THE CHIRAL PION DECAY CONSTANT
with massive gluons

Marcela Peldez, N. Barrios, U. Reinosa, J. Serreau,
M. Tissier and N. Wschebor

Light Cone
¢ September 2023
4
4 4
A X /

\
e
»

A
mm ‘ (&) &Nr, FACULTAD DE
} ‘ ‘ nnnnnnn ™ ot =\ .53 CIENCIAS
DE NEST N UNIVERS|DAD s v oo
o DE LA REPUBLICA PEDECIBA oy
RUGUAY MEC-UDELAR

O QY OF O N

W N
* ¢



‘ Outline

What do we need for the The Chiral pion decay

pion decay constant? constant
Curci-Ferrari model Numerical solution.
Two small parameters in Conclusions and
the infrared perspectives
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‘ The pion decay constant: F
m It contributes in the leptonic pion decay n~ — £~ 1, for
l=e,pu
m The contribution due to the strong interaction comes from

the coupling of the pion to the axial current

A = la)ingtoth(x) o
(0] A}, g(z) | TV (p)) = ipue™*6" Fy
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Which diagrams we must include here?
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‘ Small parameters in ghost-gluon sector

= Small parameters even in the infrared.

= Advantage of small parameters: allow the
contributions of the different diagrams to be arranged in a

controlled way.
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‘ Infrared regime

Perturbation theory not valid at low momentum

for the standard Faddeev-Popov Lagrangian.

m Alternatives: e.g.

T 21000 Aoy = 095GeV, p =2 GeV

~ —I-loop contribution

Dyson-Schwinger equations,

fRG, Hamiltonian

=
approach... S E
= Lattice simulations
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‘ Infrared regime

m Observation: Finite coupling constant.

- B=57 64* —=—f
L 80% H-o— |
&% ]
= %
1.0 |- - g
2 | = ® ]
= i e o 4
S E2d & 4
0.5 |- < e -
i A 5 ]
i = - ]
L mt "y, 1
| & ]
0.0 vl vl il il il
0.001 0.01 0.1 1 10 100
¢ [GeV?]

Figure: [Bogolubsky et al. Phys. Lett. B676 (2009)]

So, why does perturbation theory not work at all?

The Faddeev-Popov procedure is not justified at low momentum. i




‘ Moreover

m Lattice simulations show a mass generation for the gluon

propagator
o s i
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Flgure: [I. L. Bogolubsky et al. Phys. Lett. B676 (2009)]

—



‘ The model: Massive gluons (Curci-Ferrari)

m Curci-Ferrari Lagrangian in Landau gauge:
2
s, a a =a a m
L = Liny +ih*0, A} + 0,8 (D) + TAZAZ
[Curci-Ferrari (1975))

m It still has a modified-BRST symmetry which allows to

prove renormalizability.

m It is posible to use a Infrared safe renormalization scheme.

We would like to check

... if the perturbative analysis reproduces the lattice

data
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‘ Gluon propagator & Ghost dressing function

B IS two ~loop results

8 IS one —loop results
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Figure: [1.a. Gracey et al. Phys.Rev.D 100 (2019) 3, 034023]
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‘ Vertices

Three-gluon vertex & Ghost-gluon vertex
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Figure: vattice data from [A.C. Aguilar et al. Phys.Lett.B 818 (2021) 136352] & [E.

Tigenfritz et al. Braz. J. Phys. 37 (2007)]




‘ Two loop results: Coupling constant
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Figure: [5.a. Gracey, MP et al Phys.Rev.D 100 (2019) 3, 034023]

—



‘ Ghost-Gluon sector

Correlation functions in the ghost-gluon sector

!

Perturbative despription in Curci-Ferrari model.
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‘ Quark-Gluon coupling VS Ghost-Gluon coupling

= Quark-gluon coupling constant not too small.
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Figure: pata from [Skullerud et al. JHEP 0304, 047 (2003))
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‘ Quark-Gluon coupling VS Ghost-Gluon coupling

m As the quark-gluon g, and YM g, running coupling

constants are different in the infrared, we treat them

/\&%
/ \gg

m g, is considered as small parameter. Yang-Mills sector can

separetly,

8q

be studied perturbately in the infrared.




‘ Large N, limit

m Large N, limit shows the same general features of QCD.

[G. 't Hooft, Nucl. Phys. B 75, 461 (1974). Witten, Nucl. Phys. B 160, 57 (1979)]

In the large N, limit, gluon propagators =

can be replaced by double color lines and gg ~ 1/v/N.

~ g2 ~1/N,
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‘ Organizing the systematic expansion:

m How to implement the systematic expansion, ¢-order
improved expansion:
= We write all diagrams until ¢-loops
= We count the powers of g, and 1//V.
m We also add higher loop order diagrams with the same

powers of g, and 1/V..
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Quark propagator
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Quark propagator
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‘ Rainbow equation

m Only Rainbow diagrams survive
1

— i .

ET L s ]

m They can be resummed in:

which is the well-known Rainbow approximation for the quark
propagator.
see e.g. [Johnson et al, PRB (1964). Maskawa, PTP (1975). Atkinson et al, PRD (1988). Miransky et al, PRC (2004). ]

[Maris et al, LIMP (2003). Roberts et al, EPJST (2007). Eichmann et al, PRC (2008). |
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‘ Meson propagator

We would like to use the one-loop NLO-RI approximation to

study meson properties.




m We can answered:
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m We can answered:

p
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Which diagrams we must include here?




‘ Pion decay constant

m The diagrams we must include correspond to

P Top
A;VV. s

In the Fourier space:

Gh.0) =~ / tr [i9,750" S (0)T% (2, 4))S ()]
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‘ Rainbow-ladder Bethe-Salpeter equation

Figure: Meson Bethe-Salpeter cquation at RI-one-loop order

The ladder aproximation for Bethe-Salpeter equation is:

F:r(qa ql) = i’750-i - )\A/k GI_W(]{))’YHS(K)F;(K, el)S(gl)FYu

where Ay = Crg3




m Writing

; 2 vel(q,q)
I (q, ivs0° MM — o
w(a,q') =175 Mo 72+ m2

where 7, (q,q') is regular when p? — —m?2.

m The symmetries of the problem give:

Y=(0,4") =vp(¢,4") +iouwaua,yr(a,q4")

+ i [auvale, d) — 4,va(d, @)

with 0, = %[%, v,] and where vpr 4 are real scalar

functions.
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‘ The chiral limit

m Introducing the quark-antiquark relative momentum
r = (q+q')/2, expanding Bethe-Salpeter around

p?> =0 up to linear order
ver(4,q) = vpr(r 2)+0( ?)
74(¢,q) = va(r )+ Pl al®) = 45(r)] + 0G?),

m This reduces to a set of one-dimensional integral equations

for the functions vp7 4 5(r?).

m The equation for yp(r?) actually decouples.

m yp(r?) = M(r?)/Z(r?), as expected from the Ward
identity.

ﬁ




‘ Renormalization

m Afeter renormalization:

o0
Yr(w; 1g) =9§(u3)/0 dy Kr(x, y; 1d)vr (s 15)

m Using renormalization group methods: Kg and yg at

different scales:

Z, M y) Z3(y)

;T(x)m(y;y), Kr(z,y;x) = 2 )ICR(w YY)
P

We also note that, at this order, Zy(z) is finite.

—

Yr(y;2) =
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m Defining 4(z) = Zy(z)yr(x; x), we obtain the
RG-improved equation
oo
(o) = g2(e) | dyn(e, v i)
0
m The system of 47 4 p(z) is coupled with the running of

M(x), Zy(x), g¢(x) and the running of the gluon mass

m(x).

\ g
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A(z) foo z+y (z — )2 .
A7 (z) = Tor3 Jo d < e fm2(w,y)+72I Afmz(m,y)+AIm2(m»y)> N(y
A(z) oo N
TG = 7 /0 ay{ [£,,2 @ 9) — AL 5, v)] A(y)
T
=212 0 + (@ — AT 5@ W] LW}
3X(z) f[oo N
vp) = [ a{ - AL @AW
T

+ [wf 2@y = 21 5 (@.y) + vAT 5 (=, v)] L)}

where the gluon mass is the running one at the scale z,
m? = m?(x)

[z — M2(2)]47 (z) — 2M (2)F 4 (2)

N(z) = NSOUTCe 4y 4
‘ ’ [z+M2(m)]2

20 M ()97 (2) + [z — M2(2)] 94 (2)

H(I) — Hsource(z) +
[o + M2(2)]?

@M ()37 (@) + [20 + M2(@)] 54 () — [z + M2(2)] 45 ()

x [z+M2(z)}2

P(z) = ﬁsource(z) +
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‘ Chiral Pion decay constant

In the Fourier space:

G4,(p) = / tr [i7,750" S (@)% (q,4') ()]
q
And then in the chiral limit:

—ipufr = /tr )x(2,4)S(d )] 20
q

ﬁ
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m This equation is exact in the chiral limit.

m Retaining only the first line corresponds to the
Pagel-Stokar approximation !, which, thanks to Ward
identity (yp(z) = %), provides an expression involving

only the quark propagator.

[Peldez et al. Phys.Rev.D 107 (2023) 5, 054025]

W N
* ¢



‘ Numerical solution.

m First we need to compute the quark propagator.

Including the running of the gluon mass and the couplings.

—



m The S-function for g, takes the form:

d\ (ren)
dp

dg 1
Bow = gy loa = 900y + 574) + Gt

1
Bay = 99(7c + 5%4)

Bmz = m*(yc + 7a)

m The relation between both coupling constants at 10GeV
(the starting point of the flow) can be done perturbately.

only by one parameter, g,(10GeV).

V.V

} ‘ ‘ quark propagators).

} ‘ ‘ m \i, 74 and 7y, are also coupled with M (p) and zy(p).

O QY O O W N

m In this case the flow of the coupling constant is determined

‘yc and 4 are computed in its one loop form (with full

W N
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20.20

z(p, Ho)

p (GeV)

V.V

igure: M(p), with initial condition M(10GeV)=0.008, 0.01, 0.015, 0.02 GeV,
9g(10GeV)=1.57 and m(10 GeV)=0.21 GeV
[M. Peldez et al Phys.Rev.D 103 (2021) 9, 094035]

} ‘ ‘ m We reproduce spontaneus chiral symmetry breaking.
} ‘ ‘ m Same UV behaviour as in (aguitar et al PRD 83 (2011). )
O QY O O W N



‘ Bethe-Salpeter

m Once M(z), Z(z), gq(x), m(x) are computed. We solve
RG-improved Bethe-Salpeter equation:

i) =) /O N

with initial condition: 47 4 g(z) = 0.
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Figure: Scalar functions §7,4,5 as functions of the momentum p for
go = 1.93 and mo = 0.11 GeV. All units are in GeV. (m. pelses, U.

Rein*, J. Serrau,N. Wschebor, Phys.Rev.D 107 (2023) 5, 054025]
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Solving by iterations.

£i= g | oD (@) M) - M)
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Figure: Evolution of fr with the number of iterations for go = 1.93 ﬁ
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‘ Conclusions

To sumarize:
= Perturbative CF in ghost-gluon sectorv”.

m Of course pCF does not reproduce the hole picture for

quarks.

m Based on the fact that, at low energies, the coupling g,

differs significantly from the coupling g, in the

matter sector we treat both constant on different footing.

ﬁ



‘ Conclusions

To sumarize:
= We propose a systematic expansion scheme for QCD at

low energy based on a double expansion in powers of the
coupling strength g, in the Yang-Mills sector of the theory

and in powers of 1/N..

m At leading order, this scheme reproduces the well-known

rainbow approximation.

ﬁ



‘ Conclusions

Conclusions
m The same scheme takes us to the Rainbow-ladder

Bethe Salpeter equation

m We can give an expression for f, within CF model in the

chiral limit.

m We obtain the expected f; factor for the parameters that

well reproduce the quark propagator.

Future work

m Computing the masses of the pion and kaon.

—
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