
and algorithm improvements. We plan to release a public
DINGO code in the very near future.

A critical component of DINGO is a new iterative
algorithm—GNPE—to partially o↵-load the modeling of
time translations from the neural network. Although con-
vergence of GNPE may take one minute, initial samples
with slightly reduced accuracy can, however, be produced
in just a few seconds by taking fewer iterations.

Going forward, the next steps are to extend the prior
to include longer-duration binary neutron star signals [50]
(for which rapid results are especially important to iden-
tify electromagnetic counterparts) and to extend to more
physically-realistic waveform models, which include higher
multipole modes and more accurate spin-precession ef-
fects [20]. Long and complex waveforms are much more
expensive for standard algorithms, so the relative improve-
ment in performance should be even more significant. If
successful, this would also enable the routine use of the
most physically-realistic waveforms, resulting in consis-
tently reduced systematic errors. These extensions will
likely require somewhat larger networks and improved
data representation or compression.

Another natural extension would be to study signals
with real detector noise, rather than the stationary-
Gaussian idealization. For DINGO, performing infer-
ence with realistic noise is simply a matter of training
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