BLFQ 00000000 TMDs 0000 PDFs of ρ -meson 000

Conclusion 00

STRUCTURE OF SPIN-1 QCD SYSTEMS USING LIGHT-FRONT HAMILTONIAN APPROACH

Satvir Kaur

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China

in collaboration with

Zhi Hu, Jiatong Wu, Jiangshan Lan, Chandan Mondal, Xingbo Zhao and James P. Vary

(BLFQ Collaboration)

Motivation 000000	BLFQ 00000000	TMDs 0000	PDFs of ρ -meson 000	Conclusion 00
		Overview		2
				(IMP)

Basis Light-Front Quantization (BLFQ)

TMDs of ρ -meson

Quark TMDs

Gluon TMDs

PDFs of $\rho\text{-meson}$

Conclusion

2		
0000		

PDFs of ρ -meso 000 Conclusion 00

Motivation

- ρ -meson carries the nuclear force within atomic nuclei.
- π - ρ mass splitting.

Motivation •00000

- Spin-1 composite systems provide a new spin structure through tensor structure functions:
 - absent for spin-0 or 1/2 systems
 - lattice data for GFFs and moments of the PDFs PRD 105, 054509 (2022); PRD 56, 2743 (1997).
 - experimental data of tensor polarized structure function for deuteron by HERMES
 : a few data points [*PRL 95, 242001 (2005)*]
 - proposals to study the tensor structure of deuteron : JLab (approved), Fermilab (proposal in 2022), EIC, EICC ...
 - largely unexplored field yet : can open a new field of spin physics

PR12-13-011
PR12-13-011
The Deuteron Tensor Structure Function b₁
PR12-13-011
A Propend to Affrecton Lab PAC-40
(Update to PR12-11-110)
FERMILAB-PUB-22-381-V
The Transverse Structure of the Deuteron with Drell-Yan
The SpinQuest Collaboration*
Progress in Particle and Nuclear Physics

otivation	BLFQ	TMDs	PDFs of ρ -meson	¢
0000	0000000	0000	000	¢

Transverse momentum-dependent parton distributions (TMDs)

- Information on transverse parton dynamics : SIDIS and Drell-Yan
- 3D distribution functions : $\text{TMD}(x, \mathbf{k}_{\perp}^2)$

M

• Information on spin and OAM of the partons inside the hadron.

Picture Credit: A. Bacchetta

S. Hino* and S. Kumano[†]

E-mail: scotogno@nikhef.nl, tvdaal@nikhef.nl, mulders@few.vu.nl

BLFQ 00000000 TMDs

PDFs of ρ -mesor 000 Conclusion 00

Quark TMDs of a spin-1 target

lead	ling	quark operator			
twist		unpolarized [U]	longitudinal [L]	transverse [T]	
	U	$f_1 = \bigcirc$ unpolarized		$h_1^{\perp} = \bigoplus_{\text{Boer-Mulders}} - \bigstar$	
ation	L		$g_1 = \longrightarrow - \bigoplus_{\text{helicity}} \rightarrow$	$h_{1L}^{\perp} = \underbrace{ \swarrow }_{\text{worm gear } 1} - \underbrace{ \checkmark }_{\text{worm gear } 1}$	
arget polariz:	т	$f_{1T}^{\perp} = \underbrace{\bullet}_{\text{Sivers}}^{\bullet} - \underbrace{\bullet}_{\text{V}}$	$g_{1T} = \bigotimes_{\text{worm gear } 2} - \bigotimes_{\text{worm gear } 2}$	$h_{1} = \underbrace{\begin{pmatrix} \bullet \\ \bullet \\ transversity \end{pmatrix}}_{transversity}$ $h_{1T}^{\perp} = \underbrace{\begin{pmatrix} \bullet \\ \bullet \\ \bullet \\ pretzelosity \end{pmatrix}}_{pretzelosity}$	
t.	TENSOR	$egin{aligned} & f_{1LL}(x,m{k}_{T}^{2}) \ & f_{1LT}(x,m{k}_{T}^{2}) \ & f_{1TT}(x,m{k}_{T}^{2}) \ \end{aligned}$	$egin{aligned} g_{1TT}(x,oldsymbol{k}_T^2)\ g_{1LT}(x,oldsymbol{k}_T^2) \end{aligned}$	$egin{aligned} &h_{1LL}^{\perp}(x,m{k}_{T}^{2})\ &h_{1TT},\ &h_{1TT}^{\perp}\ &h_{1LT},\ &h_{1LT}^{\perp},\ &h_{1LT}^{\perp} \end{aligned}$	

Image taken from arXiv: 2205.01249

- 18 valence quark TMDs: 9 T-even and 9 T-odd TMDs
- have tensor structure, not seen for spin < 1.

Motivation	BLFQ	ΤM
000000	0000000	000

PDFs of ρ -meson 000 Conclusion 00

Gluon TMDs of a spin-1 target

		PARTON SPIN					
	GLUONS	$-g_T^{lphaeta}$	$arepsilon_T^{lphaeta}$	$p_{_T}^{lphaeta},$			
	U	(f_1^g)		$h_1^{\perp g}$			
	L		(g_1^g)	$h_{_{1L}}^{\perp g}$			
r Spin	Т	$f_{1T}^{\perp g}$	g^{g}_{1T}	$h_1^g h_{1T}^{\perp g}$			
TARGE	LL	$\left(f_{1LL}^{g} \right)$		$h_{\scriptscriptstyle 1LL}^{\scriptscriptstyle ot g}$			
	LT	$f_{\scriptscriptstyle 1LT}^{\;\;g}$	${m g}_{_{1LT}}^{~g}$	h_{1LT}^{g} $h_{1LT}^{\perp g}$			
	Π	f_{1TT}^{g}	$g_{_{1TT}}^{\ g}$	$(h_{1TT}^{g}) h_{1TT}^{\perp g} h_{1TT}^{\perp \perp g}$			

Picture Credit: P.J. Mulders

R. L. Jaffe and A. Manohar, Nuclear gluonometry, PLB 223 (1989) 218
P.J. Mulders and J. Rodrigues, PRD 63 (2001) 094021
S. Meissner, A. Metz and K. Goeke, PRD 76 (2007) 034002
D. Boer, S. Cotogno, T van Daal, et al., JHEP 10 (2016) 013

• LFWFs encode the hadronic properties in terms of their quark and gluon degrees of freedom.

¹P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949). ;S. J. Brodsky, G. F. de Teramond, Phys. Rev. D 77, 056007 (2008).

BLFQ •0000000

 $P^+P^- |\Psi\rangle = M^2 |\Psi\rangle$

TMDs 0000

• Non-perturbative approach based on the Hamiltonian formalism :

PDFs of ρ -mesor 000

Basis Light-Front Quantization (BLFQ)

IMP.

- to solve relativistic many-body bound state problems.
- facilitates with mass spectra and LFWFs.
- successfully implemented to investigate the structures of spin-0 and 1/2 systems.
- Motive : to extend the approach to investigate spin-1 hadrons.

• P^+ : longitudinal momentum of the targeted hadron $P^- = P^-_{QCD} + P^-_C$: LF Hamiltonian

Fock state expansion of the meson bound state

 $\left|\Psi\right\rangle = \psi_{q\bar{q}}\left|q\bar{q}\right\rangle + \psi_{q\bar{q}g}\left|q\bar{q}g\right\rangle \quad + \psi_{q\bar{q}gg}\left|q\bar{q}gg\right\rangle + \psi_{q\bar{q}q\bar{q}}\left|q\bar{q}q\bar{q}\right\rangle + \ \ldots \ .$

• ψ_{\dots} : LFWFs associated with the Fock components $|\dots\rangle$.

¹J.P.Vary, H. Honkanen, J. Li, P. Maris, S.J.Brodsky, A. Harindranath, G.F. de Teramond, PRC 81, 035205 (2010).

BLFQ •0000000 TMDs 0000 PDFs of ρ -meson 000 Conclusio 00

Basis Light-Front Quantization (BLFQ)

- Non-perturbative approach based on the Hamiltonian formalism : $P^+P^- \left|\Psi\right> = M^2 \left|\Psi\right>$
 - to solve relativistic many-body bound state problems.
 - facilitates with mass spectra and LFWFs.
 - successfully implemented to investigate the structures of spin-0 and 1/2 systems.
 - Motive : to extend the approach to investigate spin-1 hadrons.

• P^+ : longitudinal momentum of the targeted hadron $P^- = P^-_{QCD} + P^-_C$: LF Hamiltonian

Fock state expansion of the meson bound state

$$|\Psi\rangle = \psi_{q\bar{q}} |q\bar{q}\rangle + \psi_{q\bar{q}g} |q\bar{q}g\rangle \left\} + \psi_{q\bar{q}gg} |q\bar{q}g\rangle + \psi_{q\bar{q}q\bar{q}} |q\bar{q}q\bar{q}\rangle + \dots$$

• ψ_{\dots} : LFWFs associated with the Fock components $|\dots\rangle$.

¹J.P.Vary, H. Honkanen, J. Li, P. Maris, S.J.Brodsky, A. Harindranath, G.F. de Teramond, PRC 81, 035205 (2010).

¹J.P.Vary, H. Honkanen, J. Li, P. Maris, S.J.Brodsky, A. Harindranath, G.F. de Teramond, PRC 81, 035205 (2010).

• \mathbf{r}_{\perp} : separation between quark and anti-quark

¹BLFQ Collaboration, J. Lan et al., PLB 825 (2022) 136890

 $^{^2\}mathrm{BLFQ}$ Collaboration, Z. Zhu et al., PLB 839 (2023) 137808

 BLFQ

 0000
 00000000

PDFs of ρ -me

Conclusion 00

IMP

¹S.J. Brodsky, H.C. Pauli, S.S. Pinsky, Phys. Rep. 301, 299-486 (1998)

Light-front QCD Hamiltonian in this work

Inclusion of higher Fock sector would make $\langle q\bar{q}g|H_{\rm int}|q\bar{q}g\rangle \neq 0$

Motivation	BLFQ	TMDs	PDFs of ρ -meson	Conclusion
000000	00000000	0000	000	00

Light unflavored meson mass spectrum

• Keeping other parameters same for π and ρ mesons

IMF

BLFQ 0000000

TMDs 0000 PDFs of ρ -mesor

Conclusion 00

LFWFs of π and ρ mesons

• For ρ -meson, we have S, P and D wave components of LFWFs : $L_z = 0, \pm 1, \pm 2.$

$$L_z = M_J - \sum_i^n \lambda_i$$

• Probability of different wave components of LFWFs:

\A /	ho-meson				Pion	
Wave Components of LFWFs	$ qar{q} angle$		$ q\bar{q}g\rangle$		$ q\bar{q} angle$	$ q\bar{q}g angle$
	$M_J = 0$	$M_J = 1$	$M_J = 0$	$M_J = 1$	$M_J = 0$	$M_J = 0$
S-wave	48.60 %	49.14 %	50.56 %	50.12 %	49.08 %	49.99 %
P-wave	0.008 %	0.039 %	0.83 %	0.69 %	0.13%	0.81 %
D-wave	-	$\approx 10^{-6} \%$	$\approx 10^{-5} \%$	$\approx 10^{-4} \%$	-	$\approx 10^{-5} \%$

Comparison b/w Quark TMDs in Pion and ρ -meson $f_1^{q}(\mathbf{x}, k_1^2)$ [GeV⁻²]

Solid-line: ρ -meson, Dashed-line: Pion

- have PDF limit : $\int d^2 \mathbf{k}_{\perp} TMD(x, \mathbf{k}_{\perp}^2) = PDF(x).$
- consistent with other model predictions.
- no interference between different wave compositions.

IM

- do not have PDF limit.
- interference between different wave compositions.

- f_{1LL} are diagonal in OAM, and has PDF limit.
- consistent with other models' predictions.

¹S. Hino and S. Kumano, Phys. Rev. D 59, 094026 (1999).

²Y. Ninomiya, W. Bentz, I. C. Cloët, Phys. Rev. C 96, 045206 (2017).

³S. Kaur, C. Mondal, and H. Dahiya, JHEP 01, 136 (2021)

Comparison b/w gluon TMDs in Pion and ρ -meson $f_1^g(\mathbf{x}, k_{\perp}^2)$ [GeV⁻²]

• Transversity gluon TMD $h_{1TT} = 0$

- Reason : weak D-wave component of LFWFs
- $h_{1TT} \neq 0$: to consider more interactions / include more sea quarks and gluons.

Contribution to the spin of $ ho - {\rm meson}$	$\int \mathrm{d}x \mathrm{d}^2 k_\perp g_{1L}(x, k_\perp^2)$
Valence quark	54.0%
Gluon	50.2%

BLFQ 00000000 TMDs 0000 PDFs of ρ -meson \bullet 00

Parton distribution functions (PDFs)

- $f_1^{q/g}(x), g_1^{q/g}(x), h_1^q(x), f_{1LL}^{q/g}(x)$ and $h_{1TT}^g(x)$.
- h_{1TT}^g : no gluon transversity exists for spin< 1 targets $1 \ 2 \ 3$.
- Sum rules are satisfied by our PDFs ⁴:

¹S. Kumano, Q. -T Song, PRD 101 (2020) 5, 054011; PRD 101 (2020) 9, 094013

- ²D. Keller, The SpinQuest Collaboration, arXiv: 2205.01249
- ³A. Arbuzov, A. Bacchetta et al. Prog. Part. Nucl. Phys. 119 (2021) 103858
- ⁴Y. Ninomiya, W. Bentz and I. C. Cloët, Phys. Rev. C 96, 045206 (2017).

Conclusion 00

Motivation	BLFQ	TMDs	PDFs of ρ -meson	Conclu
000000	0000000	0000	00●	00

Moments of the PDFs

	$\langle x angle_{f^q_{1 ho}}$	$\langle x^2 \rangle_{f^q_{1\rho}}$	$\langle x^3 \rangle_{f^q_{1\rho}}$	$\langle x angle_{f_{1\pi}^q}$	$\langle x^2 \rangle_{f^q_{1\pi}}$	$\langle x^3 \rangle_{f^q_{1\pi}}$
BLFQ	0.235	0.095	0.045	0.233	0.097	0.050
BSE	0.316	0.155	0.091	-	-	-
Lattice QCD	0.334(21)	0.174(47)	0.066(39)	0.24 ± 0.01	0.09 ± 0.03	0.043 ± 0.015
	$\langle x angle_{f_{1 ho}^g}$	$\langle x^2 angle_{f^g_{1 ho}}$	$\langle x^3 \rangle_{f^g_{1\rho}}$	$\langle x \rangle_{f^g_{1\pi}}$	$\langle x^2 \rangle_{f^g_{1\pi}}$	$\langle x^3 \rangle_{f^g_{1\pi}}$
BLFQ	0.425	0.063	0.018	0.428	0.068	0.021

	$\langle x^0 angle_{g^q_{1L ho}}$	$\langle x angle_{g_{1L ho}^q}$	$\langle x^2 angle_{g^q_{1L ho}}$
BLFQ	0.476	0.205	0.092
BSE	0.660	0.227	0.111
Lattice QCD	0.570(32)	0.212(17)	0.077(34)

¹C. Best et al., PRD 56, 2743 (1997) ²C. Shi et al. PRD 106, 014026 (2022)

IMP

Motivation	BLFQ	TMDs	PDFs of ρ -meson	Conclusion $\bullet 0$
000000	00000000	0000	000	
		Conclusio	n	\sim

- Studied the structure of ρ -meson through TMDs/PDFs using LF Hamiltonian approach.
- Along with the ordinary TMDs, the tensor polarized has also been investigated : exotic hadron structure can be found.
- Qualitative consistency with other model predictions.
- Investigated gluon TMDs for ρ -meson, and made predictions.
- found $h_{1TT} = 0$, however inclusion of more interaction terms: stronger D wave (non zero h_{1TT}).
- Future plans : include multi-gluons and sea quarks.

Work in progress!

Thank you!

M	ot	iva	tio	on
			0	

00000000

0000

(13)

PDFs of ρ -meson

Conclusion O•

 $A_{\mathcal{N};\lambda_q'\lambda_q}^{\Lambda'\Lambda}$

$$f_1^q = \frac{1}{3} \sum_{\mathcal{N}=2}^3 \left[A_{\mathcal{N};++}^{++} + A_{\mathcal{N};++}^{00} + A_{\mathcal{N};++}^{--} \right] ,$$
(14)

$$g_{1L}^q = \frac{1}{2} \sum_{\mathcal{N}=2}^3 \left[A_{\mathcal{N};++}^{++} - A_{\mathcal{N};--}^{++} \right] ,$$
 (15)

$$h_{1}^{q} = \frac{1}{\sqrt{2}} \sum_{\mathcal{N}=2}^{3} A_{\mathcal{N};+-}^{+0} , \qquad (16) \qquad h$$
$$g_{1T}^{q} = \frac{M_{V}}{\sqrt{2}k_{\perp}^{2}} \sum_{\mathcal{N}=2}^{3} \Re \left[k_{R} \left(A_{\mathcal{N};++}^{+0} + A_{\mathcal{N};++}^{0-} \right) \right] , \qquad f_{1}^{q}$$
(17)

$$\begin{split} h_{1L}^{\perp q} &= -\frac{M_V}{k_{\perp}^2} \sum_{\mathcal{N}=2}^3 \Re \left[k_R \ A_{\mathcal{N};-+}^{--} \right] \ , \ (18) \\ h_{1T}^{\perp q} &= \frac{\sqrt{2}M_V^2}{k_{\perp}^4} \sum_{\mathcal{N}=2}^3 \Re \left[k_R^2 \ A_{\mathcal{N};-+}^0 \right] \ , \ (19) \\ f_{1LL}^q &= \sum_{\mathcal{N}=2}^3 \left[A_{\mathcal{N};++}^{00} - \frac{1}{2} \left(A_{\mathcal{N};++}^{++} + A_{\mathcal{N};++}^{--} \right) \right] \ , \end{split}$$

$$f_{1LT}^{q} = \frac{M_{V}}{\sqrt{2}k_{\perp}^{2}} \sum_{\mathcal{N}=2}^{3} \Re \left[k_{R} \left(A_{\mathcal{N};++}^{+0} - A_{\mathcal{N};++}^{0-} \right) \right] ,$$
(21)

$$f_{1TT}^{q} = \frac{M_V^2}{k_{\perp}^4} \sum_{\mathcal{N}=2}^3 \Re \left[k_R^2 \ A_{\mathcal{N};++}^{+-} \right] .$$
(22)

$$\begin{split} A^{\Lambda',\Lambda}_{2;\lambda'_q\lambda_q} &= \sum_{\lambda_{\bar{q}}} \frac{\prod_{i=1}^2 dx'_i d^2 p'_{\perp 1}}{[2(2\pi)^3]^2} 2(2\pi)^3 \; \Psi^{*\Lambda'}_{2;\lambda'_q\lambda_q} \Psi^{\Lambda}_{2;\lambda_q\lambda_{\bar{q}}} \delta^3 \left(\tilde{p}'_1 - \bar{k} \right) \delta^3 \left(\bar{P} - \sum_i \tilde{p}'_i \right) \; , \\ A^{\Lambda',\Lambda}_{3;\lambda'_q\lambda_q} &= \sum_{\lambda_q,\lambda_g} \frac{\prod_{i=1}^3 dx_i d^2 p_{\perp i}}{[2(2\pi)^3]^3} 2(2\pi)^3 \; \Psi^{*\Lambda'}_{3;\lambda'_q\lambda_{\bar{q}}\lambda_q} \Psi^{\Lambda}_{3;\lambda_q\lambda_q\lambda_q} \delta^3 \left(\bar{p}_1 - \bar{k} \right) \delta^3 \left(\bar{P} - \sum_i \tilde{p}_i \right) \end{split}$$