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2.4 Parton model 25 

(b) 

(c) 171 
Fig. 2.5 . Parton scattering in DIS. (a) Including hadronization and final-state interactions 
of struck parton. (b) Handbag diagram obtained after cancellation of hadronization and 
final-state interactions in graph (a). (c) Parton model with parton density and lowest-order 
DIS on partonic target. 

these happen on a long time-scale, and therefore do not greatly affect the probability that a 
scattering has occurred. That is, the final-state interactions cancel to a first approximation 
in the inclusive cross section. Thus we can approximate graph (a) by the "handbag" graph 
(b), where the final-state interactions of the quark are ignored. 

An analysis can be made from the handbag diagram itself, but that is postponed to eh. 6. 
Here we just work with the parton-model assertion of incoherent lowest-order electromag-
netic scattering on partons governed by parton densities, as embodied in Fig. 2.5(c). 

2.4.2 Quark-parton model calculation 

It is convenient to use the Breit frame, and to write the light-front coordinates of q and P 
as 

It _ ( p+ Q2 0) q - -XN '2x
N

P+' T , 

In this equation, XN is the Nachtmann variable (Nachtmann, 1973) 

2XBj 
XN = , 

1 + Jl + 

(2.23) 

(2.24) 

which differs from the Bjorken variable XBj = Q2/2P . q by a power-suppressed correction. 
In the partonic scattering we replace k by its plus component: k r--+ 0, OT), in 

accordance with our discussion of the sizes of the components of k. We also approximate 
the outgoing parton as massless and on-shell. We let dO",jartonic be the differential cross 
section for lepton-parton scattering with the following kinematics: 

(2.25) 
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FIG. 15. Inclusive deep-inelastic scattering (left) and ⇤ production from semi-inclusive annihilation

(right) diagrams with an inclusive jet correlator ⌅ replacing unobserved perturbative quarks in the

final state. � and �h are the correlation functions that encode information on hadron structure

and hadronization, respectively. In this document, the detected hadron h is a self-polarizing ⇤

baryon.

In inclusive DIS,Mj couples to the chiral-odd leading twist transversity distribution h1(x)

of the proton target and contributes to the LT double spin asymmetry, in particular, to the

g2 structure function [77]. Comparing this to the JAM15 polarized DIS global fit indicates

Mj ⇡ 0.1 GeV at perturbative scales. Evolving this back to an initial Q0 = 0.6 GeV scale

one finds Mj0 ⇡ 0.5 GeV.

When producing a self-polarizing ⇤ hadron in the SIA of polarized electrons and positrons,

the dynamical component of the jet mass MJ couples to the chiral-odd twist-3 transversity

fragmentation function H1 :
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The jet mass can be accessed measuring the longitudinal AL electron spin asymmetry

AL =
d�
! � d�

 

d�! + d� 
, (6)

where “L” refers to the longitudinal lepton polarization. The ⇤’s longitudinal and transverse

spin contributions can be separated studying the y = P⇤ · l/P⇤ · q dependence of the

asymmetry, where l, q, and P⇤ are the four-momenta of the incoming electron, the exchanged

photon, and the ⇤ baryon respectively [193, 194]. The coe�cients A(y), C(y), D(y) can be

found in Ref. [193, 194].
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Figure 2: Different contributions to the non
Wandzura-Wilczek part of the proton g2 structure
functions compared to the JAM15 fit of g2 � gWW

2
(solid black) [9]. The quark and jet contributions are
shown with a dotted red and a dot-dashed green line
respectively, with uncertainty bands coming form the
Pavia15 fit of the transversity function [10]. The un-
certainty in the choice mq = 5 MeV and Mq = 100
MeV is not shown. The pure twist-3 piece by Braun
et al. [11] is shown as a dashed blue line. Note that
the jet contribution is plotted down to low values of
xB, even though one would expect it to be suppressed
at xB . Q2/(M2

• +Q2).

is necessary to guarantee the relevance of the jet correlators in Fig. 1, and implies a smaller and
smaller interval of validity in xB as Q2 increases. The lower bound is only necessary to guarantee
that the integrations of J1,2 over l+ = l2/(2l�) extend far enough so that one can apply the spectral
sum rules (1.5)-(1.6) and neglect jet mass corrections. Should this condition not be satisfied in
actual experiments, jet mass corrections may be handled according to Ref. [2].

As proposed in [3], rather than directly using the diagrams in Fig. 1, it is convenient to start
from the semi-inclusive one, that has already been studied up to twist-3 level [4]. Then, integrating
over hadron momenta, summing over flavors and spins, and taking advantage of the longitudinal
sum rules derived in Section 2, one obtains
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where f q
1 , gq

1 and hq
1 are, respectively, the unpolarized, polarized, and transversity PDFs. The

vanishing of FsinfS
UT (xB) = Âh,Sh

R
dzFh,sinfS

UT (xB,z), known as Diehl-Sapeta sum rule [8], is derived
here for the first time at the correlator level. The second term in FcosfS

LT (xB), that is not suppressed
as an inverse power of Q compared to the standard gT term, was already unveiled in Ref. [3]. In a
perturbative calculation, one would obtain Mpert

q = mq and the new term would vanish.
The new transversity-dependent coupling also contributes to the more conventional g2 struc-

ture function, as can be seen by applying the methods discussed in Ref. [12]:
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where f ⇤(x)⌘� f (x)+
R 1

x dy f (y)/y, gWW
2 = g⇤1 is the Wandzura-Wilczek pure twist 2 chiral-even

term, and gtw�3
2 (xB) is a “pure twist-3” function that only depends on quark-gluon-quark matrix

elements. The novelty is the last, jet mass dependent term. This is shown in Fig. 3 to poten-
tially have a size comparable to the other terms, although in absence of theoretical calculations or
experimental determinations, we can only use a rough Mq = O(100 MeV) estimate for now [3].
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where “L” refers to the longitudinal lepton polarization. The ⇤’s longitudinal and transverse

spin contributions can be separated studying the y = P⇤ · l/P⇤ · q dependence of the

asymmetry, where l, q, and P⇤ are the four-momenta of the incoming electron, the exchanged

photon, and the ⇤ baryon respectively [193, 194]. The coe�cients A(y), C(y), D(y) can be

found in Ref. [193, 194].
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Gauge invariant quark propagator

1

u- udjhepkYjued

jQN yBA¨ANVNAG BO GQN FGEBAP OBEyN zRENyGUL yBAANyGF GQN CEBCwPwGRBA BO DHwETF wAz PUHBAF JRGQ GQNRE
QwzEBARMwGRBAfi AwVNUL GQNRE GEwAFVHGwGRBA RAGB VwFFRIN wAz yBUBEUNFF QwzEBAF– eA GQN BAN QwAzfi GQN CEBCNE]
GRNF BO CwEGBARy CEBCwPwGBEF RA gop ywA xN GQNBENGRywUUL RAINFGRPwGNz JRGQ GNyQARDHNF EwAPRAP OEBV yBAGRAHHV
VNGQBzF )0-0.fl GB NffiNyGRIN GQNBERNF wAz VBzNU ywUyHUwGRBAF )00-04fl wAz GB UwGGRyN ywUyHUwGRBAF )0Ω-1Ωfl– eA GQN
BGQNE QwAzfi QwEz FywGGNERAP CEByNFFNF JRGQ QwzEBAF RA GQN ¨AwU FGwGN wUUBJ BANfi wG UNwFG RA CERAyRCUNfi GB CEBxN
GQN zRFyBAGRAHRGL BO GQNFN CEBCwPwGBEF GQwATF GB GQN BCGRywU GQNBENV– uA OwyGfi wF FQBJA RA hNOF– )1Ξ-18flfi GQN
VBVNAGF BO GQN DHwET CEBCwPwGBE=F FCNyGEwU OHAyGRBAF ywA xN NKCURyRGUL yBAANyGNz GB FCNyR¨y RAGNPEwUF BO DHwET
OEwPVNAGwGRBA OHAyGRBAF “rrF( wAz OHEGQNEVBEN zRENyGUL NAGNE GQN yEBFF FNyGRBA BO yNEGwRA RAyUHFRIN QwEz FywG]
GNERAP CEByNFFNF– jQHFfi wCwEG OEBV GQNRE RAGERAFRy RAGNENFGfi HAzNEFGwAzRAP GQN wAwULGRy CEBCNEGRNF BO GQN DHwET
CEBCwPwGBE wAz BO RGF wFFByRwGNz FCNyGEwU OHAyGRBAF xNyBVNF BO CEwyGRywU ENUNIwAyN OBE GQN CQNABVNABUBPL BO
QwzEBA FGEHyGHEN wAz BO QwzEBARMwGRBA )2.fi 20fl–
uA GQRF CwCNEfi JN NUwxBEwGN BA GQN PwHPN RAIwERwAyN BO GQN FB]ywUUNz OHUUL RAyUHFRIN SNG yBEENUwGBE RAGEBzHyNz

RA hNOF– )1Ξfi 17flfi AwVNUL BO

6hi“S:J( ˆ pRFy

∑
zlω

“1W(l
NQT‡ω

jEy
dy

!”·
)
P m0“±φ ω:J(αh“ω(

[ )
P αi“.(m1“.φ±:J(

[
·”〈 φ “0(

JQNEN ·”〈 RF GQN RAGNEwyGRAP IwyHHV FGwGN BO gopfi α GQN DHwET ¨NUzfi m0β1 wEN mRUFBA URANF GQwG NAFHEN GQN
PwHPN RAIwERwAyN BO GQN yBEENUwGBEfi wAz J RF wA NKGNEAwU INyGBE GQwG zNGNEVRANF GQN zRENyGRBA BO GQNRE CwGQFfi wF
zRFyHFFNz RA zNGwRU UwGNE– P ENCENFNAGF GQN GRVN BEzNERAP BCNEwGBE OBE GQN ¨NUzF JQNENwF P ENCENFNAGF GQN wAGR
GRVN BEzNERAP BCNEwGBE )21fi 22fl– rBE FwTN BO xENIRGL JN BVRG GQN ,wIBE RAzNK BO GQN DHwET ¨NUzF wAz BO 6– jQN
yBUBE GEwyN wINEwPNF BINE GQN RAyBVRAP DHwET yBUBE DHwAGHV AHVxNE– eAN ywA FQBJ GQwG GQN yBEENUwGRBA OHAyGRBA
RA qD– “0( RF ENUwGNz GB GQN yBEENUwGBE OBE GQN FRAPUN]QwzEBA DHwET OEwPVNAGwGRBA OHAyGRBAF wG GQN BCNEwGBE UNINUfi
xL w FHV BINE GQN ,wIBE wAz FCRA BO GQN CEBzHyNz QwzEBAF wAz wA BA]FQNUU RAGNPEwGRBA BINE GQN OBHE]VBVNAGHV
BO GQN FwVN QwzEBAF )17fl– jQHFfi 6hi“S:J( ENCENFNAGF VwGQNVwGRywUUL GQN RAyUHFRIN URVRG BO GQN QwzEBARMwGRBA
VNyQwARFV– cBENBINEfi wF NKGNAFRINUL zRFyHFFNz RA hNOF– )1Ξfi 17flfi GQN SNG yBEENUwGBE 6 ywA xN JERGGNA wF GQN
zRFyBAGRAHRGL BO GQN PwHPN]RAIwERwAG DHwET CEBCwPwGBE9

6hi“S:A[( ˆ pRFy

∑
zlω

“1W(l
NQT‡ω

jEy
dy

!”·αh“ω(αi“.(m “.φ ω:A[(·”〈 φ “1(

JQNEN GQN mRUFBA URAN RF m ˆ m1m0–
jQN OBEV BO 6 PRINA RA qD– “0( zNFyERxNF GQN QwzEBARMwGRBA BO w DHwET RAGB wA HABxFNEINz SNG BO CwEGRyUNF– uG

RF ENUNIwAG GB ywUyHUwGN GQN yEBFF FNyGRBA BO CEByNFFNF JRGQ HARzNAGR¨Nz SNGF RA GQN ¨AwU FGwGNFfi OBE NKwVCUN OBE
RAyUHFRIN NUNyGEBA]CEBGBA pNNC]uANUwFGRy iywGGNERAP “pui( )18fi 20fi 2Wfi 24fl wAz BO iNVR]uAyUHFRIN NUNyGEBA]CBFRGEBA
�AARQRUwGRBA “iu�( )18fi 2Ωfi 2Ξfl– uGF NVNEPNAyN OEBV OwyGBERMwGRBA GQNBENVF RF yBAANyGNz JRGQ GQN NAzCBRAG
TRANVwGRyF OBE GQN yBAFRzNENz CEByNFFNFfi FNN N–P– hNOF– )27fi 28fl–
jQN OBEV BO 6 PRINA RA qD– “1(fi RAFGNwzfi RF w PwHPN]RAIwERwAG PNANEwURMwGRBA BO GQN DHwET CEBCwPwGBEfi wAz

VwTNF CBFFRxUN GQN VNAGRBANz yBAANyGRBA xNGJNNA DHwET CEBCwPwGRBA RA GQN IwyHHV wAz QwzEBARMwGRBA– jQRF
yBAANyGRBA RF IwURz wG GQN BCNEwGBE UNINU wAzfi wOGNE FBVN OBEVwU VwARCHUwGRBAFfi CEBzHyNF w FHV EHUN GQwG URATF GQN
¨EFG VBVNAG BO GQN yQREwU]Bzz DHwET FCNyGEwU OHAyGRBA “RzNAGR¨Nz wF GQN ABACNEGHExwGRIN VwFF BO GQN CEBCwPwGRAP
DHwET( GB GQN wINEwPN BO GQN CEBzHyNz QwzEBA VwFFNF JNRPQGNz xL GQN yQREwU]Bzz FywUwE DHwET OEwPVNAGwGRBA
OHAyGRBAF p )1Ξfi 17fl–
mQRUN RA hNOF– )1Ξfi 17fl GQN ywUyHUwGRBAF JNEN URVRGNz GB GQN URPQG yBAN PwHPNfi RA GQRF CwCNE GQN FGHzL BO GQN

PwHPN RAIwERwAG CEBCwPwGBE 6 RF NKGNAzNz GB w PNANERy PwHPN– uG RF FQBJA GQwG GQN FHV EHUN OBE GQN yQREwU]Bzz
FCNyGEwU OHAyGRBA CENFNAGNz RA hNOF– )1Ξfi 17fl RF RA OwyG OBEVwUUL IwURz RA wAL PwHPN– cBENBINEfi w ABINU FHV EHUN
OBE GQN DHwET FCNyGEwU OHAyGRBA wFFByRwGNz GB GQN PwHPN ¨KRAP INyGBE RA URPQG]URTN PwHPNF RF zNERINz– rRAwUULfi w
yBVCUNGN ywUyHUwGRBA BO GQN GJRFG]W yBVCBANAG BO GQN SNG yBEENUwGBE RF CENFNAGNzfi GBPNGQNE JRGQ w FHV EHUN OBE
GQN FNyBAz VBVNAG BO GQN yQREwU]NINA FCNyGEwU OHAyGRBA–
jQRF ENFNwEyQ URAN yBAANyGF GJB wFCNyGF BO gop “wAz GJB ENFNwEyQ yBVVHARGRNF( JQRyQ wEN RAGNEGJRANzfi

AwVNUL GQN FGHzL BO GQN wAwULGRy CEBCNEGRNF BO GQN DHwET wAz PUHBA CEBCwPwGBEF wAz GQN FGHzL BO QwzEBARMwGRBA
IRw FywGGNERAP CEByNFFNF JRGQ QwzEBAF RA GQN ¨AwU FGwGNF– jQRF wEGRyUN RF zNIBGNz RA CwEGRyHUwE GB GQN CEBCNEGRNF
BO GQN DHwET CEBCwPwGBEfi wAz wzzENFFNF RA w FRFGNVwGRy JwL GQN ywUyHUwGRBA BO GQN DHwAGRGRNF JQRyQ wEN ENUNIwAG
OBE QwEz FywGGNERAP CEByNFFNFfi AwVNUL GQN VBVNAGF BO GQN FCNyGEwU OHAyGRBAF wAz GQNRE PwHPN RAzNCNAzNAyN–
jQN VBGRIwGRBA xNQRAz GQRF JBET URNFfi RA CwEGfi RA GQN CBFFRxRURGL GB NKCENFF GQN SNG VwFF wF w VBVNAG BO GQN
yQREwU]Bzz DHwET FCNyGEwU OHAyGRBA RA w PNANERy PwHPN wAz ABG BAUL RA GQN URPQG]yBAN PwHPN– uA GQRF PwHPNfi
RA OwyGfi yBVCHGwGRBAF wEN yBAFRzNEwxUL VBEN RAIBUINz )0fi W.fl wAzfi GB GQN xNFG BO BHE TABJUNzPNfi wxFNAG OBE
DHwET FCNyGEwU OHAyGRBAF– eHE ENFHUGF CEBIRzN wzzRGRBAwU VBGRIwGRBA GB CHFQ OBEJwEz JRGQ GQNFN ywUyHUwGRBAF–
rHEGQNEVBENfi GQN VBVNAGF wEN wUFB RAFGEHVNAGwU GB zNGNEVRAN VwFF yBEENyGRBAF GB FNVR]RAyUHFRIN CEByNFFNF wG
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jQN yBA¨ANVNAG BO GQN FGEBAP OBEyN zRENyGUL yBAANyGF GQN CEBCwPwGRBA BO DHwETF wAz PUHBAF JRGQ GQNRE
QwzEBARMwGRBAfi AwVNUL GQNRE GEwAFVHGwGRBA RAGB VwFFRIN wAz yBUBEUNFF QwzEBAF– eA GQN BAN QwAzfi GQN CEBCNE]
GRNF BO CwEGBARy CEBCwPwGBEF RA gop ywA xN GQNBENGRywUUL RAINFGRPwGNz JRGQ GNyQARDHNF EwAPRAP OEBV yBAGRAHHV
VNGQBzF )0-0.fl GB NffiNyGRIN GQNBERNF wAz VBzNU ywUyHUwGRBAF )00-04fl wAz GB UwGGRyN ywUyHUwGRBAF )0Ω-1Ωfl– eA GQN
BGQNE QwAzfi QwEz FywGGNERAP CEByNFFNF JRGQ QwzEBAF RA GQN ¨AwU FGwGN wUUBJ BANfi wG UNwFG RA CERAyRCUNfi GB CEBxN
GQN zRFyBAGRAHRGL BO GQNFN CEBCwPwGBEF GQwATF GB GQN BCGRywU GQNBENV– uA OwyGfi wF FQBJA RA hNOF– )1Ξ-18flfi GQN
VBVNAGF BO GQN DHwET CEBCwPwGBE=F FCNyGEwU OHAyGRBAF ywA xN NKCURyRGUL yBAANyGNz GB FCNyR¨y RAGNPEwUF BO DHwET
OEwPVNAGwGRBA OHAyGRBAF “rrF( wAz OHEGQNEVBEN zRENyGUL NAGNE GQN yEBFF FNyGRBA BO yNEGwRA RAyUHFRIN QwEz FywG]
GNERAP CEByNFFNF– jQHFfi wCwEG OEBV GQNRE RAGERAFRy RAGNENFGfi HAzNEFGwAzRAP GQN wAwULGRy CEBCNEGRNF BO GQN DHwET
CEBCwPwGBE wAz BO RGF wFFByRwGNz FCNyGEwU OHAyGRBAF xNyBVNF BO CEwyGRywU ENUNIwAyN OBE GQN CQNABVNABUBPL BO
QwzEBA FGEHyGHEN wAz BO QwzEBARMwGRBA )2.fi 20fl–
uA GQRF CwCNEfi JN NUwxBEwGN BA GQN PwHPN RAIwERwAyN BO GQN FB]ywUUNz OHUUL RAyUHFRIN SNG yBEENUwGBE RAGEBzHyNz
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JQNEN ·”〈 RF GQN RAGNEwyGRAP IwyHHV FGwGN BO gopfi α GQN DHwET ¨NUzfi m0β1 wEN mRUFBA URANF GQwG NAFHEN GQN
PwHPN RAIwERwAyN BO GQN yBEENUwGBEfi wAz J RF wA NKGNEAwU INyGBE GQwG zNGNEVRANF GQN zRENyGRBA BO GQNRE CwGQFfi wF
zRFyHFFNz RA zNGwRU UwGNE– P ENCENFNAGF GQN GRVN BEzNERAP BCNEwGBE OBE GQN ¨NUzF JQNENwF P ENCENFNAGF GQN wAGR
GRVN BEzNERAP BCNEwGBE )21fi 22fl– rBE FwTN BO xENIRGL JN BVRG GQN ,wIBE RAzNK BO GQN DHwET ¨NUzF wAz BO 6– jQN
yBUBE GEwyN wINEwPNF BINE GQN RAyBVRAP DHwET yBUBE DHwAGHV AHVxNE– eAN ywA FQBJ GQwG GQN yBEENUwGRBA OHAyGRBA
RA qD– “0( RF ENUwGNz GB GQN yBEENUwGBE OBE GQN FRAPUN]QwzEBA DHwET OEwPVNAGwGRBA OHAyGRBAF wG GQN BCNEwGBE UNINUfi
xL w FHV BINE GQN ,wIBE wAz FCRA BO GQN CEBzHyNz QwzEBAF wAz wA BA]FQNUU RAGNPEwGRBA BINE GQN OBHE]VBVNAGHV
BO GQN FwVN QwzEBAF )17fl– jQHFfi 6hi“S:J( ENCENFNAGF VwGQNVwGRywUUL GQN RAyUHFRIN URVRG BO GQN QwzEBARMwGRBA
VNyQwARFV– cBENBINEfi wF NKGNAFRINUL zRFyHFFNz RA hNOF– )1Ξfi 17flfi GQN SNG yBEENUwGBE 6 ywA xN JERGGNA wF GQN
zRFyBAGRAHRGL BO GQN PwHPN]RAIwERwAG DHwET CEBCwPwGBE9
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JQNEN GQN mRUFBA URAN RF m ˆ m1m0–
jQN OBEV BO 6 PRINA RA qD– “0( zNFyERxNF GQN QwzEBARMwGRBA BO w DHwET RAGB wA HABxFNEINz SNG BO CwEGRyUNF– uG

RF ENUNIwAG GB ywUyHUwGN GQN yEBFF FNyGRBA BO CEByNFFNF JRGQ HARzNAGR¨Nz SNGF RA GQN ¨AwU FGwGNFfi OBE NKwVCUN OBE
RAyUHFRIN NUNyGEBA]CEBGBA pNNC]uANUwFGRy iywGGNERAP “pui( )18fi 20fi 2Wfi 24fl wAz BO iNVR]uAyUHFRIN NUNyGEBA]CBFRGEBA
�AARQRUwGRBA “iu�( )18fi 2Ωfi 2Ξfl– uGF NVNEPNAyN OEBV OwyGBERMwGRBA GQNBENVF RF yBAANyGNz JRGQ GQN NAzCBRAG
TRANVwGRyF OBE GQN yBAFRzNENz CEByNFFNFfi FNN N–P– hNOF– )27fi 28fl–
jQN OBEV BO 6 PRINA RA qD– “1(fi RAFGNwzfi RF w PwHPN]RAIwERwAG PNANEwURMwGRBA BO GQN DHwET CEBCwPwGBEfi wAz

VwTNF CBFFRxUN GQN VNAGRBANz yBAANyGRBA xNGJNNA DHwET CEBCwPwGRBA RA GQN IwyHHV wAz QwzEBARMwGRBA– jQRF
yBAANyGRBA RF IwURz wG GQN BCNEwGBE UNINU wAzfi wOGNE FBVN OBEVwU VwARCHUwGRBAFfi CEBzHyNF w FHV EHUN GQwG URATF GQN
¨EFG VBVNAG BO GQN yQREwU]Bzz DHwET FCNyGEwU OHAyGRBA “RzNAGR¨Nz wF GQN ABACNEGHExwGRIN VwFF BO GQN CEBCwPwGRAP
DHwET( GB GQN wINEwPN BO GQN CEBzHyNz QwzEBA VwFFNF JNRPQGNz xL GQN yQREwU]Bzz FywUwE DHwET OEwPVNAGwGRBA
OHAyGRBAF p )1Ξfi 17fl–
mQRUN RA hNOF– )1Ξfi 17fl GQN ywUyHUwGRBAF JNEN URVRGNz GB GQN URPQG yBAN PwHPNfi RA GQRF CwCNE GQN FGHzL BO GQN

PwHPN RAIwERwAG CEBCwPwGBE 6 RF NKGNAzNz GB w PNANERy PwHPN– uG RF FQBJA GQwG GQN FHV EHUN OBE GQN yQREwU]Bzz
FCNyGEwU OHAyGRBA CENFNAGNz RA hNOF– )1Ξfi 17fl RF RA OwyG OBEVwUUL IwURz RA wAL PwHPN– cBENBINEfi w ABINU FHV EHUN
OBE GQN DHwET FCNyGEwU OHAyGRBA wFFByRwGNz GB GQN PwHPN ¨KRAP INyGBE RA URPQG]URTN PwHPNF RF zNERINz– rRAwUULfi w
yBVCUNGN ywUyHUwGRBA BO GQN GJRFG]W yBVCBANAG BO GQN SNG yBEENUwGBE RF CENFNAGNzfi GBPNGQNE JRGQ w FHV EHUN OBE
GQN FNyBAz VBVNAG BO GQN yQREwU]NINA FCNyGEwU OHAyGRBA–
jQRF ENFNwEyQ URAN yBAANyGF GJB wFCNyGF BO gop “wAz GJB ENFNwEyQ yBVVHARGRNF( JQRyQ wEN RAGNEGJRANzfi

AwVNUL GQN FGHzL BO GQN wAwULGRy CEBCNEGRNF BO GQN DHwET wAz PUHBA CEBCwPwGBEF wAz GQN FGHzL BO QwzEBARMwGRBA
IRw FywGGNERAP CEByNFFNF JRGQ QwzEBAF RA GQN ¨AwU FGwGNF– jQRF wEGRyUN RF zNIBGNz RA CwEGRyHUwE GB GQN CEBCNEGRNF
BO GQN DHwET CEBCwPwGBEfi wAz wzzENFFNF RA w FRFGNVwGRy JwL GQN ywUyHUwGRBA BO GQN DHwAGRGRNF JQRyQ wEN ENUNIwAG
OBE QwEz FywGGNERAP CEByNFFNFfi AwVNUL GQN VBVNAGF BO GQN FCNyGEwU OHAyGRBAF wAz GQNRE PwHPN RAzNCNAzNAyN–
jQN VBGRIwGRBA xNQRAz GQRF JBET URNFfi RA CwEGfi RA GQN CBFFRxRURGL GB NKCENFF GQN SNG VwFF wF w VBVNAG BO GQN
yQREwU]Bzz DHwET FCNyGEwU OHAyGRBA RA w PNANERy PwHPN wAz ABG BAUL RA GQN URPQG]yBAN PwHPN– uA GQRF PwHPNfi
RA OwyGfi yBVCHGwGRBAF wEN yBAFRzNEwxUL VBEN RAIBUINz )0fi W.fl wAzfi GB GQN xNFG BO BHE TABJUNzPNfi wxFNAG OBE
DHwET FCNyGEwU OHAyGRBAF– eHE ENFHUGF CEBIRzN wzzRGRBAwU VBGRIwGRBA GB CHFQ OBEJwEz JRGQ GQNFN ywUyHUwGRBAF–
rHEGQNEVBENfi GQN VBVNAGF wEN wUFB RAFGEHVNAGwU GB zNGNEVRAN VwFF yBEENyGRBAF GB FNVR]RAyUHFRIN CEByNFFNF wG
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Inclusive jet correlator

! Par+onic pic+ure: gauge invarian, dressed quark correla,or

– Quarks are no+ asymp+o/c s+a+es

– No+e color averaging

! Hadronic pic+ure: “inclusive je,” correla,or

– Hadroniza/on produc+s pass +he cu+

– In+erpre+ as (/me-ordered) gauge invarian+ quark-+o-je+ ampli+ude2

– No measured hadrons→ no je+ cone / energy

! Can s+udy ?ragmen,aton w/o ?ragmen,s

– In par/cular, dynamical mass genera/on & χ–symme+ry breaking

Inclusive q→ X “inclusive je+” correla+or
AA, Signori, 1903.04458

Sterman, NPB 281 (‘87)

q         X  amplitude

q Hadronization of a quark into an
unobserved jet of particles 
(fully inclusive)
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jQN yBA¨ANVNAG BO GQN FGEBAP OBEyN zRENyGUL yBAANyGF GQN CEBCwPwGRBA BO DHwETF wAz PUHBAF JRGQ GQNRE
QwzEBARMwGRBAfi AwVNUL GQNRE GEwAFVHGwGRBA RAGB VwFFRIN wAz yBUBEUNFF QwzEBAF– eA GQN BAN QwAzfi GQN CEBCNE]
GRNF BO CwEGBARy CEBCwPwGBEF RA gop ywA xN GQNBENGRywUUL RAINFGRPwGNz JRGQ GNyQARDHNF EwAPRAP OEBV yBAGRAHHV
VNGQBzF )0-0.fl GB NffiNyGRIN GQNBERNF wAz VBzNU ywUyHUwGRBAF )00-04fl wAz GB UwGGRyN ywUyHUwGRBAF )0Ω-1Ωfl– eA GQN
BGQNE QwAzfi QwEz FywGGNERAP CEByNFFNF JRGQ QwzEBAF RA GQN ¨AwU FGwGN wUUBJ BANfi wG UNwFG RA CERAyRCUNfi GB CEBxN
GQN zRFyBAGRAHRGL BO GQNFN CEBCwPwGBEF GQwATF GB GQN BCGRywU GQNBENV– uA OwyGfi wF FQBJA RA hNOF– )1Ξ-18flfi GQN
VBVNAGF BO GQN DHwET CEBCwPwGBE=F FCNyGEwU OHAyGRBAF ywA xN NKCURyRGUL yBAANyGNz GB FCNyR¨y RAGNPEwUF BO DHwET
OEwPVNAGwGRBA OHAyGRBAF “rrF( wAz OHEGQNEVBEN zRENyGUL NAGNE GQN yEBFF FNyGRBA BO yNEGwRA RAyUHFRIN QwEz FywG]
GNERAP CEByNFFNF– jQHFfi wCwEG OEBV GQNRE RAGERAFRy RAGNENFGfi HAzNEFGwAzRAP GQN wAwULGRy CEBCNEGRNF BO GQN DHwET
CEBCwPwGBE wAz BO RGF wFFByRwGNz FCNyGEwU OHAyGRBAF xNyBVNF BO CEwyGRywU ENUNIwAyN OBE GQN CQNABVNABUBPL BO
QwzEBA FGEHyGHEN wAz BO QwzEBARMwGRBA )2.fi 20fl–
uA GQRF CwCNEfi JN NUwxBEwGN BA GQN PwHPN RAIwERwAyN BO GQN FB]ywUUNz OHUUL RAyUHFRIN SNG yBEENUwGBE RAGEBzHyNz

RA hNOF– )1Ξfi 17flfi AwVNUL BO
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JQNEN ·”〈 RF GQN RAGNEwyGRAP IwyHHV FGwGN BO gopfi α GQN DHwET ¨NUzfi m0β1 wEN mRUFBA URANF GQwG NAFHEN GQN
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zRFyHFFNz RA zNGwRU UwGNE– P ENCENFNAGF GQN GRVN BEzNERAP BCNEwGBE OBE GQN ¨NUzF JQNENwF P ENCENFNAGF GQN wAGR
GRVN BEzNERAP BCNEwGBE )21fi 22fl– rBE FwTN BO xENIRGL JN BVRG GQN ,wIBE RAzNK BO GQN DHwET ¨NUzF wAz BO 6– jQN
yBUBE GEwyN wINEwPNF BINE GQN RAyBVRAP DHwET yBUBE DHwAGHV AHVxNE– eAN ywA FQBJ GQwG GQN yBEENUwGRBA OHAyGRBA
RA qD– “0( RF ENUwGNz GB GQN yBEENUwGBE OBE GQN FRAPUN]QwzEBA DHwET OEwPVNAGwGRBA OHAyGRBAF wG GQN BCNEwGBE UNINUfi
xL w FHV BINE GQN ,wIBE wAz FCRA BO GQN CEBzHyNz QwzEBAF wAz wA BA]FQNUU RAGNPEwGRBA BINE GQN OBHE]VBVNAGHV
BO GQN FwVN QwzEBAF )17fl– jQHFfi 6hi“S:J( ENCENFNAGF VwGQNVwGRywUUL GQN RAyUHFRIN URVRG BO GQN QwzEBARMwGRBA
VNyQwARFV– cBENBINEfi wF NKGNAFRINUL zRFyHFFNz RA hNOF– )1Ξfi 17flfi GQN SNG yBEENUwGBE 6 ywA xN JERGGNA wF GQN
zRFyBAGRAHRGL BO GQN PwHPN]RAIwERwAG DHwET CEBCwPwGBE9
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JQNEN GQN mRUFBA URAN RF m ˆ m1m0–
jQN OBEV BO 6 PRINA RA qD– “0( zNFyERxNF GQN QwzEBARMwGRBA BO w DHwET RAGB wA HABxFNEINz SNG BO CwEGRyUNF– uG

RF ENUNIwAG GB ywUyHUwGN GQN yEBFF FNyGRBA BO CEByNFFNF JRGQ HARzNAGR¨Nz SNGF RA GQN ¨AwU FGwGNFfi OBE NKwVCUN OBE
RAyUHFRIN NUNyGEBA]CEBGBA pNNC]uANUwFGRy iywGGNERAP “pui( )18fi 20fi 2Wfi 24fl wAz BO iNVR]uAyUHFRIN NUNyGEBA]CBFRGEBA
�AARQRUwGRBA “iu�( )18fi 2Ωfi 2Ξfl– uGF NVNEPNAyN OEBV OwyGBERMwGRBA GQNBENVF RF yBAANyGNz JRGQ GQN NAzCBRAG
TRANVwGRyF OBE GQN yBAFRzNENz CEByNFFNFfi FNN N–P– hNOF– )27fi 28fl–
jQN OBEV BO 6 PRINA RA qD– “1(fi RAFGNwzfi RF w PwHPN]RAIwERwAG PNANEwURMwGRBA BO GQN DHwET CEBCwPwGBEfi wAz

VwTNF CBFFRxUN GQN VNAGRBANz yBAANyGRBA xNGJNNA DHwET CEBCwPwGRBA RA GQN IwyHHV wAz QwzEBARMwGRBA– jQRF
yBAANyGRBA RF IwURz wG GQN BCNEwGBE UNINU wAzfi wOGNE FBVN OBEVwU VwARCHUwGRBAFfi CEBzHyNF w FHV EHUN GQwG URATF GQN
¨EFG VBVNAG BO GQN yQREwU]Bzz DHwET FCNyGEwU OHAyGRBA “RzNAGR¨Nz wF GQN ABACNEGHExwGRIN VwFF BO GQN CEBCwPwGRAP
DHwET( GB GQN wINEwPN BO GQN CEBzHyNz QwzEBA VwFFNF JNRPQGNz xL GQN yQREwU]Bzz FywUwE DHwET OEwPVNAGwGRBA
OHAyGRBAF p )1Ξfi 17fl–
mQRUN RA hNOF– )1Ξfi 17fl GQN ywUyHUwGRBAF JNEN URVRGNz GB GQN URPQG yBAN PwHPNfi RA GQRF CwCNE GQN FGHzL BO GQN

PwHPN RAIwERwAG CEBCwPwGBE 6 RF NKGNAzNz GB w PNANERy PwHPN– uG RF FQBJA GQwG GQN FHV EHUN OBE GQN yQREwU]Bzz
FCNyGEwU OHAyGRBA CENFNAGNz RA hNOF– )1Ξfi 17fl RF RA OwyG OBEVwUUL IwURz RA wAL PwHPN– cBENBINEfi w ABINU FHV EHUN
OBE GQN DHwET FCNyGEwU OHAyGRBA wFFByRwGNz GB GQN PwHPN ¨KRAP INyGBE RA URPQG]URTN PwHPNF RF zNERINz– rRAwUULfi w
yBVCUNGN ywUyHUwGRBA BO GQN GJRFG]W yBVCBANAG BO GQN SNG yBEENUwGBE RF CENFNAGNzfi GBPNGQNE JRGQ w FHV EHUN OBE
GQN FNyBAz VBVNAG BO GQN yQREwU]NINA FCNyGEwU OHAyGRBA–
jQRF ENFNwEyQ URAN yBAANyGF GJB wFCNyGF BO gop “wAz GJB ENFNwEyQ yBVVHARGRNF( JQRyQ wEN RAGNEGJRANzfi

AwVNUL GQN FGHzL BO GQN wAwULGRy CEBCNEGRNF BO GQN DHwET wAz PUHBA CEBCwPwGBEF wAz GQN FGHzL BO QwzEBARMwGRBA
IRw FywGGNERAP CEByNFFNF JRGQ QwzEBAF RA GQN ¨AwU FGwGNF– jQRF wEGRyUN RF zNIBGNz RA CwEGRyHUwE GB GQN CEBCNEGRNF
BO GQN DHwET CEBCwPwGBEfi wAz wzzENFFNF RA w FRFGNVwGRy JwL GQN ywUyHUwGRBA BO GQN DHwAGRGRNF JQRyQ wEN ENUNIwAG
OBE QwEz FywGGNERAP CEByNFFNFfi AwVNUL GQN VBVNAGF BO GQN FCNyGEwU OHAyGRBAF wAz GQNRE PwHPN RAzNCNAzNAyN–
jQN VBGRIwGRBA xNQRAz GQRF JBET URNFfi RA CwEGfi RA GQN CBFFRxRURGL GB NKCENFF GQN SNG VwFF wF w VBVNAG BO GQN
yQREwU]Bzz DHwET FCNyGEwU OHAyGRBA RA w PNANERy PwHPN wAz ABG BAUL RA GQN URPQG]yBAN PwHPN– uA GQRF PwHPNfi
RA OwyGfi yBVCHGwGRBAF wEN yBAFRzNEwxUL VBEN RAIBUINz )0fi W.fl wAzfi GB GQN xNFG BO BHE TABJUNzPNfi wxFNAG OBE
DHwET FCNyGEwU OHAyGRBAF– eHE ENFHUGF CEBIRzN wzzRGRBAwU VBGRIwGRBA GB CHFQ OBEJwEz JRGQ GQNFN ywUyHUwGRBAF–
rHEGQNEVBENfi GQN VBVNAGF wEN wUFB RAFGEHVNAGwU GB zNGNEVRAN VwFF yBEENyGRBAF GB FNVR]RAyUHFRIN CEByNFFNF wG
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jQN yBA¨ANVNAG BO GQN FGEBAP OBEyN zRENyGUL yBAANyGF GQN CEBCwPwGRBA BO DHwETF wAz PUHBAF JRGQ GQNRE
QwzEBARMwGRBAfi AwVNUL GQNRE GEwAFVHGwGRBA RAGB VwFFRIN wAz yBUBEUNFF QwzEBAF– eA GQN BAN QwAzfi GQN CEBCNE]
GRNF BO CwEGBARy CEBCwPwGBEF RA gop ywA xN GQNBENGRywUUL RAINFGRPwGNz JRGQ GNyQARDHNF EwAPRAP OEBV yBAGRAHHV
VNGQBzF )0-0.fl GB NffiNyGRIN GQNBERNF wAz VBzNU ywUyHUwGRBAF )00-04fl wAz GB UwGGRyN ywUyHUwGRBAF )0Ω-1Ωfl– eA GQN
BGQNE QwAzfi QwEz FywGGNERAP CEByNFFNF JRGQ QwzEBAF RA GQN ¨AwU FGwGN wUUBJ BANfi wG UNwFG RA CERAyRCUNfi GB CEBxN
GQN zRFyBAGRAHRGL BO GQNFN CEBCwPwGBEF GQwATF GB GQN BCGRywU GQNBENV– uA OwyGfi wF FQBJA RA hNOF– )1Ξ-18flfi GQN
VBVNAGF BO GQN DHwET CEBCwPwGBE=F FCNyGEwU OHAyGRBAF ywA xN NKCURyRGUL yBAANyGNz GB FCNyR¨y RAGNPEwUF BO DHwET
OEwPVNAGwGRBA OHAyGRBAF “rrF( wAz OHEGQNEVBEN zRENyGUL NAGNE GQN yEBFF FNyGRBA BO yNEGwRA RAyUHFRIN QwEz FywG]
GNERAP CEByNFFNF– jQHFfi wCwEG OEBV GQNRE RAGERAFRy RAGNENFGfi HAzNEFGwAzRAP GQN wAwULGRy CEBCNEGRNF BO GQN DHwET
CEBCwPwGBE wAz BO RGF wFFByRwGNz FCNyGEwU OHAyGRBAF xNyBVNF BO CEwyGRywU ENUNIwAyN OBE GQN CQNABVNABUBPL BO
QwzEBA FGEHyGHEN wAz BO QwzEBARMwGRBA )2.fi 20fl–
uA GQRF CwCNEfi JN NUwxBEwGN BA GQN PwHPN RAIwERwAyN BO GQN FB]ywUUNz OHUUL RAyUHFRIN SNG yBEENUwGBE RAGEBzHyNz

RA hNOF– )1Ξfi 17flfi AwVNUL BO
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JQNEN ·”〈 RF GQN RAGNEwyGRAP IwyHHV FGwGN BO gopfi α GQN DHwET ¨NUzfi m0β1 wEN mRUFBA URANF GQwG NAFHEN GQN
PwHPN RAIwERwAyN BO GQN yBEENUwGBEfi wAz J RF wA NKGNEAwU INyGBE GQwG zNGNEVRANF GQN zRENyGRBA BO GQNRE CwGQFfi wF
zRFyHFFNz RA zNGwRU UwGNE– P ENCENFNAGF GQN GRVN BEzNERAP BCNEwGBE OBE GQN ¨NUzF JQNENwF P ENCENFNAGF GQN wAGR
GRVN BEzNERAP BCNEwGBE )21fi 22fl– rBE FwTN BO xENIRGL JN BVRG GQN ,wIBE RAzNK BO GQN DHwET ¨NUzF wAz BO 6– jQN
yBUBE GEwyN wINEwPNF BINE GQN RAyBVRAP DHwET yBUBE DHwAGHV AHVxNE– eAN ywA FQBJ GQwG GQN yBEENUwGRBA OHAyGRBA
RA qD– “0( RF ENUwGNz GB GQN yBEENUwGBE OBE GQN FRAPUN]QwzEBA DHwET OEwPVNAGwGRBA OHAyGRBAF wG GQN BCNEwGBE UNINUfi
xL w FHV BINE GQN ,wIBE wAz FCRA BO GQN CEBzHyNz QwzEBAF wAz wA BA]FQNUU RAGNPEwGRBA BINE GQN OBHE]VBVNAGHV
BO GQN FwVN QwzEBAF )17fl– jQHFfi 6hi“S:J( ENCENFNAGF VwGQNVwGRywUUL GQN RAyUHFRIN URVRG BO GQN QwzEBARMwGRBA
VNyQwARFV– cBENBINEfi wF NKGNAFRINUL zRFyHFFNz RA hNOF– )1Ξfi 17flfi GQN SNG yBEENUwGBE 6 ywA xN JERGGNA wF GQN
zRFyBAGRAHRGL BO GQN PwHPN]RAIwERwAG DHwET CEBCwPwGBE9
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JQNEN GQN mRUFBA URAN RF m ˆ m1m0–
jQN OBEV BO 6 PRINA RA qD– “0( zNFyERxNF GQN QwzEBARMwGRBA BO w DHwET RAGB wA HABxFNEINz SNG BO CwEGRyUNF– uG

RF ENUNIwAG GB ywUyHUwGN GQN yEBFF FNyGRBA BO CEByNFFNF JRGQ HARzNAGR¨Nz SNGF RA GQN ¨AwU FGwGNFfi OBE NKwVCUN OBE
RAyUHFRIN NUNyGEBA]CEBGBA pNNC]uANUwFGRy iywGGNERAP “pui( )18fi 20fi 2Wfi 24fl wAz BO iNVR]uAyUHFRIN NUNyGEBA]CBFRGEBA
�AARQRUwGRBA “iu�( )18fi 2Ωfi 2Ξfl– uGF NVNEPNAyN OEBV OwyGBERMwGRBA GQNBENVF RF yBAANyGNz JRGQ GQN NAzCBRAG
TRANVwGRyF OBE GQN yBAFRzNENz CEByNFFNFfi FNN N–P– hNOF– )27fi 28fl–
jQN OBEV BO 6 PRINA RA qD– “1(fi RAFGNwzfi RF w PwHPN]RAIwERwAG PNANEwURMwGRBA BO GQN DHwET CEBCwPwGBEfi wAz

VwTNF CBFFRxUN GQN VNAGRBANz yBAANyGRBA xNGJNNA DHwET CEBCwPwGRBA RA GQN IwyHHV wAz QwzEBARMwGRBA– jQRF
yBAANyGRBA RF IwURz wG GQN BCNEwGBE UNINU wAzfi wOGNE FBVN OBEVwU VwARCHUwGRBAFfi CEBzHyNF w FHV EHUN GQwG URATF GQN
¨EFG VBVNAG BO GQN yQREwU]Bzz DHwET FCNyGEwU OHAyGRBA “RzNAGR¨Nz wF GQN ABACNEGHExwGRIN VwFF BO GQN CEBCwPwGRAP
DHwET( GB GQN wINEwPN BO GQN CEBzHyNz QwzEBA VwFFNF JNRPQGNz xL GQN yQREwU]Bzz FywUwE DHwET OEwPVNAGwGRBA
OHAyGRBAF p )1Ξfi 17fl–
mQRUN RA hNOF– )1Ξfi 17fl GQN ywUyHUwGRBAF JNEN URVRGNz GB GQN URPQG yBAN PwHPNfi RA GQRF CwCNE GQN FGHzL BO GQN

PwHPN RAIwERwAG CEBCwPwGBE 6 RF NKGNAzNz GB w PNANERy PwHPN– uG RF FQBJA GQwG GQN FHV EHUN OBE GQN yQREwU]Bzz
FCNyGEwU OHAyGRBA CENFNAGNz RA hNOF– )1Ξfi 17fl RF RA OwyG OBEVwUUL IwURz RA wAL PwHPN– cBENBINEfi w ABINU FHV EHUN
OBE GQN DHwET FCNyGEwU OHAyGRBA wFFByRwGNz GB GQN PwHPN ¨KRAP INyGBE RA URPQG]URTN PwHPNF RF zNERINz– rRAwUULfi w
yBVCUNGN ywUyHUwGRBA BO GQN GJRFG]W yBVCBANAG BO GQN SNG yBEENUwGBE RF CENFNAGNzfi GBPNGQNE JRGQ w FHV EHUN OBE
GQN FNyBAz VBVNAG BO GQN yQREwU]NINA FCNyGEwU OHAyGRBA–
jQRF ENFNwEyQ URAN yBAANyGF GJB wFCNyGF BO gop “wAz GJB ENFNwEyQ yBVVHARGRNF( JQRyQ wEN RAGNEGJRANzfi

AwVNUL GQN FGHzL BO GQN wAwULGRy CEBCNEGRNF BO GQN DHwET wAz PUHBA CEBCwPwGBEF wAz GQN FGHzL BO QwzEBARMwGRBA
IRw FywGGNERAP CEByNFFNF JRGQ QwzEBAF RA GQN ¨AwU FGwGNF– jQRF wEGRyUN RF zNIBGNz RA CwEGRyHUwE GB GQN CEBCNEGRNF
BO GQN DHwET CEBCwPwGBEfi wAz wzzENFFNF RA w FRFGNVwGRy JwL GQN ywUyHUwGRBA BO GQN DHwAGRGRNF JQRyQ wEN ENUNIwAG
OBE QwEz FywGGNERAP CEByNFFNFfi AwVNUL GQN VBVNAGF BO GQN FCNyGEwU OHAyGRBAF wAz GQNRE PwHPN RAzNCNAzNAyN–
jQN VBGRIwGRBA xNQRAz GQRF JBET URNFfi RA CwEGfi RA GQN CBFFRxRURGL GB NKCENFF GQN SNG VwFF wF w VBVNAG BO GQN
yQREwU]Bzz DHwET FCNyGEwU OHAyGRBA RA w PNANERy PwHPN wAz ABG BAUL RA GQN URPQG]yBAN PwHPN– uA GQRF PwHPNfi
RA OwyGfi yBVCHGwGRBAF wEN yBAFRzNEwxUL VBEN RAIBUINz )0fi W.fl wAzfi GB GQN xNFG BO BHE TABJUNzPNfi wxFNAG OBE
DHwET FCNyGEwU OHAyGRBAF– eHE ENFHUGF CEBIRzN wzzRGRBAwU VBGRIwGRBA GB CHFQ OBEJwEz JRGQ GQNFN ywUyHUwGRBAF–
rHEGQNEVBENfi GQN VBVNAGF wEN wUFB RAFGEHVNAGwU GB zNGNEVRAN VwFF yBEENyGRBAF GB FNVR]RAyUHFRIN CEByNFFNF wG
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Inclusive jet correlator

! Par+onic pic+ure: gauge invarian, dressed quark correla,or

– Quarks are no+ asymp+o/c s+a+es

– No+e color averaging

! Hadronic pic+ure: “inclusive je,” correla,or

– Hadroniza/on produc+s pass +he cu+

– In+erpre+ as (/me-ordered) gauge invarian+ quark-+o-je+ ampli+ude2

– No measured hadrons→ no je+ cone / energy

! Can s+udy ?ragmen,aton w/o ?ragmen,s

– In par/cular, dynamical mass genera/on & χ–symme+ry breaking

Inclusive q→ X “inclusive je+” correla+or
AA, Signori, 1903.04458

Sterman, NPB 281 (‘87)

q Hadronization of a quark into an
unobserved jet of particles 
(fully inclusive)

q Gauge invariant generalization of the
fully dressed quark propagator



Gauge invariant quark propagator

q Can be given a convolution representation

where

2

5. ↵ = 1 in any gauge using di↵erent order of integration ! same method will allow calculation of ⌧j

6. ⇣ = Mj +O(1/k�)
lcg
= Mj =) Gauge invariance implies O(1/k�) = 0

7. ! = µ
2
j + k

2
? + ⌧

2
j +O(1/k�) =) Gauge invariance implies O(1/k�) = 0

I. INTRODUCTION

We elaborate on the gauge invariance of the fully inclusive jet correlator (or, the gauge-invariant quark
propagator) introduced in Ref. [1, 2].

Discuss in a convincing way the motivation for the following calculations (it’s more convenient to carry out
calculations in a certain gauge rather than other ones, etc. ... )

II. GAUGE INVARIANT QUARK PROPAGATOR AND JET CORRELATOR

We start by considering the (fully inclusive) jet correlator defined in Refs. [1, 2] as a convolution of a quark
bilinear operator and the Fourier transform of a Wilson line connecting the quark fields:

⌅ij(k;w) = Disc

Z
d
4
p
Trc
Nc

h⌦|ieSij(p; v)fW (k � p;w, v)|⌦i, (2)

where

ieSij(p, v) =

Z
d
4
⇠

(2⇡)4
e
i⇠·p T  i(⇠) ̄j(0), (3)

fW (k � p; w, v) =

Z
d
4
⇠

(2⇡)4
e
i⇠·(k�p)

W (0, ⇠;w, v). (4)

In the definition (2), k denotes the quark 4-momentum and |⌦i is the interacting vacuum state. The 4-vector
w defines the direction of the Wilson line, which is introduced in order to guarantee the gauge invariance of the
correlator, and will further be discussed below. One then easily sees that ⌅ provides one with a gauge-invariant
definition of the usual quark correlator h⌦|ieS|⌦i. The quark operator eS and the Wilson line W may furthermore
depend on the 4-vector v defining an axial gauge; in non-axial gauges v can still formally be used as a label
reminding one of the dependence of these two quantities on the gauge fixing condition.

As shown in Refs. [1, 2], this convolution representation is convenient because it allows a direct and important
connection between the jet correlator and the spectral representation of the (gauge-variant) quark two-point
correlation function, that we be exploit and further studied below. The quark spectral representation has been
extensively explored in recent years since its properties and analytical structure can shed light on confinement [3–
7]. Spectral properties of gauge invariant quark correlators have also been discussed in [8]. It is finally worth
emphasizing that the jet correlator itself is gauge invariant, whereas the quark operator eS is not, and therefore
the LHS of Eq. (2) is independent of v. Building on Refs. [1, 2], we will exploit this fact to derive novel sum
rules for the quark spectral functions in Section III and IV.

To proceed, we consider a light-cone coordinate frame defined by an orthogonal basis of 4-vectors n+,n?, n�,
with the light-cone unit vectors satisfying n

2
± = 0, n+ · n� = 1, and the 2-dimensional transverse basis vectors

n? = {n?,1, n?,2} satisfying the Euclidean normalization condition n
2
?,i = �1. We then represent a generic

4-vector a = [a�, a+,a?] in terms of its light-cone coordinates a⌥ = a ·n± and a? = a ·n?. We then boost the

quark to large momentum in the light-cone minus direction – so that its components satisfy k
� � |~k2?| � k

+

with |~k2?| ⇠ O(⇤) and k
+
, k

2 ⇠ O(⇤2), and ⇤ being a power counting scale of order of the nonperturbative
QCD scale ⇤QCD – and consider the gauge invariant correlator integrated over the subdominant k+ component
of the quark momentum:

Jij(k
�
,~k?;n+) ⌘

1

2

Z
dk

+⌅ij(k;n+), (5)

which phenomenologically describes the inclusive hadronization of a high-energy quark into a jet of particles
aligned along the quark direction of motion [2]. Note that, in the definition of the “inclusive jet correlator”
J , we follow [2] and choose the Wilson line to lie in the plus light-cone w = n+ direction. The full shape
of the considered Wilson line is discussed in detail in that reference, but only its projection on the light-cone
plus axis and the transverse plane matter in the calculations to be performed in this paper. Namely we will
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FHx]UNwzRAP GJRFG wAz GB RAINFGRPwGN QRPQNE]GJRFG OEwPVNAGwGRBA OHAyGRBAF )2.fi W0fl– jQRF yBAANyGRBA RF GRVNUL
PRINA GQN PEBJRAP RAGNENFG OBE QRPQNE]GJRFG NffiNyGF OEBV GQN CBRAG BO IRNJ BO CNEGHExwGRBA GQNBEL )W1-WWflfi GQN
yHEENAG wAz OHGHEN NKCNERVNAGwU VNwFHENVNAGF )2Ωfi 2Ξfi W4-4.fl wAz GQN ENyNAG CQNABVNABUBPRywU wAwULFNF RA GQRF
zRENyGRBA )18fi 2Ωfi 2Ξfi 40fl–
jQN CwCNE RF BEPwARMNz wF OBUUBJF– uA iNy– uu GQN pREwy FGEHyGHEN BO GQN PwHPN]RAIwERwAG DHwET CEBCwPwGBE RF

zRFyHFFNzfi GBPNGQNE JRGQ GQN ENUwGNz yBN3yRNAG OHAyGRBAF– iNy– uuu ONwGHENF GQN FCNyGEwU ENCENFNAGwGRBA OBE GQN
CEBCwPwGBEfi GwTRAP RAGB wyyBHAG wUFB GQN yBAGERxHGRBA OEBV w URPQG]URTN PwHPN]¨KRAP INyGBE I– iNy– ul CENFNAGF w
yBVCwERFBA xNGJNNA GQN NKCENFFRBAF OBE GQN yBN3yRNAG OHAyGRBAF BxGwRANz RA GQN URPQG]yBAN PwHPN )1Ξfi 17fl JRGQ
GQBFN BxGwRANz RA w PNANERy PwHPN– uA iNy– l GQN ENFHUGF wEN FHVVwERMNz–

uu- s�ksD udl�hu�dj gk�ha fhef�s�jeh

�F FQBJA RA hNOF– )1Ξfi 17flfi GQN PwHPN RAIwERwAG DHwET CEBCwPwGBE “1( ywA xN OHEGQNE ENJERGGNA wF w yBAIBUHGRBA
BO w DHwET xRURANwE BCNEwGBE wAz GQN rBHERNE GEwAFOBEV BO w mRUFBA URAN yBAANyGRAP GQN DHwET ¨NUzF9
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uA GQN zN¨ARGRBA “2(fi S zNABGNF GQN DHwET W]VBVNAGHVfi ·”〈 RF GQN RAGNEwyGRAP IwyHHV FGwGNfi wAz GQN GRUzN FRPA
VwETF OHAyGRBAF RA GQN VBVNAGHV FCwyN– jQN W]INyGBE J zN¨ANF GQN zRENyGRBA BO GQN mRUFBA URAN )1Ξfi 17flfi JQRyQ
RF RAGEBzHyNz RA BEzNE GB PHwEwAGNN GQN PwHPN RAIwERwAyN BO GQN yBEENUwGBEfi wAz JRUU OHEGQNE xN zRFyHFFNz xNUBJ–
eAN GQNA NwFRUL FNNF GQwG 6 CEBIRzNF BAN JRGQ w PwHPN]RAIwERwAG zN¨ARGRBA BO GQN GJB]CBRAG DHwET yBEENUwGBE
!”·g∫i·”〈– jQN DHwET BCNEwGBE g∫i wAz GQN mRUFBA URAN m̃ VwL OHEGQNEVBEN zNCNAz BA GQN W]INyGBE I zN¨ARAP
wA wKRwU PwHPN: RA ABA]wKRwU PwHPNF I ywA FGRUU OBEVwUUL xN HFNz wF w UwxNU ENVRAzRAP BAN BO GQN zNCNAzNAyN BO
GQNFN GJB DHwAGRGRNF BA GQN PwHPN ¨KRAP yBAzRGRBA–
jQN yBAIBUHGRBA ENCENFNAGwGRBA RA qD– “2( RF yBAINARNAG xNywHFN RG wUUBJF w zRENyG yBAANyGRBA xNGJNNA GQN

PwHPN RAIwERwAG DHwET yBEENUwGBE 6 wAz GQN FCNyGEwU ENCENFNAGwGRBA BO GQN PwHPN]zNCNAzNAG DHwET CEBCwPwGBEfi
GQwG JRUU xN NKCUBRGNz wAz OHEGQNE FGHzRNz xNUBJ– jQN DHwET FCNyGEwU ENCENFNAGwGRBA QwF xNNA NKGNAFRINUL
NKCUBENz RA ENyNAG LNwEF FRAyN RGF CEBCNEGRNF wAz wAwULGRywU FGEHyGHEN ywA CBFFRxUL FQNz URPQG BA yBA¨ANVNAG )4fi
0Wfi 04fi 41-44fl– iCNyGEwU CEBCNEGRNF BO PwHPN RAIwERwAG DHwET yBEENUwGBEF QwIN wUFB xNNA zRFyHFFNz RA )4Ωfl xNFRzN
GQN wOBENVNAGRBANz hNOF– )1Ξfi 17fl– uG RF wUFB JBEGQ NVCQwFRMRAP BAyN VBEN GQwG GQN SNG yBEENUwGBE 6 RF RA RGFNUO

RF PwHPN RAIwERwAGfi JQNENwF GQN DHwET BCNEwGBE g∫i RF ABGfi wAz GQNENOBEN GQN bti BO qD– “2( RF RAzNCNAzNAG BO I–
nHRUzRAP BA hNOF– )1Ξfi 17flfi JN JRUU NKCUBRG GQRF OwyG GB zNERIN ABINU FHV EHUNF OBE GQN DHwET FCNyGEwU OHAyGRBAF RA
iNy– uuu wAz ul–
rBUUBJRAP hNOF– )1Ξfi 17flfi JN JBET RA URPQG]yBAN yBBEzRAwGNF “FNN �CCNAzRK �( wAz xBBFG GQN DHwET GB UwEPN

VBVNAGHV RA GQN URPQG]yBAN VRAHF zRENyGRBA FB GQwG RGF yBVCBANAGF FwGRFOL S→ | ·ap · | S[fi JQNEN ·ap · − e“[(
wAz S[φ S1 − e“[1(fi wAz [ RF w CBJNE yBHAGRAP FywUN BO BEzNE BO GQN ABACNEGHExwGRIN gop FywUN [goC– mN
ywA GQNA yBAFRzNE GQN PwHPN]RAIwERwAG yBEENUwGBE RAGNPEwGNz BINE GQN FHxzBVRAwAG S[ yBVCBANAG BO GQN DHwET
VBVNAGHV 9
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JQRyQ CQNABVNABUBPRywUUL zNFyERxNF GQN RAyUHFRIN QwzEBARMwGRBA BO w QRPQ]NANEPL DHwET RAGB w SNG BO CwEGRyUNF
wUBAP GQN DHwET zRENyGRBA BO VBGRBAfi wAz JN ywUU ˜RAyUHFRIN SNG yBEENUwGBE5– uG RF CENyRFNUL GQN RAGNPEwGRBA BINE
S[ GQwG wUUBJF BAN GB zNERIN FHV EHUNF OBE GQN DHwET FCNyGEwU OHAyGRBAF– dBGN GQwGfi RA GQN zN¨ARGRBA BO v fi JN
OBUUBJ hNO– )17fl wAz yQBBFN GQN mRUFBA URAN GB URN RA GQN CUHF URPQG]yBAN J ˆ A[ zRENyGRBA– jQN OHUU FQwCN BO GQN
yBAFRzNENz mRUFBA URAN RF zRFyHFFNz RA zNGwRU RA GQN VNAGRBANz ENONENAyNfi xHG BAUL RGF CEBSNyGRBA BA GQN URPQG]yBAN
CUHF wKRF wAz GQN GEwAFINEFN CUwAN VwGGNE RA GQN ywUyHUwGRBAF GB xN CNEOBEVNz RA GQRF CwCNE– dwVNUL JN JRUU
BAUL ANNz GB yBAFRzNE GQN FRVCUNE micC“ω[φ ∂p ( → m “.→φ ω[φ ∂p ( GEwAFINEFN]CBFRGRBA]zNCNAzNAG mRUFBA URAN
wAz GQN msnTT“ω[( →m “.→φ ω[φ.j ( URPQG]yBAN mRUFBA URANFfi zN¨ANz wF

micC“ω
[φ ∂p ( ˆ T�� ).→φ .[φ.j : .→φ±[φ.j flT�� ).→φ±[φ.j : .

→φ±[φ ∂p flT�� ).→φ±[φ ∂p : .
→φ ω[φ ∂p fl “Ξ(

msnTT“ω
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FHx]UNwzRAP GJRFG wAz GB RAINFGRPwGN QRPQNE]GJRFG OEwPVNAGwGRBA OHAyGRBAF )2.fi W0fl– jQRF yBAANyGRBA RF GRVNUL
PRINA GQN PEBJRAP RAGNENFG OBE QRPQNE]GJRFG NffiNyGF OEBV GQN CBRAG BO IRNJ BO CNEGHExwGRBA GQNBEL )W1-WWflfi GQN
yHEENAG wAz OHGHEN NKCNERVNAGwU VNwFHENVNAGF )2Ωfi 2Ξfi W4-4.fl wAz GQN ENyNAG CQNABVNABUBPRywU wAwULFNF RA GQRF
zRENyGRBA )18fi 2Ωfi 2Ξfi 40fl–
jQN CwCNE RF BEPwARMNz wF OBUUBJF– uA iNy– uu GQN pREwy FGEHyGHEN BO GQN PwHPN]RAIwERwAG DHwET CEBCwPwGBE RF

zRFyHFFNzfi GBPNGQNE JRGQ GQN ENUwGNz yBN3yRNAG OHAyGRBAF– iNy– uuu ONwGHENF GQN FCNyGEwU ENCENFNAGwGRBA OBE GQN
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I. INTRODUCTION

We elaborate on the gauge invariance of the fully inclusive jet correlator (or, the gauge-invariant quark
propagator) introduced in Ref. [1, 2].

Discuss in a convincing way the motivation for the following calculations (it’s more convenient to carry out
calculations in a certain gauge rather than other ones, etc. ... )

II. GAUGE INVARIANT QUARK PROPAGATOR AND JET CORRELATOR

We start by considering the (fully inclusive) jet correlator defined in Refs. [1, 2] as a convolution of a quark
bilinear operator and the Fourier transform of a Wilson line connecting the quark fields:

⌅ij(k;w) = Disc

Z
d
4
p
Trc
Nc

h⌦|ieSij(p; v)fW (k � p;w, v)|⌦i, (2)

where

ieSij(p, v) =

Z
d
4
⇠

(2⇡)4
e
i⇠·p T  i(⇠) ̄j(0), (3)

fW (k � p; w, v) =

Z
d
4
⇠

(2⇡)4
e
i⇠·(k�p)

W (0, ⇠;w, v). (4)

In the definition (2), k denotes the quark 4-momentum and |⌦i is the interacting vacuum state. The 4-vector
w defines the direction of the Wilson line, which is introduced in order to guarantee the gauge invariance of the
correlator, and will further be discussed below. One then easily sees that ⌅ provides one with a gauge-invariant
definition of the usual quark correlator h⌦|ieS|⌦i. The quark operator eS and the Wilson line W may furthermore
depend on the 4-vector v defining an axial gauge; in non-axial gauges v can still formally be used as a label
reminding one of the dependence of these two quantities on the gauge fixing condition.

As shown in Refs. [1, 2], this convolution representation is convenient because it allows a direct and important
connection between the jet correlator and the spectral representation of the (gauge-variant) quark two-point
correlation function, that we be exploit and further studied below. The quark spectral representation has been
extensively explored in recent years since its properties and analytical structure can shed light on confinement [3–
7]. Spectral properties of gauge invariant quark correlators have also been discussed in [8]. It is finally worth
emphasizing that the jet correlator itself is gauge invariant, whereas the quark operator eS is not, and therefore
the LHS of Eq. (2) is independent of v. Building on Refs. [1, 2], we will exploit this fact to derive novel sum
rules for the quark spectral functions in Section III and IV.

To proceed, we consider a light-cone coordinate frame defined by an orthogonal basis of 4-vectors n+,n?, n�,
with the light-cone unit vectors satisfying n

2
± = 0, n+ · n� = 1, and the 2-dimensional transverse basis vectors

n? = {n?,1, n?,2} satisfying the Euclidean normalization condition n
2
?,i = �1. We then represent a generic

4-vector a = [a�, a+,a?] in terms of its light-cone coordinates a⌥ = a ·n± and a? = a ·n?. We then boost the

quark to large momentum in the light-cone minus direction – so that its components satisfy k
� � |~k2?| � k

+

with |~k2?| ⇠ O(⇤) and k
+
, k

2 ⇠ O(⇤2), and ⇤ being a power counting scale of order of the nonperturbative
QCD scale ⇤QCD – and consider the gauge invariant correlator integrated over the subdominant k+ component
of the quark momentum:

Jij(k
�
,~k?;n+) ⌘

1

2

Z
dk

+⌅ij(k;n+), (5)

which phenomenologically describes the inclusive hadronization of a high-energy quark into a jet of particles
aligned along the quark direction of motion [2]. Note that, in the definition of the “inclusive jet correlator”
J , we follow [2] and choose the Wilson line to lie in the plus light-cone w = n+ direction. The full shape
of the considered Wilson line is discussed in detail in that reference, but only its projection on the light-cone
plus axis and the transverse plane matter in the calculations to be performed in this paper. Namely we will

3

only need to consider the simpler WTMD ⌘ W (0�, ⇠+, ⇠?) transverse-position-dependent Wilson line and the
Wcoll ⌘ W (0�, ⇠+,0?) light-cone Wilson lines

WTMD(⇠
+
, ⇠?) = Un+ [0

�
, 0+,0?; 0�,1+

,0?]Un? [0�,1+
,0?; 0�,1+

, ⇠?]Un+ [0
�
,1+

, ⇠?; 0�, ⇠+, ⇠?] (6)

Wcoll(⇠
+) = Un+ [0

�
, 0+,0?; 0�, ⇠+,0?] , (7)

where Uv[a; b] is a straight Wilson line from a to b along the v direction. One recognizes, respectively, the
staple Wilson line used in TMD factorization theorems, and the light-cone Wilson line used in CF factorization
theorems. With these definitions, the integrated correlator (5) can be used in perturbative calculations of
inclusive DIS and semi-inclusive electron-positron cross section [9–11] coupling, respectively, to the proton
transversity distribution and the polarized ⇤ hadron fragmentation function. In these processes, the “inclusive
jet correlator”J is used instead of the free quark propagator to describe the hadronization of a scattered quark
in the so-called end-point kinematics of the process, where the invariant mass of the final state is limited, and
the produced hadrons are kinematically constrained into a narrow – yet unobserved – jet of particles along the
quark’s direction of motion, thus earning its name.

With the strongly ordered k
� � |k2

?| � k
+ momentum components, one can give the inclusive jet correlator

(5) a twist decomposition controlled by the power counting scale ⇤ [2], namely,
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Notice that we did not include T-odd structures in the decomposition Eq. (??) since these are not allowed in a
fragmentation process, as argued in Ref. [2].

The ↵(k�), ⇣(k�) and !(k�,k2
?) are, respectively, the twist-2, twist-3 and twist-4 coe�cients of the jet

correlator, and can be obtained by projecting Eq. (5) onto suitable Dirac structures. Denoting the projection
of J onto a generic Dirac matrix � by
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We will discuss the calculation of these coe�cients in detail later, but can already compare the quark jet
correlator (8) to the free propagator of an on-shell quark of mass m,

/k +m = k
�
�
+ + /k? +mI+ m

2 + k2
?

2k�
�
�
. (13)

Apart for a trivial rescaling factor [2], we can interpret the twist-3 coe�cient as a gauge-invariant nonper-
turbative generalization of the quark’s current mass, m ! ⇤⇣, and the twist-4 coe�cient a gauge-invariant
nonperturbative generalization of the quark;s mass shell, m2 + k2

? ! ⇤2
!.

III. LIGHT-CONE SPECTRAL FUNCTION

The jet correlator ⌅ is by definition gauge invariant, contrary to the quark operator iS̃ appearing in Eq.(2),
which will depend on the gauge choice. This has been made explicit with the inclusion of a 4-vector dependence
defining an axial gauge in the operator iS̃. Let v be a gauge-fixing vector defining an axial gauge. The 4-vector
v can in principle be spacelike, timelike or lightlike, as long as it satisfies the axial gauge condition:

v ·A = 0. (14)

For our puposes, it su�ces to consider the light-like axial gauge, v2 = 0. In this case, the most general form of
the quark bilinear is given by:

ieSij(p) ⌘ ieSij(p, v) = ŝ3(p
2
, p · v)/pij +

p
p2ŝ1(p

2
, p · v) Iij + ŝ0(p

2
, p · v)/vij , (15)

(axial gauges)



Gauge invariant quark propagator

q Can be given a convolution representation

q Decomposition of the quark bilinear operator

2

5. ↵ = 1 in any gauge using di↵erent order of integration ! same method will allow calculation of ⌧j

6. ⇣ = Mj +O(1/k�)
lcg
= Mj =) Gauge invariance implies O(1/k�) = 0

7. ! = µ
2
j + k

2
? + ⌧

2
j +O(1/k�) =) Gauge invariance implies O(1/k�) = 0

I. INTRODUCTION

We elaborate on the gauge invariance of the fully inclusive jet correlator (or, the gauge-invariant quark
propagator) introduced in Ref. [1, 2].

Discuss in a convincing way the motivation for the following calculations (it’s more convenient to carry out
calculations in a certain gauge rather than other ones, etc. ... )

II. GAUGE INVARIANT QUARK PROPAGATOR AND JET CORRELATOR

We start by considering the (fully inclusive) jet correlator defined in Refs. [1, 2] as a convolution of a quark
bilinear operator and the Fourier transform of a Wilson line connecting the quark fields:

⌅ij(k;w) = Disc

Z
d
4
p
Trc
Nc

h⌦|ieSij(p; v)fW (k � p;w, v)|⌦i, (2)

where

ieSij(p, v) =

Z
d
4
⇠

(2⇡)4
e
i⇠·p T  i(⇠) ̄j(0), (3)

fW (k � p; w, v) =

Z
d
4
⇠

(2⇡)4
e
i⇠·(k�p)

W (0, ⇠;w, v). (4)

In the definition (2), k denotes the quark 4-momentum and |⌦i is the interacting vacuum state. The 4-vector
w defines the direction of the Wilson line, which is introduced in order to guarantee the gauge invariance of the
correlator, and will further be discussed below. One then easily sees that ⌅ provides one with a gauge-invariant
definition of the usual quark correlator h⌦|ieS|⌦i. The quark operator eS and the Wilson line W may furthermore
depend on the 4-vector v defining an axial gauge; in non-axial gauges v can still formally be used as a label
reminding one of the dependence of these two quantities on the gauge fixing condition.

As shown in Refs. [1, 2], this convolution representation is convenient because it allows a direct and important
connection between the jet correlator and the spectral representation of the (gauge-variant) quark two-point
correlation function, that we be exploit and further studied below. The quark spectral representation has been
extensively explored in recent years since its properties and analytical structure can shed light on confinement [3–
7]. Spectral properties of gauge invariant quark correlators have also been discussed in [8]. It is finally worth
emphasizing that the jet correlator itself is gauge invariant, whereas the quark operator eS is not, and therefore
the LHS of Eq. (2) is independent of v. Building on Refs. [1, 2], we will exploit this fact to derive novel sum
rules for the quark spectral functions in Section III and IV.

To proceed, we consider a light-cone coordinate frame defined by an orthogonal basis of 4-vectors n+,n?, n�,
with the light-cone unit vectors satisfying n

2
± = 0, n+ · n� = 1, and the 2-dimensional transverse basis vectors

n? = {n?,1, n?,2} satisfying the Euclidean normalization condition n
2
?,i = �1. We then represent a generic

4-vector a = [a�, a+,a?] in terms of its light-cone coordinates a⌥ = a ·n± and a? = a ·n?. We then boost the

quark to large momentum in the light-cone minus direction – so that its components satisfy k
� � |~k2?| � k

+

with |~k2?| ⇠ O(⇤) and k
+
, k

2 ⇠ O(⇤2), and ⇤ being a power counting scale of order of the nonperturbative
QCD scale ⇤QCD – and consider the gauge invariant correlator integrated over the subdominant k+ component
of the quark momentum:

Jij(k
�
,~k?;n+) ⌘

1

2

Z
dk

+⌅ij(k;n+), (5)

which phenomenologically describes the inclusive hadronization of a high-energy quark into a jet of particles
aligned along the quark direction of motion [2]. Note that, in the definition of the “inclusive jet correlator”
J , we follow [2] and choose the Wilson line to lie in the plus light-cone w = n+ direction. The full shape
of the considered Wilson line is discussed in detail in that reference, but only its projection on the light-cone
plus axis and the transverse plane matter in the calculations to be performed in this paper. Namely we will

3

only need to consider the simpler WTMD ⌘ W (0�, ⇠+, ⇠?) transverse-position-dependent Wilson line and the
Wcoll ⌘ W (0�, ⇠+,0?) light-cone Wilson lines

WTMD(⇠
+
, ⇠?) = Un+ [0

�
, 0+,0?; 0�,1+

,0?]Un? [0�,1+
,0?; 0�,1+

, ⇠?]Un+ [0
�
,1+

, ⇠?; 0�, ⇠+, ⇠?] (6)

Wcoll(⇠
+) = Un+ [0

�
, 0+,0?; 0�, ⇠+,0?] , (7)

where Uv[a; b] is a straight Wilson line from a to b along the v direction. One recognizes, respectively, the
staple Wilson line used in TMD factorization theorems, and the light-cone Wilson line used in CF factorization
theorems. With these definitions, the integrated correlator (5) can be used in perturbative calculations of
inclusive DIS and semi-inclusive electron-positron cross section [9–11] coupling, respectively, to the proton
transversity distribution and the polarized ⇤ hadron fragmentation function. In these processes, the “inclusive
jet correlator”J is used instead of the free quark propagator to describe the hadronization of a scattered quark
in the so-called end-point kinematics of the process, where the invariant mass of the final state is limited, and
the produced hadrons are kinematically constrained into a narrow – yet unobserved – jet of particles along the
quark’s direction of motion, thus earning its name.

With the strongly ordered k
� � |k2

?| � k
+ momentum components, one can give the inclusive jet correlator

(5) a twist decomposition controlled by the power counting scale ⇤ [2], namely,

J(k�,k?;n+) =
1

2
↵(k�)�+ +

⇤

k�


⇣(k�)I+ ↵(k�)

/k?
⇤

�
+

⇤2

2(k�)2
!(k�,k2

?)��
. (8)

Notice that we did not include T-odd structures in the decomposition Eq. (??) since these are not allowed in a
fragmentation process, as argued in Ref. [2].

The ↵(k�), ⇣(k�) and !(k�,k2
?) are, respectively, the twist-2, twist-3 and twist-4 coe�cients of the jet

correlator, and can be obtained by projecting Eq. (5) onto suitable Dirac structures. Denoting the projection
of J onto a generic Dirac matrix � by

J
[�] ⌘ Tr


J
�

2

�
=

1

2

Z
dk

+Tr


⌅
�

2

�
, (9)

one finds:

↵(k�) = J
[��] =

1

2

Z
dk

+Tr


⌅
�
�

2

�
, (10)

⇣(k�) =
k
�

⇤
J
[I] =

k
�

⇤

1

2

Z
dk

+Tr


⌅
I
2

�
, (11)

!(k�,k2
?) =

✓
k
�

⇤

◆2

J
[�+] =

✓
k
�

⇤

◆2
1

2

Z
dk

+Tr


⌅
�
+

2

�
. (12)

We will discuss the calculation of these coe�cients in detail later, but can already compare the quark jet
correlator (8) to the free propagator of an on-shell quark of mass m,

/k +m = k
�
�
+ + /k? +mI+ m

2 + k2
?

2k�
�
�
. (13)

Apart for a trivial rescaling factor [2], we can interpret the twist-3 coe�cient as a gauge-invariant nonper-
turbative generalization of the quark’s current mass, m ! ⇤⇣, and the twist-4 coe�cient a gauge-invariant
nonperturbative generalization of the quark;s mass shell, m2 + k2

? ! ⇤2
!.

III. LIGHT-CONE SPECTRAL FUNCTION

The jet correlator ⌅ is by definition gauge invariant, contrary to the quark operator iS̃ appearing in Eq.(2),
which will depend on the gauge choice. This has been made explicit with the inclusion of a 4-vector dependence
defining an axial gauge in the operator iS̃. Let v be a gauge-fixing vector defining an axial gauge. The 4-vector
v can in principle be spacelike, timelike or lightlike, as long as it satisfies the axial gauge condition:

v ·A = 0. (14)

For our puposes, it su�ces to consider the light-like axial gauge, v2 = 0. In this case, the most general form of
the quark bilinear is given by:
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p2ŝ1(p

2
, p · v) Iij + ŝ0(p
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4

[g.f.t.]. [AA: In fact, there is no g.f.t: we subsumed this into ⌧
2
j , see Section IV.)] The ✓(k�) factor

in front of the curly brackets appears because the discontinuity of the jet correlator is summing over all real
particles production processes in the final state [2], and the Mj and K

2
j factors are k independent because

of the Lorentz covariance and gauge invariance of the jet correlator ⌅, as we will also explicitly prove later.
Comparing the quark propagator (12) to the jet function (13), we can thus interpret the twist-3 coe�cient as
a gauge-invariant nonperturbative generalization of the quark’s current mass,

m ! Mj , (15)

and the twist-4 coe�cient as a gauge-invariant nonperturbative generalization of the quark’s mass shell,

m
2 ! K

2
j . (16)

[AS: I’m not sure about the comparisons defined with the !] [AA: I fixed that by directly

comparing quark masses and jet masses. It should be clear, now.] It is worth emphasizing the Mj

and K
2
j are gauge invariant quantities, although the separation of the latter into invariant mass produced at

fragmentation and transverse broadening contribution depends on the choice of gauge.

III. LIGHT-CONE SPECTRAL FUNCTION

The jet correlator ⌅ is by definition gauge invariant, contrary to the quark operator iS̃ appearing in Eq.(1),
which will depend on the gauge choice. This has been made explicit with the inclusion of a 4-vector dependence
defining an axial gauge in the operator iS̃. Let v be a gauge-fixing vector defining an axial gauge. The 4-vector
v can in principle be spacelike, timelike or lightlike, as long as it satisfies the axial gauge condition:

v ·A = 0. (17)

For our puposes, it su�ces to consider the light-like axial gauge, v2 = 0. In this case, the most general form of
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where ŝi(p2, p · v) are spectral operators that are functions of all Lorentz scalars that can be built out of the
4-vectors p and v. Owing to the rescaling invariance of v and the fact that v

2 = 0, in reality the first two
operators are only functions of p2:
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Thus, the quark operator in the light-cone gauge has the restricted form (omitting the Dirac indices):
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where the presence of ✓(p�) ensures that only positive-energy states appear in the Hamiltonian spectrum
and ✓(p2) guarantees that the quark field excitations vanish out of the light-cone. One can derive a spectral
representation for the quark propagator in the light-cone gauge, where each of the operators ŝi(p2) are related
to the spectral functions ⇢i(�2) by
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p2ŝ1(p

2
, p · v) Iij + ŝ0(p
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where the presence of ✓(p�) ensures that only positive-energy states appear in the Hamiltonian spectrum
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RA OEBAG BO GQN yHEUL xEwyTNGF wCCNwEF xNywHFN GQN zRFyBAGRAHRGL BO GQN SNG yBEENUwGBE RF FHVVRAP BINE wUU ENwU
CwEGRyUNF CEBzHyGRBA CEByNFFNF RA GQN ¨AwU FGwGN )17flfi wAz GQN yi wAz a1

i OwyGBEF wEN S]RAzNCNAzNAG xNywHFN
BO GQN bBENAGM yBIwERwAyN wAz PwHPN RAIwERwAyN BO GQN SNG yBEENUwGBE 6fi wF JN JRUU wUFB NKCURyRGUL CEBIN UwGNE–
oBVCwERAP GQN OENN DHwET CEBCwPwGBE “04( GB GQN SNG yBEENUwGBE “0Ω(fi JN ywA GQHF RAGNECENG GQN GJRFG]2 �“0.S→(
yBN3yRNAG wF w PwHPN]RAIwERwAG ABACNEGHExwGRIN PNANEwURMwGRBA BO GQN DHwET=F yHEENAG VwFFfi

U�yi φ “07(

JRGQyi FHVVRAP BINE GQN VwFFNF BO GQN DHwET QwzEBARMwGRB CEBzHyGF )1Ξfi 17fl– jQN GJRFG]W�“0.“S→(1( yBN3yRNAG
ywA xN FRVRUwEUL RAGNECENGNz wF w PwHPN]RAIwERwAG ABACNEGHExwGRIN PNANEwURMwGRBA BO GQN DHwET=F RAIwERwAG VwFFfi
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yQBRyN BO PwHPN “FNN iNy– ul(– �F JRGQ wAL VHUGRCwEGRyUN FGwGNfi a1
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GQN W]INyGBE W]INyGBE I GQwG zN¨ANF GQN wKRwU PwHPN yBAzRGRBA
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jQN INyGBE I ywA RA CERAyRCUN xN FCwyNURTNfi GRVNURTN BE URPQGURTN– rBE BHE CHCBFNFfi RG FH3yNF GB yBAFRzNE GQN
URPQG]URTN wKRwU PwHPNfi
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JQNEN GQN CENFNAyN BO π“n→( NAFHENF GQwG BAUL CBFRGRIN]NANEPL FGwGNF wCCNwE RA GQN twVRUGBARwA FCNyGEHV wAz
π“n1( PHwEwAGNNF GQwG GQN DHwET ¨NUz NKyRGwGRBAF IwARFQ BHG BO GQN URPQG]yBAN–

(lightlike axial gauges)
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[g.f.t.]. [AA: In fact, there is no g.f.t: we subsumed this into ⌧
2
j , see Section IV.)] The ✓(k�) factor

in front of the curly brackets appears because the discontinuity of the jet correlator is summing over all real
particles production processes in the final state [2], and the Mj and K

2
j factors are k independent because

of the Lorentz covariance and gauge invariance of the jet correlator ⌅, as we will also explicitly prove later.
Comparing the quark propagator (12) to the jet function (13), we can thus interpret the twist-3 coe�cient as
a gauge-invariant nonperturbative generalization of the quark’s current mass,

m ! Mj , (15)

and the twist-4 coe�cient as a gauge-invariant nonperturbative generalization of the quark’s mass shell,

m
2 ! K

2
j . (16)

[AS: I’m not sure about the comparisons defined with the !] [AA: I fixed that by directly

comparing quark masses and jet masses. It should be clear, now.] It is worth emphasizing the Mj

and K
2
j are gauge invariant quantities, although the separation of the latter into invariant mass produced at

fragmentation and transverse broadening contribution depends on the choice of gauge.

III. LIGHT-CONE SPECTRAL FUNCTION

The jet correlator ⌅ is by definition gauge invariant, contrary to the quark operator iS̃ appearing in Eq.(1),
which will depend on the gauge choice. This has been made explicit with the inclusion of a 4-vector dependence
defining an axial gauge in the operator iS̃. Let v be a gauge-fixing vector defining an axial gauge. The 4-vector
v can in principle be spacelike, timelike or lightlike, as long as it satisfies the axial gauge condition:

v ·A = 0. (17)

For our puposes, it su�ces to consider the light-like axial gauge, v2 = 0. In this case, the most general form of
the quark bilinear is given by:

ieSij(p) ⌘ ieSij(p, v) = ŝ3(p
2
, p · v)/pij +

p
p2ŝ1(p

2
, p · v) Iij + ŝ0(p

2
, p · v)/vij , (18)

where ŝi(p2, p · v) are spectral operators that are functions of all Lorentz scalars that can be built out of the
4-vectors p and v. Owing to the rescaling invariance of v and the fact that v

2 = 0, in reality the first two
operators are only functions of p2:

ŝ3(p
2
, p · v) = ŝ3(p2),

ŝ2(p
2
, p · v) = ŝ2(p2),

and ŝ0(p2, p · v) scales as

ŝ0(p
2
, p · v) ! p

2

p · v ŝ0(p
2). (19)

Thus, the quark operator in the light-cone gauge has the restricted form (omitting the Dirac indices):

ieS(p) = ŝ3(p
2)/p+

p
p2ŝ1(p

2)I+ p
2

p · v ŝ0(p
2)/v. (20)

For later convenience, we decompose each of the operators ŝi(p2) into “physical”and “non-physical”operators:
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where the presence of ✓(p�) ensures that only positive-energy states appear in the Hamiltonian spectrum
and ✓(p2) guarantees that the quark field excitations vanish out of the light-cone. One can derive a spectral
representation for the quark propagator in the light-cone gauge, where each of the operators ŝi(p2) are related
to the spectral functions ⇢i(�2) by

Trc
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h⌦|ŝi(p2)|⌦i =
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Getting back to the definition of the TMD jet correlator in Eq. (5), the projection of J onto a general Dirac structure
� is defined to be

J
[�] ©

5
J

�
2

6
= 1

2

⁄
dk

+Tr
5
��

2

6
. (10)

We are interested in the –(k≠) and ’(k≠) coe�cients of the twist-2 and twist-3 structures:

J
[“≠] = 1

4

⁄
dk

+4A3k
≠ = 1

2
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dk

2
A3(k2

, k
≠) © –(k≠), (11)

J
[1] = �

2k≠

⁄
dk

2
A1(k2

, k
≠) © �

k≠ ’(k≠). (12)

Before proceeding to the evaluation of the –(k≠) and ’(k≠) coe�cients, we define a time-ordered version of the jet
correlator which we denote by �Õ

ij(k; n+),

�Õ
ij(k; n+) = Disc

⁄
d›

(2fi)4 e
ik·› Trc

Nc
È�|T

)
Âi(›)Â̄j(0)

*
W (0, ›; n+)|�Í, (13)

where the time-ordering operator acts only on the quark fields. Similarly to Eq. (2), we can obtain the convolution
representation for �Õ

ij(k; n+),

�Õ
ij(k; n+) = Disc

⁄
d

4
p

Trc
Nc

È�|iS̃Õ
ij(p)W̃ (k ≠ p; n+)|�Í, (14)

where now
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Õ
ij(p) =

⁄
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4
›

(2fi)4 e
i›·p

T
)

Âi(›)Â̄j(0)
*

. (15)

This definition is convenient because it will allow a direct connection between the jet correlator and the spectral
representation of the quark propagator. In addition to Lorentz invariance, when parity is a good quantum number,
the operator S̃

Õ
ij can be written as

iS̃ij(p) = ŝ3(p2)(/p)ij +


p2ŝ1(p2)”ij (16)

such that

�Õ
ij(k; n+) = Disc

⁄
d

4
p

Trc
Nc

È�|
Ë
ŝ3(p2)(/p)ij +


p2ŝ1(p2)”ij

È
W̃ (k ≠ p; n+)|�Í, (17)

The vacuum expectation value of iS̃
Õ
ij leads to a direct connection with the quark propagator spectral representation,

Trc
Nc

È�|iS̃Õ(p)|�Í = 1
(2fi)4

⁄ Œ

0
d‡

2
fl(‡2) i

p2 ≠ ‡2 + i‘
◊(‡2) (18)
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Nc
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2
fl(‡2) i

p2 ≠ ‡2 + i‘
◊(‡2) (19)

where

fl(‡2) = fl3(‡2)/p +


p2fl1(‡2) + /n

n · p
fl0(‡2), (20)

with fl3(‡2) and fl1(‡2) being the quark propagator spectral functions. From Eq. (19) one can see that the vacuum
expectation value of iS̃Õ(p) has a discontinuity at p

2 = ‡
2 given by (≠2fii)flij(‡2). Therefore, the discontinuity of

Eq. (19) gives

DiscTrc
Nc
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2
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= 1
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and with discontinuities at p2 = �
2 that evaluates to (�2⇡i)⇢i(�2)✓(p�):

Disc
Trc
Nc

h⌦|iS̃0(p)|⌦i =
1

(2⇡)3

Z 1

0
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2
⇢(�2)�(p2 � �

2)✓(p�)

=
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(2⇡)3
⇢(p2)✓(p2)✓(p�), (23)

where here ⇢(�) is a matrix in Dirac space:

⇢(p2) = ⇢3(p
2)/p+

p
p2⇢1(p

2) +
p
2

p · v ⇢0(p
2)/v. (24)

Notice that the discontinuity of the vacuum expectation value of the physical spectral operators �̂i naturally
gives the spectral functions ⇢i(p2) and the vacuum expectation value of the “non-physical”operators vanishes
!̂i:

Disc
Trc
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h⌦| �̂i(p
2) |⌦i = ⇢i(p

2)/(2⇡)3, (25)

Disc
Trc
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h⌦| !̂i(p
2) |⌦i = 0. (26)

Since we now have an additional spectral function ⇢0(�2) corresponding to the Dirac structure /v, this new term
can, in principle, bring new contributions to the twist-4 coe�cient !(k�,k?) in Eq. (11). On the other hand,
using the gauge invariance of the inclusive jet correlator and its projections, one can also obtain constraints on
the new spectral function. In the following, we obtain a new sum rule associated to ⇢0(�2). The starting point
is to consider the projection of the TMD jet correlator defined in Eq. (8). Take the light-cone vector defining
the light-cone gauge to be the rescaled vector v = an+, where a is some parameter. Projecting the integrated
jet correlator J onto either �� or �+ (we will denote these possibilities as �⌥) and using the form of the quark
bilinear operator iS̃(p) as given in Eq. (20), we have:

J
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where we have used that n
2
+ = 0. If now v is another lightlike vector, parametrized in terms of ~v?, such that

v = (~v2?/2v
�
, v

�
,~v?) and we follow the same procedure of tracing over �⌥, we obtain a result that di↵ers from

the previous one by an additional term that comes now from the possibility that v · n± 6= 0. Explicitly, what
one gets is that

J
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and therefore, by comparing to Eq. (27), it implies that the second term on the RHS of Eq. (28) must vanish
for any light-like vector v:
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Let us make some particular choice of v. Taking v = n+, the function !
�
0 (k

�) vanishes from the beginning and
therefore it is not useful to obtain a constrain for the spectral function ⇢0, but for !
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�), we have
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where we have written the measure as d
4
p = dp

2
d
2
p?dp

�
/2p�. On the second line we wrote the Fourier

transform of the Wilson line and integrated over the conjugate momenta, obtaining a collinear Wilson line,
which following previous notation [2], we defined as Wcoll(⇠+) ⌘ W (⇠+, ⇠? = 0, ⇠� = 0). In the lightcone
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Nc
È�|T

)
Âi(›)Â̄j(0)

*
W (0, ›; n+)|�Í, (13)

where the time-ordering operator acts only on the quark fields. Similarly to Eq. (2), we can obtain the convolution
representation for �Õ

ij(k; n+),

�Õ
ij(k; n+) = Disc

⁄
d

4
p

Trc
Nc

È�|iS̃Õ
ij(p)W̃ (k ≠ p; n+)|�Í, (14)

where now

iS̃
Õ
ij(p) =

⁄
d

4
›

(2fi)4 e
i›·p

T
)

Âi(›)Â̄j(0)
*

. (15)

This definition is convenient because it will allow a direct connection between the jet correlator and the spectral
representation of the quark propagator. In addition to Lorentz invariance, when parity is a good quantum number,
the operator S̃

Õ
ij can be written as

iS̃ij(p) = ŝ3(p2)(/p)ij +


p2ŝ1(p2)”ij (16)

such that

�Õ
ij(k; n+) = Disc

⁄
d

4
p

Trc
Nc

È�|
Ë
ŝ3(p2)(/p)ij +


p2ŝ1(p2)”ij

È
W̃ (k ≠ p; n+)|�Í, (17)

The vacuum expectation value of iS̃
Õ
ij leads to a direct connection with the quark propagator spectral representation,

Trc
Nc

È�|iS̃Õ(p)|�Í = 1
(2fi)4

⁄ Œ

0
d‡

2
fl(‡2) i

p2 ≠ ‡2 + i‘
◊(‡2) (18)

Trc
Nc

È�|iS̃(p)|�Í = 1
(2fi)4

⁄ Œ

≠Œ
d‡

2
fl(‡2) i

p2 ≠ ‡2 + i‘
◊(‡2) (19)

where

fl(‡2) = fl3(‡2)/p +


p2fl1(‡2) + /n

n · p
fl0(‡2), (20)

with fl3(‡2) and fl1(‡2) being the quark propagator spectral functions. From Eq. (19) one can see that the vacuum
expectation value of iS̃Õ(p) has a discontinuity at p

2 = ‡
2 given by (≠2fii)flij(‡2). Therefore, the discontinuity of

Eq. (19) gives

DiscTrc
Nc

È�|iS̃Õ(p)|�Í = 1
(2fi)3

⁄ Œ

0
d‡

2
fl(‡2)”(p2 ≠ ‡

2)◊(p0)

= 1
(2fi)3 fl(p2)◊(p2)◊(p0), (21)
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Spectral representation of the quark          
propagator in the lcg

5

and with discontinuities at p2 = �
2 that evaluates to (�2⇡i)⇢i(�2)✓(p�):

Disc
Trc
Nc

h⌦|iS̃0(p)|⌦i =
1

(2⇡)3

Z 1

0
d�

2
⇢(�2)�(p2 � �

2)✓(p�)

=
1

(2⇡)3
⇢(p2)✓(p2)✓(p�), (23)

where here ⇢(�) is a matrix in Dirac space:

⇢(p2) = ⇢3(p
2)/p+

p
p2⇢1(p

2) +
p
2

p · v ⇢0(p
2)/v. (24)

Notice that the discontinuity of the vacuum expectation value of the physical spectral operators �̂i naturally
gives the spectral functions ⇢i(p2) and the vacuum expectation value of the “non-physical”operators vanishes
!̂i:

Disc
Trc
Nc

h⌦| �̂i(p
2) |⌦i = ⇢i(p

2)/(2⇡)3, (25)

Disc
Trc
Nc

h⌦| !̂i(p
2) |⌦i = 0. (26)

Since we now have an additional spectral function ⇢0(�2) corresponding to the Dirac structure /v, this new term
can, in principle, bring new contributions to the twist-4 coe�cient !(k�,k?) in Eq. (11). On the other hand,
using the gauge invariance of the inclusive jet correlator and its projections, one can also obtain constraints on
the new spectral function. In the following, we obtain a new sum rule associated to ⇢0(�2). The starting point
is to consider the projection of the TMD jet correlator defined in Eq. (8). Take the light-cone vector defining
the light-cone gauge to be the rescaled vector v = an+, where a is some parameter. Projecting the integrated
jet correlator J onto either �� or �+ (we will denote these possibilities as �⌥) and using the form of the quark
bilinear operator iS̃(p) as given in Eq. (20), we have:

J
[�⌥] =

1

2
Disc

Z
dk

+

Z
d
4
p
Tr

Nc
h⌦|iS̃(p)fW (k � p;n+)

�
⌥

2
|⌦i

= Disc

Z
dk

+

Z
d
4
p
Trc
Nc

h⌦|ŝ3(p2)(p · n±)fW (k � p;n+)|⌦i, (27)

where we have used that n
2
+ = 0. If now v is another lightlike vector, parametrized in terms of ~v?, such that

v = (~v2?/2v
�
, v

�
,~v?) and we follow the same procedure of tracing over �⌥, we obtain a result that di↵ers from

the previous one by an additional term that comes now from the possibility that v · n± 6= 0. Explicitly, what
one gets is that

J
[�⌥] = Disc

Z
dk

+

Z
d
4
p
Trc
Nc

h⌦|
h
ŝ3(p

2)(p · n±) +
v · n±
v · p p

2
ŝ0(p

2)
i
fW (k � p;n+)|⌦i, (28)

and therefore, by comparing to Eq. (27), it implies that the second term on the RHS of Eq. (28) must vanish
for any light-like vector v:

!
⌥
0 (k

�) ⌘ Disc

Z
dk

+

Z
d
4
p
(v · n±)p2

v · p
Trc
Nc

h⌦|ŝ0(p2)fW (k � p;n+)|⌦i = 0. (29)

Let us make some particular choice of v. Taking v = n+, the function !
�
0 (k

�) vanishes from the beginning and
therefore it is not useful to obtain a constrain for the spectral function ⇢0, but for !

+
0 (k

�), we have

!
+
0 (k

�) = Disc

Z
dk

+

Z
d
4
p
p
2

p�
Trc
Nc

h⌦|ŝ0(p2)fW (k � p;n+)|⌦i

=
1

2
Disc

Z
dp

2

Z
dp

� p
2

(p�)2
Trc
Nc

h⌦|ŝ0(p2)
Z

dk
+

Z
d
2
p?fW (k � p;n+)

| {z }
=�(k��p�)Wcoll(⇠+)

|⌦i, (30)

where we have written the measure as d
4
p = dp

2
d
2
p?dp

�
/2p�. On the second line we wrote the Fourier

transform of the Wilson line and integrated over the conjugate momenta, obtaining a collinear Wilson line,
which following previous notation [2], we defined as Wcoll(⇠+) ⌘ W (⇠+, ⇠? = 0, ⇠� = 0). In the lightcone

2

Getting back to the definition of the TMD jet correlator in Eq. (5), the projection of J onto a general Dirac structure
� is defined to be

J
[�] ©

5
J

�
2

6
= 1

2

⁄
dk

+Tr
5
��

2

6
. (10)

We are interested in the –(k≠) and ’(k≠) coe�cients of the twist-2 and twist-3 structures:

J
[“≠] = 1

4

⁄
dk

+4A3k
≠ = 1

2

⁄
dk

2
A3(k2

, k
≠) © –(k≠), (11)

J
[1] = �

2k≠

⁄
dk

2
A1(k2

, k
≠) © �

k≠ ’(k≠). (12)

Before proceeding to the evaluation of the –(k≠) and ’(k≠) coe�cients, we define a time-ordered version of the jet
correlator which we denote by �Õ

ij(k; n+),

�Õ
ij(k; n+) = Disc

⁄
d›

(2fi)4 e
ik·› Trc

Nc
È�|T

)
Âi(›)Â̄j(0)

*
W (0, ›; n+)|�Í, (13)

where the time-ordering operator acts only on the quark fields. Similarly to Eq. (2), we can obtain the convolution
representation for �Õ

ij(k; n+),

�Õ
ij(k; n+) = Disc

⁄
d

4
p

Trc
Nc

È�|iS̃Õ
ij(p)W̃ (k ≠ p; n+)|�Í, (14)

where now

iS̃
Õ
ij(p) =

⁄
d

4
›

(2fi)4 e
i›·p

T
)

Âi(›)Â̄j(0)
*

. (15)

This definition is convenient because it will allow a direct connection between the jet correlator and the spectral
representation of the quark propagator. In addition to Lorentz invariance, when parity is a good quantum number,
the operator S̃

Õ
ij can be written as

iS̃ij(p) = ŝ3(p2)(/p)ij +


p2ŝ1(p2)”ij (16)

such that

�Õ
ij(k; n+) = Disc

⁄
d

4
p

Trc
Nc

È�|
Ë
ŝ3(p2)(/p)ij +


p2ŝ1(p2)”ij

È
W̃ (k ≠ p; n+)|�Í, (17)

The vacuum expectation value of iS̃
Õ
ij leads to a direct connection with the quark propagator spectral representation,

Trc
Nc

È�|iS̃Õ(p)|�Í = 1
(2fi)4

⁄ Œ

0
d‡

2
fl(‡2) i

p2 ≠ ‡2 + i‘
◊(‡2) (18)

Trc
Nc

È�|iS̃(p)|�Í = 1
(2fi)4

⁄ Œ

≠Œ
d‡

2
fl(‡2) i

p2 ≠ ‡2 + i‘
◊(‡2) (19)

where

fl(‡2) = fl3(‡2)/p +


p2fl1(‡2) + /n

n · p
fl0(‡2), (20)

with fl3(‡2) and fl1(‡2) being the quark propagator spectral functions. From Eq. (19) one can see that the vacuum
expectation value of iS̃Õ(p) has a discontinuity at p

2 = ‡
2 given by (≠2fii)flij(‡2). Therefore, the discontinuity of

Eq. (19) gives

DiscTrc
Nc

È�|iS̃Õ(p)|�Í = 1
(2fi)3

⁄ Œ

0
d‡

2
fl(‡2)”(p2 ≠ ‡

2)◊(p0)

= 1
(2fi)3 fl(p2)◊(p2)◊(p0), (21)

22

I0(p2) =
⁄

dk
+

⁄
d

2
p̨‹ÊW (k ≠ p)

=
⁄

d›
+

2fi
e

i(k≠≠p≠)›+
W (›+

, ›̨‹ = 0, ›
≠ = 0). (131)

Notice that we have left the integration over p
≠ to be performed at the end since the operator ŝ3(p2) has an implicit

dependence on p
≠. In order to deal with the Wilson line, we expand it in powers in g:

W (›+
, ›̨‹ = 0, ›

≠ = 0) = P exp≠ig
s ›+

0
d÷+A≠(÷+,0‹,0≠)

= 1 ≠ ig

⁄ ›+

0
d÷

+
A

≠(÷+
, 0‹, 0≠) + O(g2), (131)

such that

I0(p2) =
⁄

d›
+

2fi
e

i(k≠≠p≠)›+

A
1 ≠ ig

⁄ ›+

0
d÷

+
A

≠(÷+
, 0‹, 0≠) + O(g2)

B
. (132)

At this point the only thing we can do is some analysis at some limit cases of k
≠. By virtue of the Riemann-Lebesgue

lemma employ the Riemann-Lebesgue lemma to illustrate its usage which will be convenient for calculating some of
the other coe�cients. For this purpose,

We apply the RL lemma at this point to state that at large momenta k
≠ with fixed p

≠ the only non-vanishing
contribution to the Fourier transform of the Wilson line comes from the first term (which is not Lebesgue integrable)
provided terms ≥ g and higher orders are each individually integrable in R,

⁄

R
d›

+ --f1(›+)
-- < Œ,

...⁄

R
d›

+ --fn(›+)
-- < Œ, (131)

where f1(›+) = ≠ig
s ›+

0 d÷
+

A
≠(÷+

, 0‹, 0≠) at order g, for instance. The implicit assumption we are making here in
order to apply the RL lemma is that the gauge fields vanish at ±Œ, A

≠(±Œ+
, 0‹, 0, 0≠) = 0. In this case, Eq. (131)

becomes a ”(k≠ ≠ p
≠) and we obtain the result:

J
[/n≠] = 1

2

⁄
dp

2
p

2
⁄

dp
≠ 1

(p≠)2 DiscTrc
Nc

È�|ŝ0(p2)|�Í
¸ ˚˙ ˝
(2fi)≠3fl0(p2)◊(p2)◊(p≠)

”(k≠ ≠ p
≠)

= 1
2(2fi)3

◊(k≠)
(k≠)2

⁄
dp

2
p

2
fl0(p2)◊(p2) = 0.

DiscTrc
Nc

È�|iS̃Õ(p)|�Í = 1
(2fi)3

⁄ Œ

0
d‡

2
fl(‡2)”(p2 ≠ ‡

2)◊(p0)

DiscTrc
Nc

È�|iS̃(p)|�Í = 1
(2fi)3 fl(p2)◊(p2)◊(p≠), (129)

[1] A. Accardi and A. Signori, Eur. Phys. J. C 80, 825 (2020), arXiv:2005.11310 [hep-ph].
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ˆ enqlˆk eqˆldvnqj- Qdlˆqjˆakx+ sgd ids lˆrr bˆm ad dwoqdrrdc hm ˆmx fˆtfd ˆr sgd ffqrs lnldms
ne sgd bghqˆk,ncc ptˆqj rodbsqˆk etmbshnm bˆkbtkˆsdc hm sgˆs fˆtfd- =cchshnmˆkkx+ ˆ fˆtfd,cdodmcdms
enqltkˆ hr oqdrdmsdc+ drsˆakhrghmf ˆ bnmmdbshnm adsvddm sgd rdbnmc lnldms ne sgd bghqˆk,dudm ptˆqj
rodbsqˆk etmbshnm ˆmc sgd fdmdqˆshnm ne hmuˆqhˆms lˆrr ˆr vdkk ˆr sgd qdrbˆssdqhmf ne ffmˆk rsˆsdr
ctqhmf sgd ptˆqj”r gˆcqnmhyˆshnm oqnbdrr- Etqsgdqlnqd+ ˆ mnudk rtl qtkd enq sgd rodbsqˆk etmbshnm
ˆrrnbhˆsdc vhsg sgd fˆtfd ffwhmf udbsnq hr cdqhudc- Sgqntfg sgdrd hmudrshfˆshnmr+ vd ˆhl sn rgdc
khfgs nm sgd hmsqhbˆsd cxmˆlhbr tmcdqkxhmf gˆcqnmhyˆshnm hm CHR ˆmc hsr hlokhbˆshnmr enq ghfg,dmdqfx
dwodqhldmsr-

GG� F9TFD GMU9QG9MS PT9QI OQNO9F9SNQ

Sgd ids bnqqdkˆsnq hm sgd oˆqshbtkˆq enql sgˆs vd ˆqd hmsdqdrsdc hm sghr vnqj hr fhudm ax sgd
chrbnmshmthsx ne sgd fˆtfd hmuˆqhˆms ptˆqj oqnoˆfˆsnq vqhssdm ˆr Y1+ 2“

Λci’i:v( ; Chrb

∫
a3n
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q Boost quark at large light-cone momentum:

Integrated g.i. quark propagator

Integrate out the suppressed
component of the quark 
momentum:

2

5. ↵ = 1 in any gauge using di↵erent order of integration ! same method will allow calculation of ⌧j

6. ⇣ = Mj +O(1/k�)
lcg
= Mj =) Gauge invariance implies O(1/k�) = 0

7. ! = µ
2
j + k

2
? + ⌧

2
j +O(1/k�) =) Gauge invariance implies O(1/k�) = 0

I. INTRODUCTION

We elaborate on the gauge invariance of the fully inclusive jet correlator (or, the gauge-invariant quark
propagator) introduced in Ref. [1, 2].

Discuss in a convincing way the motivation for the following calculations (it’s more convenient to carry out
calculations in a certain gauge rather than other ones, etc. ... )

II. GAUGE INVARIANT QUARK PROPAGATOR AND JET CORRELATOR

We start by considering the (fully inclusive) jet correlator defined in Refs. [1, 2] as a convolution of a quark
bilinear operator and the Fourier transform of a Wilson line connecting the quark fields:

⌅ij(k;w) = Disc

Z
d
4
p
Trc
Nc

h⌦|ieSij(p; v)fW (k � p;w, v)|⌦i, (2)

where

ieSij(p, v) =

Z
d
4
⇠

(2⇡)4
e
i⇠·p T  i(⇠) ̄j(0), (3)

fW (k � p; w, v) =

Z
d
4
⇠

(2⇡)4
e
i⇠·(k�p)

W (0, ⇠;w, v). (4)

In the definition (2), k denotes the quark 4-momentum and |⌦i is the interacting vacuum state. The 4-vector
w defines the direction of the Wilson line, which is introduced in order to guarantee the gauge invariance of the
correlator, and will further be discussed below. One then easily sees that ⌅ provides one with a gauge-invariant
definition of the usual quark correlator h⌦|ieS|⌦i. The quark operator eS and the Wilson line W may furthermore
depend on the 4-vector v defining an axial gauge; in non-axial gauges v can still formally be used as a label
reminding one of the dependence of these two quantities on the gauge fixing condition.

As shown in Refs. [1, 2], this convolution representation is convenient because it allows a direct and important
connection between the jet correlator and the spectral representation of the (gauge-variant) quark two-point
correlation function, that we be exploit and further studied below. The quark spectral representation has been
extensively explored in recent years since its properties and analytical structure can shed light on confinement [3–
7]. Spectral properties of gauge invariant quark correlators have also been discussed in [8]. It is finally worth
emphasizing that the jet correlator itself is gauge invariant, whereas the quark operator eS is not, and therefore
the LHS of Eq. (2) is independent of v. Building on Refs. [1, 2], we will exploit this fact to derive novel sum
rules for the quark spectral functions in Section III and IV.

To proceed, we consider a light-cone coordinate frame defined by an orthogonal basis of 4-vectors n+,n?, n�,
with the light-cone unit vectors satisfying n

2
± = 0, n+ · n� = 1, and the 2-dimensional transverse basis vectors

n? = {n?,1, n?,2} satisfying the Euclidean normalization condition n
2
?,i = �1. We then represent a generic

4-vector a = [a�, a+,a?] in terms of its light-cone coordinates a⌥ = a ·n± and a? = a ·n?. We then boost the

quark to large momentum in the light-cone minus direction – so that its components satisfy k
� � |~k2?| � k

+

with |~k2?| ⇠ O(⇤) and k
+
, k

2 ⇠ O(⇤2), and ⇤ being a power counting scale of order of the nonperturbative
QCD scale ⇤QCD – and consider the gauge invariant correlator integrated over the subdominant k+ component
of the quark momentum:

Jij(k
�
,~k?;n+) ⌘

1

2

Z
dk

+⌅ij(k;n+), (5)

which phenomenologically describes the inclusive hadronization of a high-energy quark into a jet of particles
aligned along the quark direction of motion [2]. Note that, in the definition of the “inclusive jet correlator”
J , we follow [2] and choose the Wilson line to lie in the plus light-cone w = n+ direction. The full shape
of the considered Wilson line is discussed in detail in that reference, but only its projection on the light-cone
plus axis and the transverse plane matter in the calculations to be performed in this paper. Namely we will
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Notice that we have left the integration over p
≠ to be performed at the end since the operator ŝ3(p2) has an implicit

dependence on p
≠. In order to deal with the Wilson line, we expand it in powers in g:
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At this point the only thing we can do is some analysis at some limit cases of k
≠. By virtue of the Riemann-Lebesgue

lemma employ the Riemann-Lebesgue lemma to illustrate its usage which will be convenient for calculating some of
the other coe�cients. For this purpose,
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2 ≥ O(�2).
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I. INTRODUCTION

We elaborate on the gauge invariance of the fully inclusive jet correlator (or, the gauge-invariant quark
propagator) introduced in Ref. [1, 2].

Discuss in a convincing way the motivation for the following calculations (it’s more convenient to carry out
calculations in a certain gauge rather than other ones, etc. ... )

[AS: defined the acronym TMD, DIS]

II. GAUGE INVARIANT QUARK PROPAGATOR AND JET CORRELATOR

We start by considering the (fully inclusive) jet correlator defined in Refs. [1, 2] as a convolution of a quark
bilinear operator and the Fourier transform of a Wilson line connecting the quark fields:

⌅ij(k;w) = Disc

Z
d
4
p
Trc
Nc

h⌦|ieSij(p; v)fW (k � p;w, v)|⌦i, (1)

where

ieSij(p, v) =

Z
d
4
⇠

(2⇡)4
e
i⇠·p T  i(⇠) j(0), (2)

fW (k � p; w, v) =

Z
d
4
⇠

(2⇡)4
e
i⇠·(k�p)

W (0, ⇠;w, v). (3)

In the definition (1), k denotes the quark 4-momentum and |⌦i is the interacting vacuum state. The 4-vector
w defines the direction of the Wilson line [1, 2], which is introduced in order to guarantee the gauge invariance
of the correlator, and will further be discussed below. One then easily sees that ⌅ provides one with a gauge-
invariant definition of the usual quark correlator h⌦|ieS|⌦i. The quark operator ieS and the Wilson line fW may
furthermore depend on the 4-vector v defining an axial gauge; in non-axial gauges v can still formally be used
as a label reminding one of the dependence of these two quantities on the gauge fixing condition.

As shown in Refs. [1, 2], the convolution representation in Eq. (1) is convenient because it allows a direct and
important connection between the jet correlator and the spectral representation of the ([AS: gaude-dependent
?] gauge-variant) quark two-point correlation function, that will be exploited and further studied below. The
quark spectral representation has been extensively explored in recent years since its properties and analytical
structure can shed light on confinement [3–7]. Spectral properties of gauge invariant quark correlators have also
been discussed in [8]. It is finally worth emphasizing that the jet correlator itself is gauge invariant, whereas
the quark operator ieS is not, and therefore the LHS of Eq. (1) is independent of v. Building on Refs. [1, 2], we
will exploit this fact to derive novel sum rules for the quark spectral functions in Sec. III and IV.

To proceed, we consider a light-cone coordinate frame defined by an orthogonal basis of 4-vectors n+,n?, n�,
with the light-cone unit vectors satisfying n

2
± = 0, n+ · n� = 1, and the 2-dimensional transverse basis vectors

n? = {n?,1, n?,2} [AS: (nperp bold or not?)] satisfying the Euclidean normalization condition n
2
?,i = �1.

We then represent a generic 4-vector a = [a�, a+,a?] in terms of its light-cone coordinates a⌥ = a · n± and
a? = a · n?. We then boost the quark to large momentum in the light-cone minus direction – so that its
components satisfy k

� � |~k2?| � k
+ with |~k2?| ⇠ O(⇤) and k

+
, k

2 ⇠ O(⇤2), and ⇤ being a power counting
scale of order of the nonperturbative QCD scale ⇤QCD – and consider the gauge-invariant correlator integrated
over the subdominant k+ component of the quark momentum [1, 2]:

Jij(k
�
,~k?;n+) ⌘

1

2

Z
dk

+⌅ij(k;w = n+), (4)

which phenomenologically describes the inclusive hadronization of a high-energy quark into a jet of particles
aligned along the quark direction of motion [AS: (why “aligned along...”? This is not a collimated spray
of particles, but a fully inclusive jet, namely something that encompasses all the hadronization
products of the quarks, namely those aligned and those not aligned with the quark momentum)].
Note that, in the definition of the “inclusive jet correlator” J , we follow Ref. [2] and choose the Wilson line
to lie in the plus light-cone w = n+ direction. The full shape of the considered Wilson line is discussed in
detail in the mentioned reference, but only its projection on the light-cone plus axis and the transverse plane
matter in the calculations to be performed in this paper. Namely we will only need to consider the simpler
WTMD(⇠+, ⇠?) ⌘ W (0�, ⇠+, ⇠?) transverse-position-dependent Wilson line and the Wcoll(⇠+) ⌘ W (0�, ⇠+,0?)
light-cone Wilson lines, defined as

WTMD(⇠
+
, ⇠?) = Un+ [0

�
, 0+,0?; 0�,1+

,0?]Un? [0�,1+
,0?; 0�,1+

, ⇠?]Un+ [0
�
,1+

, ⇠?; 0�, ⇠+, ⇠?] (5)

Wcoll(⇠
+) = Un+ [0

�
, 0+,0?; 0�, ⇠+,0?] , (6)
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q Generalizes the perturbative quark propagator 
that appears in inclusive and semi-inclusive DIS



q Expand in Dirac structures, in powers of 1/𝑘!

Integrated g.i. quark propagator
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where Uv[a; b] is a straight Wilson line from a to b along the v direction. One recognizes, respectively, the staple
Wilson line used in TMD factorization theorems, and the light-cone Wilson line used in collinear factorization
factorization theorems. With these definitions, the integrated correlator in Eq. (4) can be used in perturbative
calculations of inclusive DIS and semi-inclusive electron-positron annihilation [9–11] coupled, respectively, to the
target transversity parton distribution function and the polarized (e.g. ⇤) hadron transversity fragmentation
function. In these processes, the “inclusive jet correlator” J [AS: (adjust naming conventions)] is used
instead of the free quark propagator to describe the hadronization of a scattered quark in the so-called end-
point kinematics of the process [AS: (include references for large-x DIS)], where the invariant mass of the
final state is limited, and the produced hadrons are kinematically constrained into a narrow – yet unobserved
– jet of particles along the quark’s direction of motion, thus earning its name.

With the strongly ordered k
� � |k2

?| � k
+ momentum components, one can give the inclusive jet correlator

in Eq. (4) a “twist” decomposition controlled by the power counting scale ⇤ [1, 2]:

J(k�,k?;n+) =
1

2
↵(k�)�+ +

⇤

k�


⇣(k�)I+ ↵(k�)

/k?
⇤

�
+

⇤2

2(k�)2
!(k�,k2

?)��
. (7)

Notice that we did not include time-reversal odd (T-odd) structures in the decomposition (7), since these are
not allowed in the fully inclusive hadronization of a quark [2], at variance with the less inclusive description of
a jet (see e.g. Ref. [12, 13]) and the one- or two-particle inclusive cases [14]. [AS: (I slightly modified this
sentence and I also refer to those cases where T-odd structures in jets are allowed.)]

The ↵(k�), ⇣(k�) and !(k�,k2
?) are, respectively, the twist-2, twist-3 and twist-4 coe�cients of the jet

correlator, and can be obtained by projecting Eq. (4) onto suitable Dirac structures. Denoting the projection
of J onto a generic Dirac matrix � by

J
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◆2
1

2

Z
dk

+Tr


⌅
�
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2

�
. (11)

We will discuss the calculation of these coe�cients in detail later, but can already compare the quark jet
correlator (7) to the free propagator of an on-shell quark of mass m, [AS: (I include here the comparison,
inspired by eq. 52 in EPJC paper - finish description)]

/k +m = k
�
�
+ + /k? +mI+ m

2 + k2
?

2k�
�
�
. (12)

and

J(k�,kT ;n+) =
✓(k�)

4(2⇡)3 k�

⇢
k
�
�
+ + /kT +MjI+

K
2
j + k2

T

2k�
�
�
�

, (13)

with the “jet virtuality”

K
2
j = µ

2
j + ⌧

2
j + g.f.t. (14)

receiving contributions from the invariant mass directly produced in the quark fragmentation process (µ2
j ), from

the final state jet broadening (⌧2j ), and from a gauge fixing term [g.f.t.]. Apart for a trivial rescaling factor
[2], we can interpret the twist-3 coe�cient as a gauge-invariant nonperturbative generalization of the quark’s
current mass, m ! ⇤⇣, and the twist-4 coe�cient a gauge-invariant nonperturbative generalization of the
quark;s mass shell, m2 + k2

? ! ⇤2
!. [AS: I’m not sure about the comparisons defined with the !]

III. LIGHT-CONE SPECTRAL FUNCTION

The jet correlator ⌅ is by definition gauge invariant, contrary to the quark operator iS̃ appearing in Eq.(1),
which will depend on the gauge choice. This has been made explicit with the inclusion of a 4-vector dependence



q Expand in Dirac structures, in powers of 1/𝑘!

Integrated g.i. quark propagator

3

where Uv[a; b] is a straight Wilson line from a to b along the v direction. One recognizes, respectively, the staple
Wilson line used in TMD factorization theorems, and the light-cone Wilson line used in collinear factorization
factorization theorems. With these definitions, the integrated correlator in Eq. (4) can be used in perturbative
calculations of inclusive DIS and semi-inclusive electron-positron annihilation [9–11] coupled, respectively, to the
target transversity parton distribution function and the polarized (e.g. ⇤) hadron transversity fragmentation
function. In these processes, the “inclusive jet correlator” J [AS: (adjust naming conventions)] is used
instead of the free quark propagator to describe the hadronization of a scattered quark in the so-called end-
point kinematics of the process [AS: (include references for large-x DIS)], where the invariant mass of the
final state is limited, and the produced hadrons are kinematically constrained into a narrow – yet unobserved
– jet of particles along the quark’s direction of motion, thus earning its name.

With the strongly ordered k
� � |k2

?| � k
+ momentum components, one can give the inclusive jet correlator

in Eq. (4) a “twist” decomposition controlled by the power counting scale ⇤ [1, 2]:

J(k�,k?;n+) =
1

2
↵(k�)�+ +

⇤

k�


⇣(k�)I+ ↵(k�)

/k?
⇤

�
+

⇤2

2(k�)2
!(k�,k2

?)��
. (7)

Notice that we did not include time-reversal odd (T-odd) structures in the decomposition (7), since these are
not allowed in the fully inclusive hadronization of a quark [2], at variance with the less inclusive description of
a jet (see e.g. Ref. [12, 13]) and the one- or two-particle inclusive cases [14]. [AS: (I slightly modified this
sentence and I also refer to those cases where T-odd structures in jets are allowed.)]

The ↵(k�), ⇣(k�) and !(k�,k2
?) are, respectively, the twist-2, twist-3 and twist-4 coe�cients of the jet

correlator, and can be obtained by projecting Eq. (4) onto suitable Dirac structures. Denoting the projection
of J onto a generic Dirac matrix � by

J
[�] ⌘ Tr


J
�

2

�
=

1

2

Z
dk

+Tr


⌅
�

2

�
, (8)

one finds:

↵(k�) = J
[��] =

1

2

Z
dk

+Tr


⌅
�
�

2

�
, (9)

⇣(k�) =
k
�

⇤
J
[I] =

k
�

⇤

1

2

Z
dk

+Tr


⌅

I
2

�
, (10)

!(k�,k2
?) =

✓
k
�

⇤

◆2

J
[�+] =

✓
k
�

⇤

◆2
1

2

Z
dk

+Tr


⌅
�
+

2

�
. (11)

We will discuss the calculation of these coe�cients in detail later, but can already compare the quark jet
correlator (7) to the free propagator of an on-shell quark of mass m, [AS: (I include here the comparison,
inspired by eq. 52 in EPJC paper - finish description)]

/k +m = k
�
�
+ + /k? +mI+ m

2 + k2
?

2k�
�
�
. (12)

and

J(k�,kT ;n+) =
✓(k�)

4(2⇡)3 k�

⇢
k
�
�
+ + /kT +MjI+

K
2
j + k2

T

2k�
�
�
�

, (13)

with the “jet virtuality”

K
2
j = µ

2
j + ⌧

2
j + g.f.t. (14)

receiving contributions from the invariant mass directly produced in the quark fragmentation process (µ2
j ), from

the final state jet broadening (⌧2j ), and from a gauge fixing term [g.f.t.]. Apart for a trivial rescaling factor
[2], we can interpret the twist-3 coe�cient as a gauge-invariant nonperturbative generalization of the quark’s
current mass, m ! ⇤⇣, and the twist-4 coe�cient a gauge-invariant nonperturbative generalization of the
quark;s mass shell, m2 + k2

? ! ⇤2
!. [AS: I’m not sure about the comparisons defined with the !]

III. LIGHT-CONE SPECTRAL FUNCTION

The jet correlator ⌅ is by definition gauge invariant, contrary to the quark operator iS̃ appearing in Eq.(1),
which will depend on the gauge choice. This has been made explicit with the inclusion of a 4-vector dependence

3

where Uv[a; b] is a straight Wilson line from a to b along the v direction. One recognizes, respectively, the staple
Wilson line used in TMD factorization theorems, and the light-cone Wilson line used in collinear factorization
factorization theorems. With these definitions, the integrated correlator in Eq. (4) can be used in perturbative
calculations of inclusive DIS and semi-inclusive electron-positron annihilation [9–11] coupled, respectively, to the
target transversity parton distribution function and the polarized (e.g. ⇤) hadron transversity fragmentation
function. In these processes, the “inclusive jet correlator” J [AS: (adjust naming conventions)] is used
instead of the free quark propagator to describe the hadronization of a scattered quark in the so-called end-
point kinematics of the process [AS: (include references for large-x DIS)], where the invariant mass of the
final state is limited, and the produced hadrons are kinematically constrained into a narrow – yet unobserved
– jet of particles along the quark’s direction of motion, thus earning its name.

With the strongly ordered k
� � |k2

?| � k
+ momentum components, one can give the inclusive jet correlator

in Eq. (4) a “twist” decomposition controlled by the power counting scale ⇤ [1, 2]:

J(k�,k?;n+) =
1

2
↵(k�)�+ +

⇤

k�


⇣(k�)I+ ↵(k�)

/k?
⇤

�
+

⇤2

2(k�)2
!(k�,k2

?)��
. (7)

Notice that we did not include time-reversal odd (T-odd) structures in the decomposition (7), since these are
not allowed in the fully inclusive hadronization of a quark [2], at variance with the less inclusive description of
a jet (see e.g. Ref. [12, 13]) and the one- or two-particle inclusive cases [14]. [AS: (I slightly modified this
sentence and I also refer to those cases where T-odd structures in jets are allowed.)]

The ↵(k�), ⇣(k�) and !(k�,k2
?) are, respectively, the twist-2, twist-3 and twist-4 coe�cients of the jet

correlator, and can be obtained by projecting Eq. (4) onto suitable Dirac structures. Denoting the projection
of J onto a generic Dirac matrix � by

J
[�] ⌘ Tr


J
�

2

�
=

1

2

Z
dk

+Tr


⌅
�

2

�
, (8)

one finds:

↵(k�) = J
[��] =

1

2

Z
dk

+Tr


⌅
�
�

2

�
, (9)

⇣(k�) =
k
�

⇤
J
[I] =

k
�

⇤

1

2

Z
dk

+Tr


⌅

I
2

�
, (10)

!(k�,k2
?) =

✓
k
�

⇤

◆2

J
[�+] =

✓
k
�

⇤

◆2
1

2

Z
dk

+Tr


⌅
�
+

2

�
. (11)
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not allowed in the fully inclusive hadronization of a quark [2], at variance with the less inclusive description of
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We will discuss the calculation of these coe�cients in detail later, but can already compare the quark jet
correlator (7) to the free propagator of an on-shell quark of mass m, [AS: (I include here the comparison,
inspired by eq. 52 in EPJC paper - finish description)]
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receiving contributions from the invariant mass directly produced in the quark fragmentation process (µ2
j ), from

the final state jet broadening (⌧2j ), and from a gauge fixing term [g.f.t.]. Apart for a trivial rescaling factor
[2], we can interpret the twist-3 coe�cient as a gauge-invariant nonperturbative generalization of the quark’s
current mass, m ! ⇤⇣, and the twist-4 coe�cient a gauge-invariant nonperturbative generalization of the
quark;s mass shell, m2 + k2
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III. LIGHT-CONE SPECTRAL FUNCTION

The jet correlator ⌅ is by definition gauge invariant, contrary to the quark operator iS̃ appearing in Eq.(1),
which will depend on the gauge choice. This has been made explicit with the inclusion of a 4-vector dependence
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We will discuss the calculation of these coe�cients in detail later, but can already compare the quark jet
correlator (7) to the free propagator of an on-shell quark of mass m, [AS: (I include here the comparison,
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III. LIGHT-CONE SPECTRAL FUNCTION

The jet correlator ⌅ is by definition gauge invariant, contrary to the quark operator iS̃ appearing in Eq.(1),
which will depend on the gauge choice. This has been made explicit with the inclusion of a 4-vector dependence

Average mass of all the 
hadronization products 
produced during the 
fragmentation of a quark 



3

where Uv[a; b] is a straight Wilson line from a to b along the v direction. One recognizes, respectively, the staple
Wilson line used in TMD factorization theorems, and the light-cone Wilson line used in collinear factorization
factorization theorems. With these definitions, the integrated correlator in Eq. (4) can be used in perturbative
calculations of inclusive DIS and semi-inclusive electron-positron annihilation [9–11] coupled, respectively, to the
target transversity parton distribution function and the polarized (e.g. ⇤) hadron transversity fragmentation
function. In these processes, the “inclusive jet correlator” J [AS: (adjust naming conventions)] is used
instead of the free quark propagator to describe the hadronization of a scattered quark in the so-called end-
point kinematics of the process [AS: (include references for large-x DIS)], where the invariant mass of the
final state is limited, and the produced hadrons are kinematically constrained into a narrow – yet unobserved
– jet of particles along the quark’s direction of motion, thus earning its name.

With the strongly ordered k
� � |k2

?| � k
+ momentum components, one can give the inclusive jet correlator

in Eq. (4) a “twist” decomposition controlled by the power counting scale ⇤ [1, 2]:

J(k�,k?;n+) =
1

2
↵(k�)�+ +

⇤

k�


⇣(k�)I+ ↵(k�)

/k?
⇤

�
+

⇤2

2(k�)2
!(k�,k2

?)��
. (7)

Notice that we did not include time-reversal odd (T-odd) structures in the decomposition (7), since these are
not allowed in the fully inclusive hadronization of a quark [2], at variance with the less inclusive description of
a jet (see e.g. Ref. [12, 13]) and the one- or two-particle inclusive cases [14]. [AS: (I slightly modified this
sentence and I also refer to those cases where T-odd structures in jets are allowed.)]

The ↵(k�), ⇣(k�) and !(k�,k2
?) are, respectively, the twist-2, twist-3 and twist-4 coe�cients of the jet

correlator, and can be obtained by projecting Eq. (4) onto suitable Dirac structures. Denoting the projection
of J onto a generic Dirac matrix � by

J
[�] ⌘ Tr


J
�

2

�
=

1

2

Z
dk

+Tr


⌅
�

2

�
, (8)

one finds:

↵(k�) = J
[��] =

1

2

Z
dk

+Tr


⌅
�
�

2

�
, (9)

⇣(k�) =
k
�

⇤
J
[I] =

k
�

⇤

1

2

Z
dk

+Tr


⌅

I
2

�
, (10)

!(k�,k2
?) =

✓
k
�

⇤

◆2

J
[�+] =

✓
k
�

⇤

◆2
1

2

Z
dk

+Tr


⌅
�
+

2

�
. (11)
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q In any gauge:

(e.g, DSE calculations)

OtUqj oqnoUfUsnq
! h zR!o( hr mnsghmf ats sgd etkk !cqdrrdc( pt]qj oqno]f]snq

� ]kk onrrhakd v]xr ] pt]qj b]m oqno]f]sd

! rnktshnm ne sgd pt]qj fUo dptUshnm7

�� ��

1 �

! Hs g]r sgd fdmdq]k rsqtbstqd !]wh]k f]tfdr(7

zR!o( ; r2!o
1. o − t . t1(<o )

]
o1r0!o

1. o − t . t1(�) r,!o
1. o − t . t1(<t

! r,!o1. o − t . t1( ; . enq bnu]qh]ms f]tfdr

! Nvhmf sn sgd qdrb]khmf hmu]qh]mbd ne t ]mc t1 ; . !enq khfgs,khjd
]wh]k f]tfd(+ sgd rsqtbstqd rhlokhffdr etqsgdq sn

zR!o( ; r2!o
1(<o )

]
o1r0!o

1(�) r,!o
1(

<t

t − o

q Can be used to verify actual calculations of the 
quark propagator!
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where the principle value of 1/x is to be understood in the distribution sense, integrated over a test function

hP
�
1
x

�
,�(x)i =

R1
�1 dxP

�
1
x

�
�(x) = lim✏!0+

R
R\(�✏,+✏)

�(y)
y = i⇡�(0). Hence, P

�
1
x

�
= i⇡�(x). Using the

result (37) back into Eq. (36) will set the Wilson line to unity, leading to the gauge independent result stated
in (34) and that leads to the result (35) for the coeficcient ↵(k�).

B. Twist three projection

We can now apply the method that has just been discussed to calculate ⇣(k�). Using the definition of ⇣(k�)
given in Eq. (10) and after integrating over k+ and p?, one obtains:

⇣(k�) =
1

2⇤

Z 1

0
dp

2 Disc
Trc
Nc

h⌦|
p

p2 �̂1(p
2)J3(k

�)|⌦i, (39)

where J3(k�) has been defined to be:

J3(k
�) = k

�
Z 1

0

dp
�

p�

Z
d⇠

+

2⇡
e
i⇠+(k��p�)

W (⇠+). (40)

As in the twist-two case, this integral could be directly evaluated in the light-cone gauge, leading to the result

J3(k
�) = I2(k

�) = ✓(k�) (41)

and

⇣(k�) =
1

2⇤

Z 1

0
dp

2
p
p2

=⇢1(p
2)/(2⇡)3z }| {

Disc
Trc
Nc

h⌦| �̂1(p
2) |⌦i ✓(k�) = ✓(k�)

2⇤(2⇡)3
Mj , (42)

where

Mj =

Z
dp

2
p

p2 ⇢1(p
2) (43)

in the chiral-odd invariant jet mass. It is illuminating to compare it to the general case, where W (⇠+) 6= 1. For
this, as before, we employ the dimensionless variables y and � to write J3(k�) as:

J3(k
�) =

Z
dy

2⇡
vk�(y) eiy W (y/k�), (44)

where vk�(y) has been defined as

vk�(y) ⌘
Z 1

0

d�

�
e
�iy�sign(k�)

. (45)

Now we note the convenient relation between the derivative of vk�(y) and the function uk�(y) defined in Eq. (37)
that will be used shortly ahead:

v
0
k�(y) = �i sign(k�)uk�(y). (46)

In order to deal with the Wilson line, we write the exponential appearing in Eq. (44) as a derivative acting on
the exponential eiy = �i

@
@y e

iy, such that one can perform the integration over y using integration by parts. In
practice, one successively apply the exponential trick followed by integration by parts to obtain

J3(k
�) = ✓(k�)

" 1X

n=0

i
n
�
@
n
yW (y/k�)

�
#

y=0

= ✓(k�)

✓
1

1� i@y
W (y/k�)

◆

y=0

. (47)

Substituting this result back into Eq.( 39), one obtains

⇣(k�) =
1

2⇤

Z 1

0
dp

2 Disc
Trc
Nc

h⌦|
p

p2 �̂1(p
2)

✓
1

1� i@y
W (y/k�)

◆

y=0

|⌦i ✓(k�). (48)

Gauge invariant generalization of the 
gauge dependent dressed quark mass 

q In any gauge:

LnshuZshnm AKEP SLCr NCEr ne �,ldrnm Bnmbktrhnm

PtWpi QLCr ne W rohm)/ sWpfds

ClXfd sXidm eonl XoShu9 11.4,.0125

� .3 uYkdmbd ptYqi SLCr9 8 S,dudm Ymc 8 S,ncc SLCr
� gYud sdmrnq rsqtbstqd) mns rddm enq rohm, .-

5 . 16

(table from Satvir Kaur’s talk yesterday)

Experimentally accessible in double
spin assymetry measurements!



q In light-cone gauge:

3

where Uv[a; b] is a straight Wilson line from a to b along the v direction. One recognizes, respectively, the staple
Wilson line used in TMD factorization theorems, and the light-cone Wilson line used in collinear factorization
factorization theorems. With these definitions, the integrated correlator in Eq. (4) can be used in perturbative
calculations of inclusive DIS and semi-inclusive electron-positron annihilation [9–11] coupled, respectively, to the
target transversity parton distribution function and the polarized (e.g. ⇤) hadron transversity fragmentation
function. In these processes, the “inclusive jet correlator” J [AS: (adjust naming conventions)] is used
instead of the free quark propagator to describe the hadronization of a scattered quark in the so-called end-
point kinematics of the process [AS: (include references for large-x DIS)], where the invariant mass of the
final state is limited, and the produced hadrons are kinematically constrained into a narrow – yet unobserved
– jet of particles along the quark’s direction of motion, thus earning its name.

With the strongly ordered k
� � |k2

?| � k
+ momentum components, one can give the inclusive jet correlator

in Eq. (4) a “twist” decomposition controlled by the power counting scale ⇤ [1, 2]:

J(k�,k?;n+) =
1

2
↵(k�)�+ +

⇤

k�


⇣(k�)I+ ↵(k�)

/k?
⇤

�
+

⇤2

2(k�)2
!(k�,k2

?)��
. (7)

Notice that we did not include time-reversal odd (T-odd) structures in the decomposition (7), since these are
not allowed in the fully inclusive hadronization of a quark [2], at variance with the less inclusive description of
a jet (see e.g. Ref. [12, 13]) and the one- or two-particle inclusive cases [14]. [AS: (I slightly modified this
sentence and I also refer to those cases where T-odd structures in jets are allowed.)]

The ↵(k�), ⇣(k�) and !(k�,k2
?) are, respectively, the twist-2, twist-3 and twist-4 coe�cients of the jet

correlator, and can be obtained by projecting Eq. (4) onto suitable Dirac structures. Denoting the projection
of J onto a generic Dirac matrix � by

J
[�] ⌘ Tr


J
�

2

�
=

1

2

Z
dk

+Tr


⌅
�

2

�
, (8)

one finds:

↵(k�) = J
[��] =

1

2

Z
dk

+Tr


⌅
�
�

2

�
, (9)

⇣(k�) =
k
�

⇤
J
[I] =

k
�

⇤

1

2

Z
dk

+Tr


⌅

I
2

�
, (10)

!(k�,k2
?) =

✓
k
�

⇤

◆2

J
[�+] =

✓
k
�

⇤

◆2
1

2

Z
dk

+Tr


⌅
�
+

2

�
. (11)

We will discuss the calculation of these coe�cients in detail later, but can already compare the quark jet
correlator (7) to the free propagator of an on-shell quark of mass m, [AS: (I include here the comparison,
inspired by eq. 52 in EPJC paper - finish description)]

/k +m = k
�
�
+ + /k? +mI+ m

2 + k2
?

2k�
�
�
. (12)

and

J(k�,kT ;n+) =
✓(k�)

4(2⇡)3 k�

⇢
k
�
�
+ + /kT +MjI+

K
2
j + k2

T

2k�
�
�
�

, (13)

with the “jet virtuality”

K
2
j = µ

2
j + ⌧

2
j + g.f.t. (14)

receiving contributions from the invariant mass directly produced in the quark fragmentation process (µ2
j ), from

the final state jet broadening (⌧2j ), and from a gauge fixing term [g.f.t.]. Apart for a trivial rescaling factor
[2], we can interpret the twist-3 coe�cient as a gauge-invariant nonperturbative generalization of the quark’s
current mass, m ! ⇤⇣, and the twist-4 coe�cient a gauge-invariant nonperturbative generalization of the
quark;s mass shell, m2 + k2

? ! ⇤2
!. [AS: I’m not sure about the comparisons defined with the !]

III. LIGHT-CONE SPECTRAL FUNCTION

The jet correlator ⌅ is by definition gauge invariant, contrary to the quark operator iS̃ appearing in Eq.(1),
which will depend on the gauge choice. This has been made explicit with the inclusion of a 4-vector dependence

7

where the principle value of 1/x is to be understood in the distribution sense, integrated over a test function

hP
�
1
x

�
,�(x)i =

R1
�1 dxP

�
1
x

�
�(x) = lim✏!0+

R
R\(�✏,+✏)

�(y)
y = i⇡�(0). Hence, P

�
1
x

�
= i⇡�(x). Using the

result (37) back into Eq. (36) will set the Wilson line to unity, leading to the gauge independent result stated
in (34) and that leads to the result (35) for the coeficcient ↵(k�).

B. Twist three projection

We can now apply the method that has just been discussed to calculate ⇣(k�). Using the definition of ⇣(k�)
given in Eq. (10) and after integrating over k+ and p?, one obtains:

⇣(k�) =
1

2⇤

Z 1

0
dp

2 Disc
Trc
Nc

h⌦|
p

p2 �̂1(p
2)J3(k

�)|⌦i, (39)

where J3(k�) has been defined to be:

J3(k
�) = k

�
Z 1

0

dp
�

p�

Z
d⇠

+

2⇡
e
i⇠+(k��p�)

W (⇠+). (40)

As in the twist-two case, this integral could be directly evaluated in the light-cone gauge, leading to the result

J3(k
�) = I2(k

�) = ✓(k�) (41)

and

⇣(k�) =
1

2⇤

Z 1

0
dp

2
p
p2

=⇢1(p
2)/(2⇡)3z }| {

Disc
Trc
Nc

h⌦| �̂1(p
2) |⌦i ✓(k�) = ✓(k�)

2⇤(2⇡)3
Mj , (42)

where

Mj =

Z
dp

2
p

p2 ⇢1(p
2) (43)

in the chiral-odd invariant jet mass. It is illuminating to compare it to the general case, where W (⇠+) 6= 1. For
this, as before, we employ the dimensionless variables y and � to write J3(k�) as:

J3(k
�) =

Z
dy

2⇡
vk�(y) eiy W (y/k�), (44)

where vk�(y) has been defined as

vk�(y) ⌘
Z 1

0

d�

�
e
�iy�sign(k�)

. (45)

Now we note the convenient relation between the derivative of vk�(y) and the function uk�(y) defined in Eq. (37)
that will be used shortly ahead:

v
0
k�(y) = �i sign(k�)uk�(y). (46)

In order to deal with the Wilson line, we write the exponential appearing in Eq. (44) as a derivative acting on
the exponential eiy = �i

@
@y e

iy, such that one can perform the integration over y using integration by parts. In
practice, one successively apply the exponential trick followed by integration by parts to obtain

J3(k
�) = ✓(k�)

" 1X

n=0

i
n
�
@
n
yW (y/k�)

�
#

y=0

= ✓(k�)

✓
1

1� i@y
W (y/k�)

◆

y=0

. (47)

Substituting this result back into Eq.( 39), one obtains

⇣(k�) =
1

2⇤

Z 1

0
dp

2 Disc
Trc
Nc

h⌦|
p

p2 �̂1(p
2)

✓
1

1� i@y
W (y/k�)

◆

y=0

|⌦i ✓(k�). (48)
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In the light-cone gauge, we recover the result stated in Eqs. (41) and (42). Let us look at the result of the
coe�cient Eq. (39) in the general case. Using the explicit form of the Wilson line and expanding it powers of
g, one obtains

⇣(k�) = Mj ✓(k
�) +

g

k�

Z 1

0
dp

2 Disc
Trc
Nc

h⌦|
p

p2 �̂1(p
2)A�(0)|⌦i✓(k�) +O

�
(g/k�)2

�
. (49)

Compare this to the light-cone gauge result given in Eq. (42) and note that the integrand (apart from ✓(k�)) in
the second term and higher orders in (g/k�)2 on the LHS cannot bring any additional dependence on k

� that
could possibly cancel the factors of (1/k�)n, for n > 0. Since ⇣(k�) is gauge invariant and therefore must agree
in di↵erent choices of gauges, one concludes that all these terms vanish with the exception of the first one.

C. Twist four projection

We now proceed to the calculation of the ! coe�cient defined by Eq. (11) and whose nonvanishing contribution
in any gauge is given by

!(k�,k2
?) =

✓
k
�

⇤

◆2

Disc

Z
dk

+

Z
d
4
p
Trc
Nc

h⌦|�̂3(p
2)
p
2 + p2

?
2p�

fW (k � p;n+)|⌦i, (50)

where we have written p · n+ = (p2 + p2
?)/2p

�. The integration over k
+ simply sets the conjugate space

coordinate to zero, ⇠� = 0, in the partial Fourier transform of the Wilson line. The first term can be further
integrated over the transverse momentum, which sets ⇠? = 0 in the Wilson line and simplifies the calculation in
the light-cone gauge. The calculation of this term in other gauge is more complicated but it can be performed
by following the same strategy employed in the calculation of the twist 2 and twist 3 coe�cients. The second
term is more elaborated due to the presence of p2

? which prevents the direct integration over the transverse
momentum that would allow to set ⇠? = 0 in the Wilson line, turning it into a collinear Wilson line, which in
the light-cone gauge becomes unity in color space. We thus write Eq.(50) as a sum of two terms:

!(k�,k2
?) = !`(k

�) + !t(k
�
,k2

?), (51)

where !` and !t are, respectively, the transverse-momentum-independent (”longitudinal”) and transverse-
momentum dependent components of the twist 4 coe�cient:

!`(k
�) =

1

(2⇤)2

Z 1

0
dp

2
p
2 Disc

Trc
Nc

h⌦|�̂3(p
2)J`(k

�)|⌦i, (52)

!t(k
�
,k2

?) =
1

(2⇤)2

Z 1

0
dp

2 Disc
Trc
Nc

h⌦|�̂3(p
2)Jt(k

�
,k?)|⌦i, (53)

where

J`(k
�) =

Z 1

0
dp

�
✓
k
�

p�

◆2 Z
d⇠

+

2⇡
e
i⇠+(k��p�)

W (⇠+), (54)

Jt(k
�
,k?) =

Z 1

0
dp

�
✓
k�
p�

◆2 Z
d
2p?

Z
d
2
⇠?

(2⇡)2
p2
? e

i⇠?·(k?�p?)fW (k� � p
�
, ⇠?, ⇠

� = 0;n+). (55)

In the light-cone gauge, the calculation of the longitudinal term is is straightforward and leads to

J
lcg
` (k�) = ✓(k�)

!
lcg
` (k�) =

1

(2⇤)2

Z 1

0
dp

2
p
2

=⇢3(p
2)/(2⇡)3z }| {

Disc
Trc
Nc

h⌦| �̂3(p
2) |⌦i ✓(k�) = ✓(k�)

(2⇤)2(2⇡)3
(µ2

j )
lcg

, (56)

where

(µ2
j )

lcg ⌘
Z 1

0
dp

2
p
2
⇢
lcg
3 (p2) (57)

is interpreted as the average invariant mass squared of the particles produced by the quark fragmentation. The
calculation of the transverse Jt operator in Eq. (55) is more involved. First, we notice that

p2
?e

i⇠?(k?�p?) =
⇥
(i@?)2 + k2

? + 2 ik? · @?
⇤
e
i⇠?(k?�p?)

. (58)

Final state interactions ”vanish”



q In light-cone gauge:

3

where Uv[a; b] is a straight Wilson line from a to b along the v direction. One recognizes, respectively, the staple
Wilson line used in TMD factorization theorems, and the light-cone Wilson line used in collinear factorization
factorization theorems. With these definitions, the integrated correlator in Eq. (4) can be used in perturbative
calculations of inclusive DIS and semi-inclusive electron-positron annihilation [9–11] coupled, respectively, to the
target transversity parton distribution function and the polarized (e.g. ⇤) hadron transversity fragmentation
function. In these processes, the “inclusive jet correlator” J [AS: (adjust naming conventions)] is used
instead of the free quark propagator to describe the hadronization of a scattered quark in the so-called end-
point kinematics of the process [AS: (include references for large-x DIS)], where the invariant mass of the
final state is limited, and the produced hadrons are kinematically constrained into a narrow – yet unobserved
– jet of particles along the quark’s direction of motion, thus earning its name.

With the strongly ordered k
� � |k2

?| � k
+ momentum components, one can give the inclusive jet correlator

in Eq. (4) a “twist” decomposition controlled by the power counting scale ⇤ [1, 2]:

J(k�,k?;n+) =
1

2
↵(k�)�+ +

⇤

k�


⇣(k�)I+ ↵(k�)

/k?
⇤

�
+

⇤2

2(k�)2
!(k�,k2

?)��
. (7)

Notice that we did not include time-reversal odd (T-odd) structures in the decomposition (7), since these are
not allowed in the fully inclusive hadronization of a quark [2], at variance with the less inclusive description of
a jet (see e.g. Ref. [12, 13]) and the one- or two-particle inclusive cases [14]. [AS: (I slightly modified this
sentence and I also refer to those cases where T-odd structures in jets are allowed.)]

The ↵(k�), ⇣(k�) and !(k�,k2
?) are, respectively, the twist-2, twist-3 and twist-4 coe�cients of the jet

correlator, and can be obtained by projecting Eq. (4) onto suitable Dirac structures. Denoting the projection
of J onto a generic Dirac matrix � by

J
[�] ⌘ Tr


J
�

2

�
=

1

2

Z
dk

+Tr


⌅
�

2

�
, (8)

one finds:

↵(k�) = J
[��] =

1

2

Z
dk

+Tr


⌅
�
�

2

�
, (9)

⇣(k�) =
k
�

⇤
J
[I] =

k
�

⇤

1

2

Z
dk

+Tr


⌅

I
2

�
, (10)

!(k�,k2
?) =

✓
k
�

⇤

◆2

J
[�+] =

✓
k
�

⇤

◆2
1

2

Z
dk

+Tr


⌅
�
+

2

�
. (11)

We will discuss the calculation of these coe�cients in detail later, but can already compare the quark jet
correlator (7) to the free propagator of an on-shell quark of mass m, [AS: (I include here the comparison,
inspired by eq. 52 in EPJC paper - finish description)]

/k +m = k
�
�
+ + /k? +mI+ m

2 + k2
?

2k�
�
�
. (12)

and

J(k�,kT ;n+) =
✓(k�)

4(2⇡)3 k�

⇢
k
�
�
+ + /kT +MjI+

K
2
j + k2

T

2k�
�
�
�

, (13)

with the “jet virtuality”

K
2
j = µ

2
j + ⌧

2
j + g.f.t. (14)

receiving contributions from the invariant mass directly produced in the quark fragmentation process (µ2
j ), from

the final state jet broadening (⌧2j ), and from a gauge fixing term [g.f.t.]. Apart for a trivial rescaling factor
[2], we can interpret the twist-3 coe�cient as a gauge-invariant nonperturbative generalization of the quark’s
current mass, m ! ⇤⇣, and the twist-4 coe�cient a gauge-invariant nonperturbative generalization of the
quark;s mass shell, m2 + k2

? ! ⇤2
!. [AS: I’m not sure about the comparisons defined with the !]

III. LIGHT-CONE SPECTRAL FUNCTION

The jet correlator ⌅ is by definition gauge invariant, contrary to the quark operator iS̃ appearing in Eq.(1),
which will depend on the gauge choice. This has been made explicit with the inclusion of a 4-vector dependence

7

where the principle value of 1/x is to be understood in the distribution sense, integrated over a test function

hP
�
1
x

�
,�(x)i =

R1
�1 dxP

�
1
x

�
�(x) = lim✏!0+

R
R\(�✏,+✏)

�(y)
y = i⇡�(0). Hence, P

�
1
x

�
= i⇡�(x). Using the

result (37) back into Eq. (36) will set the Wilson line to unity, leading to the gauge independent result stated
in (34) and that leads to the result (35) for the coeficcient ↵(k�).

B. Twist three projection

We can now apply the method that has just been discussed to calculate ⇣(k�). Using the definition of ⇣(k�)
given in Eq. (10) and after integrating over k+ and p?, one obtains:

⇣(k�) =
1

2⇤

Z 1

0
dp

2 Disc
Trc
Nc

h⌦|
p

p2 �̂1(p
2)J3(k

�)|⌦i, (39)

where J3(k�) has been defined to be:

J3(k
�) = k

�
Z 1

0

dp
�

p�

Z
d⇠

+

2⇡
e
i⇠+(k��p�)

W (⇠+). (40)

As in the twist-two case, this integral could be directly evaluated in the light-cone gauge, leading to the result

J3(k
�) = I2(k

�) = ✓(k�) (41)

and

⇣(k�) =
1

2⇤

Z 1

0
dp

2
p
p2

=⇢1(p
2)/(2⇡)3z }| {

Disc
Trc
Nc

h⌦| �̂1(p
2) |⌦i ✓(k�) = ✓(k�)

2⇤(2⇡)3
Mj , (42)

where

Mj =

Z
dp

2
p

p2 ⇢1(p
2) (43)

in the chiral-odd invariant jet mass. It is illuminating to compare it to the general case, where W (⇠+) 6= 1. For
this, as before, we employ the dimensionless variables y and � to write J3(k�) as:

J3(k
�) =

Z
dy

2⇡
vk�(y) eiy W (y/k�), (44)

where vk�(y) has been defined as

vk�(y) ⌘
Z 1

0

d�

�
e
�iy�sign(k�)

. (45)

Now we note the convenient relation between the derivative of vk�(y) and the function uk�(y) defined in Eq. (37)
that will be used shortly ahead:

v
0
k�(y) = �i sign(k�)uk�(y). (46)

In order to deal with the Wilson line, we write the exponential appearing in Eq. (44) as a derivative acting on
the exponential eiy = �i

@
@y e

iy, such that one can perform the integration over y using integration by parts. In
practice, one successively apply the exponential trick followed by integration by parts to obtain

J3(k
�) = ✓(k�)

" 1X

n=0

i
n
�
@
n
yW (y/k�)

�
#

y=0

= ✓(k�)

✓
1

1� i@y
W (y/k�)

◆

y=0

. (47)

Substituting this result back into Eq.( 39), one obtains

⇣(k�) =
1

2⇤

Z 1

0
dp

2 Disc
Trc
Nc

h⌦|
p

p2 �̂1(p
2)

✓
1

1� i@y
W (y/k�)

◆

y=0

|⌦i ✓(k�). (48)
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In the light-cone gauge, we recover the result stated in Eqs. (41) and (42). Let us look at the result of the
coe�cient Eq. (39) in the general case. Using the explicit form of the Wilson line and expanding it powers of
g, one obtains

⇣(k�) = Mj ✓(k
�) +

g

k�

Z 1

0
dp

2 Disc
Trc
Nc

h⌦|
p

p2 �̂1(p
2)A�(0)|⌦i✓(k�) +O

�
(g/k�)2

�
. (49)

Compare this to the light-cone gauge result given in Eq. (42) and note that the integrand (apart from ✓(k�)) in
the second term and higher orders in (g/k�)2 on the LHS cannot bring any additional dependence on k

� that
could possibly cancel the factors of (1/k�)n, for n > 0. Since ⇣(k�) is gauge invariant and therefore must agree
in di↵erent choices of gauges, one concludes that all these terms vanish with the exception of the first one.

C. Twist four projection

We now proceed to the calculation of the ! coe�cient defined by Eq. (11) and whose nonvanishing contribution
in any gauge is given by

!(k�,k2
?) =

✓
k
�

⇤

◆2

Disc

Z
dk

+

Z
d
4
p
Trc
Nc

h⌦|�̂3(p
2)
p
2 + p2

?
2p�

fW (k � p;n+)|⌦i, (50)

where we have written p · n+ = (p2 + p2
?)/2p

�. The integration over k
+ simply sets the conjugate space

coordinate to zero, ⇠� = 0, in the partial Fourier transform of the Wilson line. The first term can be further
integrated over the transverse momentum, which sets ⇠? = 0 in the Wilson line and simplifies the calculation in
the light-cone gauge. The calculation of this term in other gauge is more complicated but it can be performed
by following the same strategy employed in the calculation of the twist 2 and twist 3 coe�cients. The second
term is more elaborated due to the presence of p2

? which prevents the direct integration over the transverse
momentum that would allow to set ⇠? = 0 in the Wilson line, turning it into a collinear Wilson line, which in
the light-cone gauge becomes unity in color space. We thus write Eq.(50) as a sum of two terms:

!(k�,k2
?) = !`(k

�) + !t(k
�
,k2

?), (51)

where !` and !t are, respectively, the transverse-momentum-independent (”longitudinal”) and transverse-
momentum dependent components of the twist 4 coe�cient:

!`(k
�) =

1

(2⇤)2

Z 1

0
dp

2
p
2 Disc

Trc
Nc

h⌦|�̂3(p
2)J`(k

�)|⌦i, (52)

!t(k
�
,k2

?) =
1

(2⇤)2

Z 1

0
dp

2 Disc
Trc
Nc

h⌦|�̂3(p
2)Jt(k

�
,k?)|⌦i, (53)

where

J`(k
�) =

Z 1

0
dp

�
✓
k
�

p�

◆2 Z
d⇠

+

2⇡
e
i⇠+(k��p�)

W (⇠+), (54)

Jt(k
�
,k?) =

Z 1

0
dp

�
✓
k�
p�

◆2 Z
d
2p?

Z
d
2
⇠?

(2⇡)2
p2
? e

i⇠?·(k?�p?)fW (k� � p
�
, ⇠?, ⇠

� = 0;n+). (55)

In the light-cone gauge, the calculation of the longitudinal term is is straightforward and leads to
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is interpreted as the average invariant mass squared of the particles produced by the quark fragmentation. The
calculation of the transverse Jt operator in Eq. (55) is more involved. First, we notice that
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Final state interactions ”vanish”q But in other gauges
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where Uv[a; b] is a straight Wilson line from a to b along the v direction. One recognizes, respectively, the staple
Wilson line used in TMD factorization theorems, and the light-cone Wilson line used in collinear factorization
factorization theorems. With these definitions, the integrated correlator in Eq. (4) can be used in perturbative
calculations of inclusive DIS and semi-inclusive electron-positron annihilation [9–11] coupled, respectively, to the
target transversity parton distribution function and the polarized (e.g. ⇤) hadron transversity fragmentation
function. In these processes, the “inclusive jet correlator” J [AS: (adjust naming conventions)] is used
instead of the free quark propagator to describe the hadronization of a scattered quark in the so-called end-
point kinematics of the process [AS: (include references for large-x DIS)], where the invariant mass of the
final state is limited, and the produced hadrons are kinematically constrained into a narrow – yet unobserved
– jet of particles along the quark’s direction of motion, thus earning its name.

With the strongly ordered k
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+ momentum components, one can give the inclusive jet correlator

in Eq. (4) a “twist” decomposition controlled by the power counting scale ⇤ [1, 2]:
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Notice that we did not include time-reversal odd (T-odd) structures in the decomposition (7), since these are
not allowed in the fully inclusive hadronization of a quark [2], at variance with the less inclusive description of
a jet (see e.g. Ref. [12, 13]) and the one- or two-particle inclusive cases [14]. [AS: (I slightly modified this
sentence and I also refer to those cases where T-odd structures in jets are allowed.)]
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We will discuss the calculation of these coe�cients in detail later, but can already compare the quark jet
correlator (7) to the free propagator of an on-shell quark of mass m, [AS: (I include here the comparison,
inspired by eq. 52 in EPJC paper - finish description)]
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receiving contributions from the invariant mass directly produced in the quark fragmentation process (µ2
j ), from

the final state jet broadening (⌧2j ), and from a gauge fixing term [g.f.t.]. Apart for a trivial rescaling factor
[2], we can interpret the twist-3 coe�cient as a gauge-invariant nonperturbative generalization of the quark’s
current mass, m ! ⇤⇣, and the twist-4 coe�cient a gauge-invariant nonperturbative generalization of the
quark;s mass shell, m2 + k2

? ! ⇤2
!. [AS: I’m not sure about the comparisons defined with the !]

III. LIGHT-CONE SPECTRAL FUNCTION

The jet correlator ⌅ is by definition gauge invariant, contrary to the quark operator iS̃ appearing in Eq.(1),
which will depend on the gauge choice. This has been made explicit with the inclusion of a 4-vector dependence
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where D? = @? � igA? is the transverse gauge-covariant derivative and G
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�A?, and the second term reduces to the transverse covariant
derivative of the transverse gauge fields evaluated at the boundaries. The transverse fields evaluated at the
origin cancels the term in the first line and the remaining transverse fields at light-cone infinity vanishes by
imposing advanced boundary conditions. We argued before that this term would vanish in the ligh-cone gauge
and now we can see in a clear way. Plugging this result back in Eq. (63) and adding the longitudinal part of
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where Uv[a; b] is a straight Wilson line from a to b along the v direction. One recognizes, respectively, the staple
Wilson line used in TMD factorization theorems, and the light-cone Wilson line used in collinear factorization
factorization theorems. With these definitions, the integrated correlator in Eq. (4) can be used in perturbative
calculations of inclusive DIS and semi-inclusive electron-positron annihilation [9–11] coupled, respectively, to the
target transversity parton distribution function and the polarized (e.g. ⇤) hadron transversity fragmentation
function. In these processes, the “inclusive jet correlator” J [AS: (adjust naming conventions)] is used
instead of the free quark propagator to describe the hadronization of a scattered quark in the so-called end-
point kinematics of the process [AS: (include references for large-x DIS)], where the invariant mass of the
final state is limited, and the produced hadrons are kinematically constrained into a narrow – yet unobserved
– jet of particles along the quark’s direction of motion, thus earning its name.
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Notice that we did not include time-reversal odd (T-odd) structures in the decomposition (7), since these are
not allowed in the fully inclusive hadronization of a quark [2], at variance with the less inclusive description of
a jet (see e.g. Ref. [12, 13]) and the one- or two-particle inclusive cases [14]. [AS: (I slightly modified this
sentence and I also refer to those cases where T-odd structures in jets are allowed.)]

The ↵(k�), ⇣(k�) and !(k�,k2
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We will discuss the calculation of these coe�cients in detail later, but can already compare the quark jet
correlator (7) to the free propagator of an on-shell quark of mass m, [AS: (I include here the comparison,
inspired by eq. 52 in EPJC paper - finish description)]
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receiving contributions from the invariant mass directly produced in the quark fragmentation process (µ2
j ), from

the final state jet broadening (⌧2j ), and from a gauge fixing term [g.f.t.]. Apart for a trivial rescaling factor
[2], we can interpret the twist-3 coe�cient as a gauge-invariant nonperturbative generalization of the quark’s
current mass, m ! ⇤⇣, and the twist-4 coe�cient a gauge-invariant nonperturbative generalization of the
quark;s mass shell, m2 + k2
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!. [AS: I’m not sure about the comparisons defined with the !]

III. LIGHT-CONE SPECTRAL FUNCTION

The jet correlator ⌅ is by definition gauge invariant, contrary to the quark operator iS̃ appearing in Eq.(1),
which will depend on the gauge choice. This has been made explicit with the inclusion of a 4-vector dependence
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where D? = @? � igA? is the transverse gauge-covariant derivative and G
?� is the field strength tensor.

Notice that in the light-cone gauge G
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�A?, and the second term reduces to the transverse covariant
derivative of the transverse gauge fields evaluated at the boundaries. The transverse fields evaluated at the
origin cancels the term in the first line and the remaining transverse fields at light-cone infinity vanishes by
imposing advanced boundary conditions. We argued before that this term would vanish in the ligh-cone gauge
and now we can see in a clear way. Plugging this result back in Eq. (63) and adding the longitudinal part of
the ! projection, we find for the full ! projection in a generic gauge:
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Final state interactions ”vanish”
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In the light-cone gauge, we recover the result stated in Eqs. (41) and (42). Let us look at the result of the
coe�cient Eq. (39) in the general case. Using the explicit form of the Wilson line and expanding it powers of
g, one obtains
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Compare this to the light-cone gauge result given in Eq. (42) and note that the integrand (apart from ✓(k�)) in
the second term and higher orders in (g/k�)2 on the LHS cannot bring any additional dependence on k

� that
could possibly cancel the factors of (1/k�)n, for n > 0. Since ⇣(k�) is gauge invariant and therefore must agree
in di↵erent choices of gauges, one concludes that all these terms vanish with the exception of the first one.

C. Twist four projection

We now proceed to the calculation of the ! coe�cient defined by Eq. (11) and whose nonvanishing contribution
in any gauge is given by
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where we have written p · n+ = (p2 + p2
?)/2p

�. The integration over k
+ simply sets the conjugate space

coordinate to zero, ⇠� = 0, in the partial Fourier transform of the Wilson line. The first term can be further
integrated over the transverse momentum, which sets ⇠? = 0 in the Wilson line and simplifies the calculation in
the light-cone gauge. The calculation of this term in other gauge is more complicated but it can be performed
by following the same strategy employed in the calculation of the twist 2 and twist 3 coe�cients. The second
term is more elaborated due to the presence of p2

? which prevents the direct integration over the transverse
momentum that would allow to set ⇠? = 0 in the Wilson line, turning it into a collinear Wilson line, which in
the light-cone gauge becomes unity in color space. We thus write Eq.(50) as a sum of two terms:
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h⌦|�̂3(p
2)J`(k

�)|⌦i, (52)

!t(k
�
,k2

?) =
1

(2⇤)2

Z 1

0
dp

2 Disc
Trc
Nc

h⌦|�̂3(p
2)Jt(k

�
,k?)|⌦i, (53)

where

J`(k
�) =

Z 1

0
dp

�
✓
k
�

p�

◆2 Z
d⇠

+

2⇡
e
i⇠+(k��p�)

W (⇠+), (54)

Jt(k
�
,k?) =

Z 1

0
dp

�
✓
k�
p�

◆2 Z
d
2p?

Z
d
2
⇠?

(2⇡)2
p2
? e

i⇠?·(k?�p?)fW (k� � p
�
, ⇠?, ⇠

� = 0;n+). (55)

In the light-cone gauge, the calculation of the longitudinal term is is straightforward and leads to

J
lcg
` (k�) = ✓(k�)

!
lcg
` (k�) =

1

(2⇤)2

Z 1

0
dp

2
p
2

=⇢3(p
2)/(2⇡)3z }| {

Disc
Trc
Nc

h⌦| �̂3(p
2) |⌦i ✓(k�) = ✓(k�)

(2⇤)2(2⇡)3
(µ2

j )
lcg

, (56)

where

(µ2
j )

lcg ⌘
Z 1

0
dp

2
p
2
⇢
lcg
3 (p2) (57)

is interpreted as the average invariant mass squared of the particles produced by the quark fragmentation. The
calculation of the transverse Jt operator in Eq. (55) is more involved. First, we notice that

p2
?e

i⇠?(k?�p?) =
⇥
(i@?)2 + k2

? + 2 ik? · @?
⇤
e
i⇠?(k?�p?)

. (58)
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where the principle value of 1/x is to be understood in the distribution sense, integrated over a test function

hP
�
1
x

�
,�(x)i =

R1
�1 dxP

�
1
x

�
�(x) = lim✏!0+

R
R\(�✏,+✏)

�(y)
y = i⇡�(0). Hence, P

�
1
x

�
= i⇡�(x). Using the

result (37) back into Eq. (36) will set the Wilson line to unity, leading to the gauge independent result stated
in (34) and that leads to the result (35) for the coeficcient ↵(k�).

B. Twist three projection

We can now apply the method that has just been discussed to calculate ⇣(k�). Using the definition of ⇣(k�)
given in Eq. (10) and after integrating over k+ and p?, one obtains:

⇣(k�) =
1

2⇤

Z 1

0
dp

2 Disc
Trc
Nc

h⌦|
p

p2 �̂1(p
2)J3(k

�)|⌦i, (39)

where J3(k�) has been defined to be:

J3(k
�) = k

�
Z 1

0

dp
�

p�

Z
d⇠

+

2⇡
e
i⇠+(k��p�)

W (⇠+). (40)

As in the twist-two case, this integral could be directly evaluated in the light-cone gauge, leading to the result

J3(k
�) = I2(k

�) = ✓(k�) (41)

and

⇣(k�) =
1

2⇤

Z 1

0
dp

2
p
p2

=⇢1(p
2)/(2⇡)3z }| {

Disc
Trc
Nc

h⌦| �̂1(p
2) |⌦i ✓(k�) = ✓(k�)

2⇤(2⇡)3
Mj , (42)

where

Mj =

Z
dp

2
p

p2 ⇢1(p
2) (43)

in the chiral-odd invariant jet mass. It is illuminating to compare it to the general case, where W (⇠+) 6= 1. For
this, as before, we employ the dimensionless variables y and � to write J3(k�) as:

J3(k
�) =

Z
dy

2⇡
vk�(y) eiy W (y/k�), (44)

where vk�(y) has been defined as

vk�(y) ⌘
Z 1

0

d�

�
e
�iy�sign(k�)

. (45)

Now we note the convenient relation between the derivative of vk�(y) and the function uk�(y) defined in Eq. (37)
that will be used shortly ahead:

v
0
k�(y) = �i sign(k�)uk�(y). (46)

In order to deal with the Wilson line, we write the exponential appearing in Eq. (44) as a derivative acting on
the exponential eiy = �i

@
@y e

iy, such that one can perform the integration over y using integration by parts. In
practice, one successively apply the exponential trick followed by integration by parts to obtain

J3(k
�) = ✓(k�)

" 1X

n=0

i
n
�
@
n
yW (y/k�)

�
#

y=0

= ✓(k�)

✓
1

1� i@y
W (y/k�)

◆

y=0

. (47)

Substituting this result back into Eq.( 39), one obtains

⇣(k�) =
1

2⇤

Z 1

0
dp

2 Disc
Trc
Nc

h⌦|
p

p2 �̂1(p
2)

✓
1

1� i@y
W (y/k�)

◆

y=0

|⌦i ✓(k�). (48)
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q Completed the analysis of the gauge invariant quark propagator

q Full calculation of the twist-4 coefficient

q Formal demonstration of the gauge invariance of the twist-2, twist-3 and twist-4 

coefficients of the g.i. quark propagator/jet correlator

Ø New sum rules for the quark spectral functions (needed: numerical checks)

q In particular:

Ø Second moment of 𝜌% vanishes

Ø First moment of the chiral odd quark spectral function gives a mass 𝑀& that 

is a gauge invariant generalization of the gauge dependent quark mass
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Summary

q 𝑀& color screened gauge invariant mass

Ø Non-vanishing even in the chiral limit

Ø Provides a direct way to probe dynamical chiral symmetry breaking

Ø It’s calculable, but moreover.. It can be measured!
(In progress)
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