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High Energy Scattering

Target (ρt) Projectile (ρp)

〈T| → ← |P〉

S-matrix:

S(Y) = 〈T 〈P| Ŝ(ρ
t
, ρ

p
) |P〉T〉

or, more generally, any observable Ô(ρt, ρp)

〈Ô〉Y = 〈T 〈P| Ô(ρ
t
, ρ

p
) |P〉T〉

How these averages change with increase in energy of the process?

∂Y〈Ô〉Y = −H〈Ô〉Y H → theHE effectiveHamiltonian

H defines the high energy limit of QCD and is universal
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Projectile averaged S-matrix:

Σ(Y) ≡ 〈P| Ŝ(ρt, ρp) |P〉

evolves with rapidity as

Σ(Y + δY) = e
−δYH

Σ(Y)

H = HLO(αs) + HNLO(α2

s) + . . . ; H = H[ρt, δ/δρt]

JIMWLK Hamiltonian is a limit of H for dilute partonic system (ρp → 0) which scatters

on a dense target. It accounts for linear gluon emission + multiple rescatterings. When

applied to a dipole, in the large Nc limit, it leads to BK equation.

HLO (1997-2002), HNLO with massless quarks (2007-2016), HNLO(mq) (2022)
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Motivation and Objectives

Precise saturation physics phenomenology at NLO is badly needed.

The JIMWLK Hamiltonian at NLO is known for some years, but there are problems there.

• No known recipe for numerical evaluation

• Large logarithms emerge: H ∼ αs(# + αs (# + Log)),

If the Log is large, then αs Log ∼ 1 – not a small correction to LO

There are various types of the large Logs there:

running coupling effects, (Ioffe) time ordering, DGLAP logs.

All have to be identified, clearly separated, and independently resummed.

A. Kovner, M. Lublinsky, V. V. Skokov and Z. Zhao,

“DGLAP resummation and the running coupling in NLO JIMWLK,” [arXiv:2308.15545 [hep-ph]].

We both resummed the UV divergent Logs into correct form of the running coupling

(rcJIMWLK) and derived the RG-improved JIMWLK Hamiltonian. We have not resummed

all large Logs, but only the ones related to DGLAP splittings. We also approximately

solved the RG in the dilute and dense limits. The result is smearing of the LO kernel.
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Light Cone Wave Function in Born-Oppenheimer approximation

HLC
QCD |Ψ〉 = E |Ψ〉

BO: split the modes into hard and soft.

The hard (valence) modes with k+ > Λ

They act as an external background current

j+a = δ(x−) ρa for the soft modes.

H
LC

QCD = H[ρ, a, a
†
] = HV[ρ] + Hfree[a, a

†
] + Hint[ρ, a, a

†
]

LCWF with no soft modes

HV |v, 0a〉 = E0 |v, 0a〉 ; a |v, 0a〉 = 0 ; E0 = 0

LCWF with soft gluon/quark dressing

|Ψ〉 = Ω(ρ, a, a
†
) |v, 0a〉 ; Ω

†
(Hfree + Hint) Ω = Hdiagonal

Find Ω in perturbation theory
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LCWF at LO

Eikonal coupling between valence and soft gluons due to separation of scales

Hint = −
∫

dk+

2π

d2k⊥

(2π)2
g ki√

2 |k+|3/2
[

a
†a
i (k+, k⊥) ρa(−k⊥) + a

a

i (k
+, − k⊥) ρa(k⊥)

]

A cloud of classical Weizsaker-Williams gluons

dressing the valence ones

b
a

i (z) =
g

2π

∫

d
2
x
(z− x)i

(z− x)2
ρa(x)

ΩY(ρ → 0) ≡ CY = Exp

{

i

∫

d
2
z b

a

i (z)

∫ eY Λ

eY0 Λ

dk+

π1/2|k+|1/2
[

a
a

i (k
+, z) + a

†a
i
(k+, z))

]

}
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LO JIMWLK Hamiltonian

Jalilian Marian, Iancu, McLerran, Weigert, Leonidov, Kovner (1997-2002)

HJIMWLK

LO =

∫

x,y,z

KLO

{

J
a

L(x)J
a

L(y) + J
a

R(x)J
a

R(y)− 2J
a

L(x)S
ab

A (z)Jb

R(y)
}

KLO(x, y, z) =
αs

2π2

(x − z)i(y − z)i

(x− z)2(y − z)2

SA
cd(z) = P exp

{

i

∫

dx
+
T

a αa

t(z, x
+)

}cd

. ∆”αt = ρt (YM)

Here ρp → JL and Ŝρp → JR are left and right SU(N) generators:

J
a

L(x)S
ij

A(z) = (Ta
SA(z))

ij δ2(x− z) J
a

R(x)S
ij

A(z) = (SA(z)T
a)ij δ2(x− z)

HJIMWLK contains all the LO BFKL /BKP/TPV physics
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LCWF at NLO

ML and Yair Mulian, arXiv:1610.03453
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JIMWLK Hamiltonian @ NLO

ΣJSJ ΣJSJ

Σqq ΣJSSJ

ΣJJSJ ΣJJSJ
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ΣJJSSJJ ΣJJSSJJ

ΣJJJSJ ΣJJJSJ
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JIMWLK Hamiltonian @ NLO

Kovner, ML & Mulian (2013) based on Balitsky & Chirilli (2007), Grabovsky (2013); ML & Mulian (2016)

HNLO JIMWLK =

∫

x,y,z

KJSJ(x, y; z)
[

Ja
L(x)J

a
L(y) + Ja

R(x)J
a
R(y)− 2Ja

L(x)S
ab
A (z)Jb

R(y)
]

+

∫

x y z z′
KJSSJ(x, y; z, z

′
)
[

f
abc

f
def

J
a
L(x)S

be
A (z)S

cf
A (z

′
)J

d
R(y)−NcJ

a
L(x)S

ab
A (z)J

b
R(y)

]

+

∫

x,y,z,z′
Kqq̄(x, y; z, z

′
)
[

2 J
a
L(x) tr[S

†
F (z) t

a
SF (z

′
)t

b
] J

b
R(y) − J

a
L(x)S

ab
A (z) J

b
R(y)

]

+

∫

w,x,y,z,z′
KJJSSJ(w; x, y; z, z

′
)f

acb
[

J
d
L(x) J

e
L(y)S

dc
A (z)S

eb
A (z

′
) J

a
R(w)

− Ja
L(w)Scd

A (z)Sbe
A (z′) Jd

R(x) J
e
R(y)

]

+

∫

w,x,y,z

KJJSJ(w; x, y; z) f
bde

[

J
d
L(x) J

e
L(y)S

ba
A (z) J

a
R(w)− J

a
L(w)S

ab
A (z) J

d
R(x) J

e
R(y)

]

+

∫

w,x,y

KJJJ(w; x, y)f
deb

[J
d
L(x) J

e
L(y) J

b
L(w) − J

d
R(x) J

e
R(y) J

b
R(w)] .
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NLO Kernels

X = x− z, X
′ = x− z

′, Y = y − z, Y
′ = y − z

′, W = w − z

KJSSJ(x, y; z, z
′
) =

α2
s

16π4

[

− 4

(z − z′)4
+

{

2
X2Y ′

2
+ X ′

2
Y 2 − 4(x − y)2(z − z′)2

(z − z′)4[X2Y ′2 −X ′2Y 2]

+
(x− y)4

X2Y ′2 −X ′2Y 2

[ 1

X2Y ′2
+

1

Y 2X ′2

]

+
(x − y)2

(z − z′)2

[ 1

X2Y ′2
− 1

X ′2Y 2

]}

ln
X2Y ′

2

X ′2Y 2

]

+ K̃(x, y, z, z′).

KJSJ(x, y; z) = − α2
s

16π3

(x − y)2

X2Y 2

[

b ln(x−y)
2
µ
2−b

X2 − Y 2

(x− y)2
ln

X2

Y 2
+(

67

9
−π2

3
)Nc−

10

9
nf

]

−Nc

2

∫

z′
K̃(x, y, z, z

′
).

Here µ is the normalization point, b = 11
3
Nc − 2

3
nf
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Resummation of large Logs

H =

∫

x,y,z

K(x, y; z)
[

J
a

L(x) J
a

L(y) + J
a

R(x)J
a

R(y) − 2J
a

L(x) S
ab

A (z) J
b

R(y)
]

Resum large Logs into an effective kernel K = KLO + KJSJ + ....

Action on a dipole S(u, v)

H S(u, v) = Nc

∫

z

Kdipole(u, v, z) [S(u, z) S(z, v) − S(u, v)]

Kdipole(u, v, z) = K(u, u, z) + K(v, v, z) − K(u, v, z) − K(v, u, z)

Positive semidefinite kernels:
∫

d
2
Xd

2
Y f(X)K(X,Y) f(Y) ≥ 0 for f

K(X,X) + K(Y,Y) − 2K(X,Y) ≥ 0 → Kdip(X,Y) ≥ 0

K(X,X) + K(Y,Y) − K
2
(X,Y) ≥ 0
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Running coupling

Large UV Logs:

KJSJ(b terms) =
α2

s

16π3

{

−b(x− y)2

X2Y2
ln(x− y)

2
µ

2
+

b

X2
lnY

2
µ

2
+

b

Y2
lnX

2
µ

2

}

K
Bal

=
αs(X−Y)

2π2

X ·Y
X2Y2

+
αs(X)

4π2

1

X2

(

1− αs(X−Y)

αs(Y)

)

+
αs(Y)

4π2

1

Y2

(

1− αs(X− Y)

αs(X)

)

K
KW =

αs(X)αs(Y)

αs(R(X,Y))

1

2π2

X · Y
X2Y2

Finite terms are different too due to different UV subtraction/reshuffling schemes

None of the kernels is positive semidefinite T. Altinoluk, G. Beuf, ML, and V. Skokov, to appear

These results are problematic: what αs is doing in the denominators? why is the charge

renormalization of the emitter at position x sensitive to position of another emitter at y?
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A different approach

1. Proper definition of the considered observable:

Finite resolution Q for gluon splitting into two must be introduced (this could be

identified with non-linear wavefunction renormalization of the soft gluon field).

Bare gluons → dressed gluons: bare Wilson lines → dressed Wilson lines, S → SQ

2. Identification of running coupling correction among higher order terms

Not all Logs proportional to b are due to charge renormalization and should be absorbed

into some form of αs running. Zoom on UV divergent logs.

3. Resummation of the identified running coupling effects.

Charge in the amplitude and the conjugate amplitude must be renormalized

independently. We will get the most intuitive result:

KLO =
αs

2π2

XY

X2Y2
→

√

αs(X)αs(Y)

2π2

XY

X2Y2

4. Resummation of additional large logs.

Large Logs associated with the resolution Q are resummed a la DGLAP.

√

αs(X)αs(Y)

2π2

XY

X2Y2
→

√

αs(X)αs(Y)

2π2

XY

X2Y2
× δK

DGLAP
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UV divergence in two-gluon (and quark) sector

∫

x y z,z′
KJSSJ(x, y; z, z

′
) J

a

L(x)J
b

R(y)
[

D
ab
(z, z

′
)
]

∼ b × (UV divergent Log)

D
ab
(z1, z2) ≡ Tr[T

a
SA(z)T

b
S
+
A(z

′
)]

The UV divergence in JSSJ is trivial: when the two gluons are too close to each other,

they cannot be resolved by the target and hence should be counted as a single gluon

scattering. We are thus prompted to introduce a ”resolution scale” Q pretty much the

same way as it is done in the DGLAP.
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Dressed Wilson line

S
ab

Q (z) = S
ab

A (z)+
αs

2π2

∫ 1

0

dξ σ(ξ)

∫ Q−1 d2Z

Z2

(

D
ab(z + (1− ξ)Z, z− ξZ) − Nc S

ab

A (z)
)

ξ is the fraction of longitudinal momentum carried by one of the gluons.

σ(ξ) =

[

1

ξ(1− ξ)

(

ξ
2
+ (1− ξ)

2
+ ξ

2
(1− ξ)

2
)

]

+

; 2Nc

∫ 1

0

dξσ(ξ) = − 11Nc

3
→ − b

This is a Pgg splitting function except that we introduce the ”+” prescription both for

ξ = 1 and ξ = 0 poles (they enter fully symmetrically). In the usual DGLAP, ξ > xbj. In

the eikonal approximation we have lost a track of the longitudinal momenta, equivalent

to xbj → 0. Further extension is to go beyond the eikonal S → Sξ.

The ”+” prescription emerges from the 1/ξ subtraction absorbed into (LO)2 part of the

evolution.

The sign is negative – correcting for the over-subtraction in the LO.

Apart a somewhat modified splitting function, we go beyond the usual DGLAP: we allow

simultaneous scattering of all gluons.
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Resolution scale

Express S in terms of SQ and substitute it into the JIMWLK Hamiltonian.

Consequently, the Hamiltonian will feature lnQ2 terms, such as ln(Q2X2).

What value of Q should we take?

• If we take Q = QT
s then SQ = SA - the target does not resolve gluon splitting at

distances smaller than 1/QT
s . This is also the scale of the real-virtual cancelation inside

the JIMWLK Hamiltonian. The lnQ2 terms in the Hamiltonian will be large and have

to be resummed.

• We assume existence of a typical scale QP
s ≪ QT

s associated with the projectile, such

that ln(QP
s X

2) are small. If we set Q = QP
s , then there will be no large Logs in the

Hamiltonian, but SQ is very different from SA, roughly

SQ ∼ SA [1 + αs #Log(Q2/QT
s )]. This large Log has to be resummed into SQ via

inclusion of multiple consecutive DGLAP splittings:

∂SQ(z)

∂ lnQ
= − αs

2π2

∫

ξ

σ(ξ)

∫

φQ

[DQ(z)−Nc SQ(z)] ; DQ(z1, z2) ≡ Tr[T
a
SQ(z1)T

b
S
+
Q(z2)]
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RG

• The resummed Hamiltonian should be Q-independent:

dH
d lnQ

=
∂H

∂ lnQ
+

∫

u

[

δH

δSQ(u)

∂SQ(u)

∂ lnQ

]

= 0

Recall that H (or rather Σ) is the diagonal element of the S-matrix.

H =

∫

u

[

δH
δSQ(u)

SQ(u)

]

” = ” probability to emit gluon ⊗ hard scattering

DGLAP-like evolution for the Hamiltonian (evolution in the space of Hamiltonians):

∂H
∂ lnQ

= −
∫

u

[

δH
δSQ(u)

∂SQ(u)

∂ lnQ

]

=
αs

2π2

∫

u

[

δH
δSQ(u)

∫

ξ

σ(ξ)

∫

φQ

[DQ(u) − Nc SQ(u)]

]
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Initial conditions and the running coupling

Initial conditions: at Q = QP
s

Hin =

∫

Kin

[

SQ(z)S
†
Q(z) + SQ(x)S

†
Q(y) − SQ(x)S

†
Q(z)− SQ(z)S

†
Q(y)

]ab

J
a

L(x) J
b

L(y)

Kin = KLO

(

1 +
αs

4π
b (lnX

2µ2 + lnY
2µ2 − lnQ

−2µ2)

)

+ otherO(α2
s) stuff

The remaining part of the Hamiltonian proportional to b is UV finite and does not have

any large Logs. So, we ignore it for now. (To be precise, there are large Logs hidden in

JJSJ/JJSSJ kernels)

Kin =

√

αs(X)αs(Y)

2π2

XY

X2Y2

[

1 +
αs

8π
b (lnX

2
Q

P2

s + lnY
2
Q

P2

s )

]

The Log terms in Kin are small NLO corrections.

Evolve up to Q = QT
s .
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Formal Solution

H = Exp

[

∫ QT
s

QP
s

dQ

Q
HDGLAP

]

Hin

HDGLAP =
αs(Q

2)

2π2

∫

u

∫

ξ

σ(ξ)

∫

φQ

Tr

(

[DQ(u) − Nc SQ(u)]
δ

δSQ(u)

)

where we have promoted αs = αs(Q
2) into running coupling, formally exceeding the

accuracy of the derivation.
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Weak target field approximation – linearization

S
ab

Q = δab + f
abcαc

Q ; D
ab

Q (z1, z2) = Nc

(

δab +
1

2
f
abc

[

αc

Q(z1) + (αc

Q(z2))
∗
]

)

Expand the Hamiltonian (BFKL-like)

HDGLAP ∼ αQ

δ

δαQ

HDGLAP is homogeneous and hence solvable

Saturation region

HDGLAP =
αs

2π2

∫

u

∫

ξ

σ(ξ)

∫

φQ

Tr

(

[Tr[T
a
SQ(z1)T

b
S
+
Q(z2)]u − Nc SQ(u)]

δ

δSQ(u)

)

Since |z1 − z2| = 1/Q > 1/QT
s , the two gluons are well separated and outside the

correlation region in the target (in a sense of averaging over the target). Neglect the first

term. HDGLAP is again homogeneous
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Summary/Outlook

• DGLAP-like resummation inside the JIMWLK Hamiltonian has been performed. These

DGLAP corrections are large whenever there is a large disparity between the correlation

lengths (or saturation momenta) in the projectile and the target. This is precisely

JIMWLK’s regime of validity.

The result is a smearing of the WW fields within the 1/QT
s distance

• rcJIMWLK emerges with the scale choice for the running coupling:

K ∼
√

αs(X)αs(Y )

• Numerical implementations are to follow
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