Proton gravitational form factors with basis light-front quantization

Sreeraj Nair

In collaboration with C. Mondal (IMP, China), S. Xu (IMP, China) X. Zhao (IMP, China), A. Mukherjee (IITB, India) and J. P. Vary (ISU, USA)

Sep 19, 2023

Basis Light-Front Quantization (BLFQ)

- Nonperturbative approach
- based on the Hamiltonian formalism in light-front dynamics
- Solve the light-front eigenvalue equation : $H_{LF} | \psi \rangle = M^2 | \psi \rangle$
- General BLFQ algorithm :

-J. P. Vary, H. Honkanen, J. Li, P. Maris, S. J. Brodsky, A. Harindranath, G. F. de Teramond,

P. Sternberg, E. G. Ng, and C. Yang, Phys. Rev. C 81, 035205 (2010). — P. Wiecki, Y. Li, X. Zhao, P. Maris, and J. P. Vary, Phys. Rev. D 91, 105009 (2015).

Effective Hamiltonian : $H_{\rm eff} = P_{\rm eff}^- P^+$

Valence Fock sector $(|qqq\rangle)$

$$H_{\rm eff} = \sum_{a} \frac{\vec{k}_{\perp a}^2 + m_a^2}{x_a} + \frac{1}{2} \sum_{a \neq b} V_{ab}^{\rm conf} + \frac{1}{2} \sum_{a \neq b} V_{ab}^{\rm OGE}$$

• 3D confining potential V_{ab}^{conf}

► transverse¹ :
$$\kappa^4 \left[x_a x_b (\vec{r}_{\perp a} - \vec{r}_{\perp b})^2 \right]$$

► longitudinal² : $\kappa^4 \left[\frac{\partial_{x_a} (x_a x_b \partial_{x_b})}{(m_a + m_b)^2} \right]$

One-gluon exchange interaction

$$\mathcal{V}_{ab}^{\text{OGE}} = \frac{4\pi C_F \alpha_s}{Q_{ab}^2} \bar{u}(k'_a, s'_a) \gamma^{\mu} u(k_a, s_a) \bar{u}(k'_b, s'_b) \gamma^{\nu} u(k_b, s_b) g_{\mu\nu}$$

[1] Brodsky, Teramond, Dosch and Erlich, Phys. Rep. 584, 1 (2015).
 [2] Li, Maris, Zhao and Vary, Phys. Lett. B (2016).

Proton wavefunction

Basis in BLFQ approach

- longitudinal direction \rightarrow discretized plane-wave basis
- transverse direction \rightarrow 2D harmonic oscillator function ($\phi_{n,m}$)

Basis truncation

•
$$\sum_{i} (2n_i + |m_i| + 1) \le N_{\max}$$

•
$$K = \sum_{i} k_{i}$$
 with the longitudinal momentum fraction
 $x_{i} = p_{i}^{+}/P^{+} = k_{i}/K$

LFWF in the BLFQ basis

$$\Psi^{\Lambda}_{\{x_i,\vec{k}_{i\perp},\lambda_i\}} = \sum_{\{n_i,m_i\}} \psi^{\Lambda}_{\{x_i,n_i,m_i,\lambda_i\}} \prod_i \phi_{n_i,m_i}(\vec{k}_{i\perp};b)$$

Nucleon gravitational form factors (GFFs)

gauge invariant symmetric energy-momentum tensor

$$\theta^{\mu\nu} = \frac{1}{2} \overline{\psi} i \left[\gamma^{\mu} D^{\nu} + \gamma^{\nu} D^{\mu} \right] \psi - F^{\mu\lambda a} F^{\nu}_{\lambda a} + \frac{1}{4} g^{\mu\nu} \left(F_{\lambda\sigma a} \right)^{2} - g^{\mu\nu} \overline{\psi} \left(i \gamma^{\lambda} D_{\lambda} - m \right) \psi$$

 $F_a^{\mu\nu}$ is the field strength tensor.

fermionic contribution to the EMT

$$\theta_q^{\mu\nu} = \frac{1}{2} \overline{\psi} i \left[\gamma^\mu D^\nu + \gamma^\nu D^\mu \right] \psi$$

The GFFs are linked to the matrix elements of the EMT

Nucleon gravitational form factors

For a spin 1/2 composite system, the standard parametrization of the symmetric EMT reads 1,2

$$\begin{split} \langle P' | \theta_i^{\mu\nu}(0) | P \rangle &= \bar{U'} \bigg[-B(q^2) \frac{\bar{P}^{\mu} \bar{P}^{\nu}}{M} + (A(q^2) + B(q^2)) \frac{1}{2} (\gamma^{\mu} \bar{P}^{\nu} + \gamma^{\nu} \bar{P}^{\mu}) \\ &+ C(q^2) \frac{q^{\mu} q^{\nu} - q^2 g^{\mu\nu}}{M} + \bar{C}(q^2) M g^{\mu\nu} \bigg] U \end{split}$$

- $A(Q^2)$ and $B(Q^2)$ are obtained from the (++) component.
- C(Q²) and C
 (Q²) are extracted from the transverse (i, j) components where (i, j) ∈ (1, 2).

Results : $A_q(Q^2)$ and $B_q(Q^2)$

- At initial scale obey the sum rule $\sum_{i} A_{i} = 1$ and $\sum_{i} B_{i} = 0$.
- The bands reflect a 10% uncertainty in the α_s coupling constant.
- DGLAP evolution done using HOPPET² toolkit to compare with lattice¹ results.
- -[1] P. Hagler, et al., Phys. Rev. D 77 (2008) 094502.
- -[2] G. P. Salam, J. Rojo, Comput. Phys. Commun. 180 (2009) 120-156.

The D-term (D = 4C)

First measurement of the pressure distribution experienced by the quarks in the proton

"The average peak pressure near the center is about 10^{35} pascals which is about 10 times greater than the pressure in the heart of a neutron star".

•
$$\sum_{a} A_{a}(0) = 1$$
 $\sum_{a} B_{a}(0) = 0$

• D(0) is not constrained by general principles.

• $D(q^2)$ is related to the stress tensor and internal forces.

Results : $D_q(Q^2)$ and $\overline{C}_q(Q^2)$

- A negative *D*-term is a sign of a stable bound system.
- *D*-term aligns well with lattice results, JLab experimental data, and a myriad of other theoretical projections
- $\bar{C}^{u+d}(Q^2)$ is negative and consistent with the bag model and multipole model

Fitting GFFs

We fit GFFs with following three parameter function:

GFF	a_0	a_1	a_2
$D^u(Q^2)$	-2.8332	3.1475	2.0046
$D^d(Q^2)$	-1.9579	3.3592	2.0830

Mechanical properties

The *D*-term can be directly related to the pressure in the center of the nucleon, mechanical radius and energy density

$$p_{0} = -\frac{1}{24\pi^{2}M_{n}} \int_{0}^{\infty} dQ^{2} Q^{3} D(Q^{2}), \quad \langle r_{\text{mech}}^{2} \rangle = D(0) \left[\int_{0}^{\infty} dQ^{2} D(Q^{2}) \right]^{-1}$$
$$\mathcal{E} = \frac{M_{n}}{4\pi^{2}} \int_{0}^{\infty} dQ^{2} \left(A(Q^{2}) + \frac{Q^{2}}{4M_{n}^{2}} D(Q^{2}) \right)$$

Approaches/Models	$p_0 [\text{GeV/fm}^3]$	\mathcal{E} [GeV/fm ³]	$\langle r_{\rm mech}^2 \rangle$ [fm ²]
Our work ($\sqrt{0.195}$ GeV \rightarrow 2 GeV)	0.42	1.08	0.76
QCDSR set-I $(1 \text{ GeV})^1$	0.67	1.76	0.54
Skyrme model ²	0.47	2.28	-
modified Skyrme model ³	0.26	1.45	-
χQSM^4	0.23	1.70	-
Soliton model ⁵	0.58	3.56	-
LCSM-LO ⁶	0.84	0.92	0.54

-[1] K. Azizi and U. Özdem, Eur. Phys. J. C 80, 104 (2020).

-[3] H.-C. Kim, et. al., Phys. Lett. B 718, 625-631 (2012).

-[5] J.-H. Jung, et. al., Phys. Rev. D 89, 114021 (2014).

-[2] C. Cebulla et. al., Nucl. Phys. A 794, 87-114 (2007).

-[4] K. Goeke et. al., Phys. Rev. D 75, 094021 (2007).

---[6] I. V. Anikin, Phys. Rev. D 99, 094026 (2019).

Pressure and Shear forces

The 2D pressure and shear in the impact parameter space

$$p(b) = \frac{1}{2M} \frac{1}{b} \frac{d}{db} \left[b \frac{d}{db} \tilde{D}_q(b) \right], \quad s(b) = -\frac{1}{M} b \frac{d}{db} \left[\frac{1}{b} \frac{d}{db} \tilde{D}_q(b) \right]$$

The FT of the *D*-term expressed using the Bessel function (J_0)

$$\tilde{D}(b) = \frac{1}{(2\pi)^2} \int d^2 q^{\perp} e^{-iq^{\perp}b^{\perp}} D(q^2) = \frac{1}{2\pi} \int_0^\infty dq^{\perp 2} J_0\left(q^{\perp}b^{\perp}\right) D(q^2)$$

where, $b = |\vec{b}_{\perp}|$ represents the impact parameter.

A spherical shell of radius b experiences normal and tangential forces²

$$F_n(b) = \left(p(b) + \frac{1}{2}s(b)\right), \quad F_t(b) = \left(p(b) - \frac{1}{2}s(b)\right)$$

-[1] A. Freese and G. A. Miller, Phys. Rev. D 103, 094023 (2021).

-[2] M. V. Polyakov and P. Schweitzer, Int. J. Mod. Phys. A 33, 1830025 (2018).

Results : pressure and shear

• p(b) must follow the von Laue condition $\int_0^\infty db \, b^2 p(b) = 0$

- presure \rightarrow positive region followed by a negative region
- shear \rightarrow typically positive in stable hydrostatic systems
- compared with the light-cone sum rule (LCSR)¹ and data from JLab²

[1] I. V. Anikin, Phys. Rev. D 99, 094026 (2019).
 [2] V. D. Burkert, L. Elouadrhiri, and F. X. Girod, Nature 557, 396–399 (2018)

Results : normal and tangential force

- positive nature of $F_n(b)$
- $F_t(b)$ showcases a dual character: a positive core, indicative of repulsive forces, and a subsequent negative domain, signifying attractive forces
- It's worth noting that this binding force exhibits a greater magnitude than the repulsive counterpart.

2D Galilean distributions

Galilean energy density $(\mu(b))$, radial pressure $(\sigma^r(b))$, tangential pressure $(\sigma^t(b))$, isotropic pressure $(\sigma(b))$, and pressure anisotropy $(\Pi(b))^{-1}$

$$\begin{split} \mu(b) &= M \left[\frac{A(b)}{2} + \overline{C}(b) + \frac{1}{4M^2} \frac{1}{b} \frac{d}{db} \left(b \frac{d}{db} \left[\frac{B(b)}{2} - 4C(b) \right] \right) \right] \\ \sigma^r(b) &= M \left[-\overline{C}(b) + \frac{1}{M^2} \frac{1}{b} \frac{dC(b)}{db} \right] \\ \sigma^t(b) &= M \left[-\overline{C}(b) + \frac{1}{M^2} \frac{d^2C(b)}{d(b)^2} \right] \\ \sigma(b) &= M \left[-\overline{C}(b) + \frac{1}{2} \frac{1}{M^2} \frac{1}{b} \frac{d}{db} \left(b \frac{dC(b)}{db} \right) \right] \\ \Pi(b) &= M \left[-\frac{1}{M^2} b \frac{d}{db} \left(\frac{1}{b} \frac{dC(b)}{db} \right) \right] \end{split}$$

-[1] C. Lorcé, H. Moutarde, and A. P. Trawi?ski, Eur. Phys. J. C 79, 89 (2019)

Results : energy density

- positive energy density
- compared with the result in a multipole model (red dashed line)¹

-[1] C. Lorcé, H. Moutarde, and A. P. Trawi?ski, Eur. Phys. J. C 79, 89 (2019)

Results : radial and tangential pressure

- radial pressure : consistently positive, indicating a repulsive nature
- tangential pressure : positive (repulsive) region is centered in the impact parameter space, while the negative (attractive) region spans towards the larger values of *b*.

Results : isotropic pressure and pressure anisotropy

•
$$\sigma = \frac{(\sigma_r + \sigma_t)}{2}$$
 and $\Pi = \sigma_r - \sigma_t$

• the radial pressure consistently exceeds the tangential one

Effective Hamiltonian with One Dynamical Gluon

$$| \operatorname{proton} \rangle = a | qqq \rangle + b | qqqg \rangle + c | qqqq\bar{q} \rangle + \dots$$

^{19/28}

QCD interactions and parameters

vertex interaction and the instantaneous interaction

$$H_{\text{vertex}} + H_{\text{inst}} = g\bar{\psi}\gamma_{\mu}T^{a}A^{\mu}_{a}\psi + \frac{1}{2}g^{2}\bar{\psi}\gamma^{+}T^{a}\psi\frac{1}{(i\partial^{+})^{2}}\bar{\psi}\gamma^{+}T^{a}\psi$$

- The transverse and longitudinal truncation parameters are set to $N_{\text{max}} = 9$ and K = 16.5
- harmonic oscillator scale parameter b = 0.70 GeV and the UV cutoff for the instantaneous interaction $b_{inst} = 3.00$ GeV
- The model parameters are $\{m_u, m_d, m_g, \kappa, m_f, g\} = \{0.31, 0.25, 0.50, 0.54, 1.80, 2.40\}$, with all values in GeV unit, except for g
- These values are derived by fitting the proton mass (*M*), its electromagnetic properties, and flavor FFs¹

```
-[1] S. Xu, et. al., 2209.08584 [hep-ph]
```

Results : $A(Q^2)$ and $B(Q^2)$ with dynamical gluon at initial scale

• $A(Q^2)$ and $B(Q^2)$ obey the sum rule $\sum_i A_i = 1$ and $\sum_i B_i \approx 0$.

$Q^{2} = 0$	i = u	i = d	i = g	u + d + g
A_i	0.619	0.245	0.136	1.00
B_i	0.354	-0.325	-0.0289	$3.534 imes 10^{-11}$

Results : Evolved $A(Q^2)$ and $B(Q^2)$ with dynamical gluon

-[Lattice - I] (gluon) P. E. Shanahan, W. Detmold, Phys. Rev. D 99, 014511 (2019).

--[Lattice - II] (gluon) D. A. Pefkou, D. C. Hackett, P. E. Shanahan, Phys. Rev. D 105, 054509 (2022).

Preliminary result : $D(Q^2)$ with dynamical gluon

--[Lattice] (gluon) P. E. Shanahan, W. Detmold, Phys. Rev. D 99, 014511 (2019).

--[Lattice] (gluon) D. A. Pefkou, D. C. Hackett, P. E. Shanahan, Phys. Rev. D 105, 054509 (2022).

Mechanical properties : Preliminary result

The *D*-term can be directly related to the pressure in the center of the nucleon , mechanical radius and energy density¹

$$p_{0} = -\frac{1}{24\pi^{2}M_{n}} \int_{0}^{\infty} dQ^{2} Q^{3} D(Q^{2}), \quad \langle r_{\text{mech}}^{2} \rangle = D(0) \left[\int_{0}^{\infty} dQ^{2} D(Q^{2}) \right]^{-1}$$
$$\mathcal{E} = \frac{M_{n}}{4\pi^{2}} \int_{0}^{\infty} dQ^{2} \left(A(Q^{2}) + \frac{Q^{2}}{4M_{n}^{2}} D(Q^{2}) \right)$$

Our work	$p_0 [\text{GeV/fm}^3]$	\mathcal{E} [GeV/fm ³]	$\langle r_{\rm mech}^2 \rangle [{\rm fm}^2]$
for quark ($\sqrt{0.24} \text{ GeV} \rightarrow 2 \text{ GeV}$)	0.53	0.85	0.69
for gluon ($\sqrt{0.24} \text{ GeV} \rightarrow 2 \text{ GeV}$)	0.61	0.69	0.57

-[1] Polyakov, Maxim V. and Schweitzer, Peter, Int.J.Mod.Phys.A 33 (2018) 26.

Preliminary Results : Pressure and shear

[1] I. V. Anikin, Phys. Rev. D 99, 094026 (2019).
 [2] V. D. Burkert, L. Elouadrhiri, and F. X. Girod, Nature 557, 396–399 (2018)

- GFFs for proton's valence quarks, evaluated using BLFQ, align with lattice QCD and JLab findings.
- Positive core and negative tail for internal pressure and positive shear force were observed.
- The gluon D-term is negative and consistent with lattice data.
- Work in progress on the calculation of GFF \widetilde{C}_g that adheres to the sum rule $\sum_{i=q,g} \widetilde{C}_i(Q^2) = 0.$

Upcoming talk from team BLFQ

- Beyond Valence Distributions in meson with Basis Light-Front Quantization - Jiangshan Lan - Tuesday - 16:30
- Quantum stress on the light front Xianghui Cao Tuesday 17:00
- Towards a Hamiltonian first principle approach for baryons Siqi Xu -Wednesday - 09:30
- Positronium structure from a basis light-front approach Xingbo Zhao -Wednesday - 11:00
- Positronium in quantum electrodynamics of effective particles Kamil Serafin - Wednesday - 11:30
- Structure of spin-1 QCD systems using light-front Hamiltonian approach - Satvir Kaur - Thursday - 16:30

Thank you!

Back Up Slides

Approaches/Models	$A_q^{u+d}(0)$	$J_q(0) = \frac{1}{2} [A_q^{u+d}(0) + B_q^{u+d}(0)]$	$D^{u+d}(0) = 4C^{u+d}(0)$	$\bar{C}_q^{u+d}(0)$
This work ($\sqrt{0.195}$ GeV \rightarrow 2 GeV) IP [?]	0.420	0.210	-1.925	-0.061 $1.4 imes 10^{-2}$

The GFFs $A_q(Q^2)$ and $B_q(Q^2)$ can be written in terms of the overlap of LFWFs

$$\begin{split} A_q(Q^2) &= \frac{1}{2} \sum_{\{\lambda_i\}} \int \left[\mathrm{d}\mathcal{X} \, \mathrm{d}\mathcal{P}_\perp \right] x_1 \Big\{ \Psi_{\{x'_i, \vec{k}'_{i\perp}, \lambda'_i\}}^{\uparrow *} \Psi_{\{x_i, \vec{k}_{i\perp}, \lambda_i\}}^{\uparrow} + \\ & \Psi_{\{x'_i, \vec{k}'_{i\perp}, \lambda'_i\}}^{\downarrow *} \Psi_{\{x_i, \vec{k}_{i\perp}, \lambda_i\}}^{\downarrow} \Big\}, \\ B_q(Q^2) &= \frac{M}{iq^{(2)}} \sum_{\{\lambda_i\}} \int \left[\mathrm{d}\mathcal{X} \, \mathrm{d}\mathcal{P}_\perp \right] x_1 \Big\{ \Psi_{\{x'_i, \vec{k}'_{i\perp}, \lambda'_i\}}^{\uparrow *} \Psi_{\{x_i, \vec{k}_{i\perp}, \lambda_i\}}^{\downarrow} + \\ & \Psi_{\{x'_i, \vec{k}'_{i\perp}, \lambda'_i\}}^{\downarrow *} \Psi_{\{x_i, \vec{k}_{i\perp}, \lambda_i\}}^{\uparrow} \Big\}, \end{split}$$

Nucleon gravitational form factors

The GFFs $C_q(Q^2)$ and $\overline{C}_q(Q^2)$ can be written in terms of the overlap of LFWFs

$$\begin{split} C_q(\mathcal{Q}^2) &= \frac{1}{8 q^{(1)} q^{(2)}} \sum_{\{\lambda_i\}} \int \left[\mathrm{d}\mathcal{X} \, \mathrm{d}\mathcal{P}_\perp \right] \mathcal{O}^1 \mathcal{O}^2 \Big\{ \Psi_{\{x_i', \vec{k}_{i\perp}', \lambda_i'\}}^{\uparrow *} \Psi_{\{x_i, \vec{k}_{i\perp}, \lambda_i\}}^{\uparrow} + \\ & \Psi_{\{x_i', \vec{k}_{i\perp}', \lambda_i'\}}^{\downarrow *} \Psi_{\{x_i, \vec{k}_{i\perp}, \lambda_i\}}^{\downarrow} \Big\}, \\ \overline{C}_q(\mathcal{Q}^2) &= \frac{1}{8 M^2} \Bigg[-\frac{1}{2} \sum_{\{\lambda_i\}} \int \left[\mathrm{d}\mathcal{X} \, \mathrm{d}\mathcal{P}_\perp \right] \left(\mathcal{O}^1 \mathcal{O}^1 + \mathcal{O}^2 \mathcal{O}^2 \right) \\ & \left\{ \Psi_{\{x_i', \vec{k}_{i\perp}', \lambda_i'\}}^{\uparrow *} \Psi_{\{x_i, \vec{k}_{i\perp}, \lambda_i\}}^{\uparrow} + \\ & \Psi_{\{x_i', \vec{k}_{i\perp}', \lambda_i'\}}^{\downarrow *} \Psi_{\{x_i, \vec{k}_{i\perp}, \lambda_i\}}^{\downarrow} \Big\} - 4q^2 C_q(\mathcal{Q}^2) \Bigg], \end{split}$$

where the operator $\mathcal{O}^{j} = 2k_{\perp}^{(j)} + (1-x)q_{\perp}^{(j)}$