

Beyond valence distributions in meson with Basis Light-front Quantization

Jiangshan Lan

With:

J. Wu, K. Fu, Z. Zhang, Z. Zhu, J. Chen, E. Ydrefors, C. Mondal, X. Zhao,

T. Frederico and J. P. Vary

Institute of Modern Physics, CAS, Lanzhou, China Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, Brazil Iowa State University, Ames, US

Rio de Janeiro · September 19, 2023

06/04/2023 Excursion

Liujiaxia Reservoir Elevation ~ 2050m

<u>Outline</u>

- Basis Light-front Quantization approach
- Application to Light Mesons
 - ≻A review of BLFQ-NJL
 - ➤Light mesons with one dynamical gluon (LFWF, EMFF, PDA, PDF, GPD & TMD)
 - The pion $q\bar{q}g$ BLFQ .vs. BSE
- Application to Strangeonia and Strange mesons
- Conclusion & Outlook

Basis Light-front Quantization

• Nonperturbative eigenvalue problem

 $P^{-}|\beta\rangle = P_{\beta}^{-}|\beta\rangle$

- *P*⁻: light-front Hamiltonian
- $|\beta\rangle$: mass eigenstate
- P_{β}^{-} : eigenvalue for $|\beta\rangle$
- Evaluate observables for eigenstate

 $O \equiv \langle \beta | \hat{O} | \beta \rangle$

- Fock sector expansion
 - Eg. $|\text{meson}\rangle = a|q\bar{q}\rangle + b|q\bar{q}g\rangle + c|q\bar{q}q\bar{q}\rangle + d|q\bar{q}gg\rangle + \cdots$

 $|\text{Baryon}\rangle = a|qqq\rangle + b|qqqg\rangle + c|qqq\bar{q}q\rangle + d|qqqgg\rangle + \cdots$ Siqi Xu, Wednesday at 9:30

- Discretized basis
 - Transverse: 2D harmonic oscillator basis: $\Phi_{n,m}^b(\vec{p}_{\perp})$.
 - Longitudinal: plane-wave basis, labeled by *k*.
 - Basis truncation:

$$\sum_{i} (2n_i + |m_i| + 1) \le N_{max},$$

$$\sum_{i} k_i = K.$$

 N_{max} , K are basis truncation parameters.

Large N_{max} and K: High UV cutoff & low IR cutoff

4

[Vary et al, 2008]

[Lan, Mondal, Jia, Zhao, Vary, PRL122(2019)172001]

Agree with experimental results 5

The Moments of Pion Valence Quark PDF

$$\langle x^n \rangle = \int_0^1 dx \ x^n f_v^{\pi/K}(x,\mu^2), \ n = 1, 2, 3, 4.$$

$\langle x \rangle$ @ 4 GeV ²	Valence	Gluon	Sea
BLFQ-NJL	0.489	0.398	0.113
Ding et. al., BSE model 2019']	0.48(3)	0.41(2)	0.11(2)

Agree with other results

[Lan, Mondal, Jia, Zhao, Vary, PRD101(2020)034024]

Drell-Yan Cross Section

Agree with experimental data (FNAL E615, 326, 444, & CERN NA3, WA-039).

[Lan, Mondal, Jia, Zhao, Vary, PRD101(2020)034024]

$$\begin{split} \underline{\text{Light-front QCD Hamiltonian}} \\ P_{-,LFQCD} &= \frac{1}{2} \int d^3x \, \bar{\psi}\gamma^+ \frac{(i\partial^{\perp})^2 + m^2}{i\partial^+} \, \psi + \frac{1}{2} \int d^3x \, A_a^i (i\partial^{\perp})^2 A_a^i \\ &\quad + g \int d^3x \, \bar{\psi}\gamma_\mu A^\mu \, \psi \\ &\quad + \frac{1}{2} g^2 \int d^3x \, \bar{\psi}\gamma_\mu A^\mu \frac{\gamma^+}{i\partial^+} \gamma_\nu A^\nu \psi \\ &\quad - ig^2 \int d^3x \, f^{abc} \bar{\psi}\gamma^+ T^c \psi \frac{1}{(i\partial^+)^2} (i\partial^+ A_a^\mu A_{\mu b}) \\ &\quad + \frac{1}{2} g^2 \int d^3x \, \bar{\psi}\gamma^+ T^a \psi \frac{1}{(i\partial^+)^2} \bar{\psi}\gamma^+ T^a \psi \\ &\quad + ig \int d^3x \, f^{abc} i\partial^\mu A^{\nu a} A_{\mu}^b A_{\nu}^c \\ &\quad - \frac{1}{2} g^2 \int d^3x \, f^{abc} \, f^{ade} \, i\partial^+ A_{\mu}^b A_{\mu c} \, \frac{1}{(i\partial^+)^2} (i\partial^+ A_d^+ A_{\nu e}) \\ &\quad + \frac{1}{4} g^2 \int d^3x \, f^{abc} \, f^{ade} \, f^{ade} \, A_{\mu}^\mu A_{\nu}^c A_{\mu d} A_{\nu e}. \end{split}$$

Light Meson Mass Spectrum

[Lan, Fu, Mondal, Zhao, Vary, Phys. Lett. B 825 (2022) 136890]

The Wave Function in Leading Fock Sector

- ► At endpoint x, $\psi \sim p_{\perp}$: lightly narrow
- → At middle x, $\psi \sim p_{\perp}$: a little bit wide

Pion Electromagnetic Form Factor

[Brodsky & de Teramond, PRD 77(2008)056007] $|\pi\rangle = a |q\bar{q}\rangle + b |q\bar{q}g\rangle + \cdots$ $\langle \Psi(p') | J_{FM}^+(0) | \Psi(p) \rangle = (p + p')^+ F(Q^2)$ 0.6 This work Amendolia 86' 0.5 0.8 Bebek 74' 60²] Bebek 76' Bebek 78' 0.6 0 4 0.4 Volmer 01' °_0.3 Horn 06' Tadevosyan 07' \cap Huber 08' Q2 0.2 0.1 2 3 5 Q² [GeV²] Q^2 [GeV²]

• FF is in reasonable agreement with experimental data

• $F(Q^2) \propto 1/Q^2$ for large Q^2

[Lan, Fu, Mondal, Zhao, Vary, Phys. Lett. B 825 (2022) 136890]

- Endpoint behavior almost agrees with pQCD
- Consistent with FNAL-E-791 experiment

Preliminary

Pion PDF at Model Scale

[Lan, Fu, Mondal, Zhao, Vary, Phys. Lett. B 825 (2022) 136890]

Pion PDF with QCD Evolution

[Lan, Fu, Mondal, Zhao, Vary, Phys. Lett. B 825 (2022) 136890]

Sea

0.096

0.113

0.11(2)

Gluon

0.421

0.398

0.41(2)

[Lan, Fu, Mondal, Zhao, Vary, Phys. Lett. B 825 (2022) 136890]

The pion $q\bar{q}g$ BLFQ .vs. BSE

BLFQ Phys. Lett. B 825 (2022) 136890

 $|\pi\rangle = a|q\bar{q}\rangle + b|q\bar{q}g\rangle + \cdots$

BSE in Minkowski space Phys. Rev. D 103 (2021) 014002 Phys. Rev. D 105 (2022) L071505 Phys. Lett. B 820 (2021) 136494

Ð

↑

V: the interaction connecting the $q\bar{q}$ and $q\bar{q}g$ sector

For clarity, we write the spin-flip matrix elements:

[Brodsky et al. Phys. Rep. 301 (1998) 299-486]

$$W_{\lambda}^{+-}(p_q, p_g) = m_f \frac{x_g(1-x_q)}{\sqrt{x_1 x_q}} \delta_{\lambda,-}$$
$$W_{\lambda}^{-+}(p_q, p_g) = -m_f \frac{x_g(1-x_q)}{\sqrt{x_1 x_q}} \delta_{\lambda,+}$$
$$\overline{W}_{\lambda}^{+-}(p_{\bar{q}}, p_g) = \lambda m_f \frac{x_g(1-x_{\bar{q}})}{\sqrt{x_1 x_{\bar{q}}}}$$
$$\overline{W}_{\lambda}^{-+}(p_{\bar{q}}, p_g) = 0$$

[Emanuel Ydrefors, Jiangshan Lan, et al. in progress]

The pion $q\bar{q}g$ BLFQ .vs. BSE

The contribution from $q\bar{q}g$ sector to the quark and the gluon PDF:

$$\Delta u_q(x_q) = \frac{1}{(2\pi)^6} \sum_{i_q s_q} \sum_{i_{\bar{q}} s_{\bar{q}}} \sum_{\lambda a} \int \frac{d^2 \boldsymbol{p}_{q\perp} d^2 \boldsymbol{p}_{g\perp} dx_g}{4x_q x_g (1 - x_q - x_g)} \left| \psi_{q\bar{q}g, i_q i_{\bar{q}}a}^{s_q \lambda}(x_q, \boldsymbol{p}_{q\perp}, x_{\bar{q}}, \boldsymbol{p}_{\bar{q}\perp}, x_g, \boldsymbol{p}_{g\perp}) \right|^2$$

$$\Delta u_g(x_g) = \frac{1}{(2\pi)^6} \sum_{i_q s_q} \sum_{i_{\bar{q}} s_{\bar{q}}} \sum_{\lambda a} \int \frac{d^2 \boldsymbol{p}_{q\perp} d^2 \boldsymbol{p}_{g\perp} dx_q}{4x_q x_g (1 - x_q - x_g)} \left| \psi_{q\bar{q}g, i_q i_{\bar{q}}a}^{s_q \lambda}(x_q, \boldsymbol{p}_{q\perp}, x_{\bar{q}}, \boldsymbol{p}_{\bar{q}\perp}, x_g, \boldsymbol{p}_{g\perp}) \right|^2$$

[Phys. Rev. D 50 (1994) 6895] Take a power-law form for simplicity: $\psi_{pl}(x_q, \boldsymbol{p}_{q\perp}) = N \left[1 + \frac{A_{0,eff}(x_q, \boldsymbol{p}_{q\perp})/4 - m_q^2}{\beta^2} \right]^{-s}$ $A_{0,eff}(x_q, \boldsymbol{p}_{q\perp}) = \frac{\boldsymbol{p}_{q\perp}^2 + m_q^2}{x_q} + \frac{\boldsymbol{p}_{q\perp}^2 + m_q^2}{x_q}$ Fitting the valence PDE of both the BLEO and

Fitting the valence PDF of both the BLFQ and the BSE, s = 1.4 and $\beta/m_q = 1.16$

BLFQ: Phys. Lett. B 825 (2022) 136890 BSE: Phys. Rev. D 103 (2021) 014002

[Emanuel Ydrefors, Jiangshan Lan, et al. in progress]

Model	m_q [GeV]	m_f [GeV]	$m_g[\text{GeV}]$	$1-P_{val}$
Ι	0.390	0.390	0.600	0.508
п	0.390	5.69	0.600	0.508
III	0.255	0.255	0.638	0.300

- > BLFQ ~ discrete x .vs. Model ~ continuous x
- > The Model II agrees with the BLFQ: a large bump at low-x is reproduced
- > Model I .vs. II: the bump is related to the large value of m_f
- ➤ The BSE result differs from Model III: the BSE result contains the contributions from $q\bar{q}ng$, where n = 1, 2, ..., ∞
- \succ The second Fock sector is mostly important at small- x

[Emanuel Ydrefors, Jiangshan Lan, et al. in progress]

ш

0.255

0.255

0.638

The impact of the m_q on the pion PDFs:

- > An increase of the m_g leads to a shift of the quark PDF to lower values of x
- > A larger m_g gives a gluon PDF shifted towards larger- x
- > The perturbative results agree qualitatively with the BLFQ

0.300

The pion $q\bar{q}g$ BLFQ .vs. BSE

We explicitly show an enhancement of the low-x contribution in the quark PDF is directly associated with the large spin-flip matrix element, necessary to provide the $\pi - \rho$ mass splitting. [M. Burkardt, *Dynamical vertex mass generation and chiral symmetry breaking on the light front*, Phys. Rev. D 58 (1998) 096015].

It was proposed to enhance the spin flip matrix element of the effective quark-gluon coupling QCD LF-Hamiltonian by introducing a large effective quark vertex mass (mf).

Vector meson Structure

"Structure of spin-1 QCD systems using light-front Hamiltonian approach" Satvir Kaur Thursday 4:30pm-4:50pm

Quark TMDs of a spin-1 target quark operator leading twist unpolarized [U] longitudinal [L] transverse [T] $h_1^\perp = \left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) - \left(\begin{array}{c} \bullet \\ \bullet \end{array} \right)$ $f_1 = (\bullet)$ unpolarized Boer-Mulders $g_1 = (\rightarrow) \rightarrow - (\leftrightarrow) \rightarrow$ $h_{1L}^{\perp} = (\not) \rightarrow$ target polarization (1 helicity $f_{1T}^{\perp} = \underbrace{\bullet}^{\bigstar} - \underbrace{\bullet}_{\Psi}$ $g_{1T} =$ Sivers $f_{1LL}(x, \mathbf{k}_T^2)$ $h_{1LL}^{\perp}(x,oldsymbol{k}_T^2)$ $f_{1LT}(x, \boldsymbol{k}_T^2)$ $g_{1TT}(x, \boldsymbol{k}_T^2)$ h_{1TT}, h_{1TT}^{\perp} $f_{1TT}(x, \boldsymbol{k}_T^2)$ $g_{1LT}(x, \boldsymbol{k}_T^2)$ h_{1LT}, h_{1LT}^{\perp}

Image taken from arXiv: 2205.01249

Gluon TMDs of a spin-1 target								
		PARTON SPIN						
	GLUONS	$-g_T^{\alpha\beta}$	$\mathcal{E}_T^{lphaeta}$	$p_T^{lphaeta},$				
	U	$\left(f_{1}^{g}\right)$		$h_1^{\perp g}$				
	L		(g_1^g)	$h_{_{1L}}^{\perp g}$				
T SPIN	т	$f_{1T}^{\perp g}$	$g_{_{1T}}^{_g}$	$h_1^g h_{1T}^{\perp g}$				
IARGE	LL	$\left(f_{1LL}^{g} \right)$		$h_{_{1LL}}^{_{\perp g}}$				
	LT	$f_{_{1LT}}^{\ g}$	$g_{_{1LT}}^{\ g}$	$h_{1LT}^{\ g} h_{1LT}^{\perp g}$				
	Π	$f_{1TT}^{\ g}$	$g_{_{1TT}}^{\ g}$	$\begin{pmatrix} h_{1TT}^{\ g} \end{pmatrix} h_{1TT}^{\perp g} \ h_{1TT}^{\perp \perp g}$				

Picture Credit: P.J. Mulders

23

Preliminary

[S. Kaur et al, in preparation]

Pion TMD

[K. Fu, J. Lan et al, in preparation]

Pion GPD

- Quark content enhanced at small x with $|q\bar{q}g\rangle$
- Falls slowly at larger *x*
- Emerge at larger x range for larger -t

[K. Fu, J. Lan et al, in preparation]

The Wave Function in Leading Fock Sector

- ▶ At middle x, $\psi \sim p_{\perp}$: a little bit wide
- > The peak slightly less than x=1/2

Kaon Electromagnetic Form Factor

[Brodsky & de Teramond, PRD 77:056007 (2008)]

 $\langle \Psi(p')|J_{EM}^+(0)|\Psi(p)\rangle = (\mathbf{p}+\mathbf{p}')^+ \, \mathbf{F}(\mathbf{Q}^2)$

 $|\mathbf{K}\rangle = a|q\bar{s}\rangle + b|q\bar{s}g\rangle + \cdots$

- FF is in reasonable agreement with experimental data
- $F(Q^2) \propto 1/Q^2$ for large Q^2

$$\underline{\text{Kaon PDA}} |\mathbf{K}\rangle = a|q\bar{s}\rangle + b|q\bar{s}g\rangle + \cdots$$

• Endpoint behavior at small x almost agrees with pQCD

[Jiangshan Lan, Jialin Chen et al, in preparation]

Preliminary

Kaon PDF at Model Scale

Kaon PDF with QCD Evolution

Fig. 2. The data points represent $(L_{\pi}/L_{\rm K})(dN/dx_1)_{\rm K}/(dN/dx_1)_{\pi}$ as defined by eq. (4). The dashed curves represent the limits of the ratio $[\bar{u}_{\rm K}(x_1)/\bar{u}_{\pi}(x_1)]C(x_1)^{-1}$ where $C(x_1)$ is defined in eq. (3), $\bar{u}_{\rm K}/\bar{u}_{\pi}$ and $s_{\rm K}/\bar{u}_{\rm K}$ are taken from ref. [5], and the ratio $J(x_1)/I(x_1)$ is shown in the insert. The upper (lower) curve corresponds to A = 1/8 (A = 1/2). The dotted and solid curves represent the ratio $\bar{u}_{\rm K}/\bar{u}_{\pi}$ from refs. [6] and [7], respectively.

[Phys. Lett. B 93 (1980) 354]

[Jiangshan Lan, Jialin Chen et al, in preparation]

Agree with experimental results ³²

Drell-Yan Cross Section

[S. D. Drell and T.-M. Yan, PRL (1970)]
[T. Becher et al, JKEP07(2008)030]; [P. C. Barry et al, PRL121(2018)152001]
[C. Anastasiou et al, PRL91(2003)182002]

Program	Goals	Energy [GeV]	Intensity [s ⁻¹]	Rate [kHz]	Туре	Target	start time, duration	additions
Drell-Yan (RF)	Kaon PDFs & Nucleon TMDs	~100	10 ⁸	25-50	K^{\pm}, \overline{p}	NH [↑] ₃ , C/W	2026 2-3 years	"active absorber", vertex detector
Primakoff (RF)	Kaon polarisa- bility & pion life time	~100	$5 \cdot 10^{6}$	> 10	К ⁻	Ni	non-exclusive 2026 1 year	
Prompt Photons (RF)	Meson gluon PDFs	≥ 100	$5 \cdot 10^6$	10-100	$rac{\kappa^{\pm}}{\pi^{\pm}}$	LH2, Ni	non-exclusive 2026 1-2 years	hodoscope
K-induced Spectroscopy (RF)	High-precision strange-meson spectrum	50-100	$5 \cdot 10^6$	25	K ⁻	LH2	2026 1 year	recoil TOF, forward PID
Vector mesons (RF)	Spin Density Matrix Elements	50-100	$5 \cdot 10^6$	10-100	K^{\pm}, π^{\pm}	from H to Pb	2026 1 year	

Experiment	Target	Beam	Beam intensity	Beam energy	DY mass $(C_2 V/a^2)$	DY mass DY e (GeV/c^2) u^+u^-	
	type	type	(part/sec)	(Gev)	(Gevic)	μμ	e e
NA3	6 cm Pt	K^{-}		200	4.2 - 8.5	700	0
				80	4.0 - 8.5	25,000	13,700
		K^{-}	$2.1 imes 10^7$	100	4.0 - 8.5	40,000	17,700
This exp.	100 cm C			120	4.0 - 8.5	54,000	20,700
		K ⁺	$2.1 imes 10^7$	80	4.0 - 8.5	2,800	1,300
				100	4.0 - 8.5	5,200	2,000
				120	4.0 - 8.5	8,000	2,400
				80	4.0 - 8.5	65,500	29,700
This exp.	100 cm C	π^{-}	$4.8 imes 10^7$	100	4.0 - 8.5	95,500	36,000
				120	4.0 - 8.5	123,600	39,800

hadron cm

K

Y*

Kaon GPD

[M. Diehl, Phys. Rep. 388 (2003) 41-277]

$$\begin{split} H_{K}^{q}(x,\xi=0,t) &= \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \left\langle K,P + \frac{\Delta}{2} \left| \bar{q} \left(-\frac{z}{2} \right) \gamma^{+} q \left(\frac{z}{2} \right) \left| K,P - \frac{\Delta}{2} \right\rangle_{\substack{z^{+}=0\\z_{\perp}=0}} \right. \\ H_{K}^{g}(x,\xi=0,t) &= \frac{1}{P^{+}} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \left\langle K,P + \frac{\Delta}{2} \left| G^{+\mu} \left(-\frac{z}{2} \right) G_{\mu}^{+} \left(\frac{z}{2} \right) \left| K,P - \frac{\Delta}{2} \right\rangle_{\substack{z^{+}=0\\z_{\perp}=0}} \right. \end{split}$$

- Quark *u* content enhanced at small *x* with $|q\bar{s}g\rangle$
- Falls slowly at larger x
- Emerge at larger x range for larger -t

[K. Fu, et al, in preparation]

Preliminary

 $|K\rangle = a|q\bar{s}\rangle + b|q\bar{s}g\rangle + b$

Twist-3 xPDFs of Pion & Kaon

BLFQ can provide twist-3 structures which satisfy QCD sum rules

Twist-3 xPDFs of Pion & Kaon

X. Ji [X.D. Ji, NPB (2020) 115181]

Nuclear Physics B 960 (2020) 115181

where

$$M_q^{\rm LF} = (a+b)M/2 \qquad \qquad M = M_q^{\rm LF} + M_g^{\rm LF} + M_a^{\rm LF}$$
(14)

$$M_g^{\rm LF} = (1-a)M/2$$
 (15)

$$M_a^{\rm LF} = (1-b)M/2,$$
 (16)

respectively, with *a* is the fraction of the proton momentum carried by quarks $a = \sum_q \int dx x q(x)$, and $b = \sum_q \sigma_q (m_q/M)$. In the massless limit, the quark and gluon kinetic motions contribute the fractions of the proton mass, a/4 and (1-a)/4, respectively, and the anomaly gives 1/2.

Conclusion & Outlook

- Compared to NJL interaction, dynamical gluon in light meson:
 - ✓ Explains the properties of excited/exotic states such as $\pi(1300)$, $\pi_1(1400)$
 - ✓ Describes EMFF, $F(Q^2) \propto 1/Q^2$ for large Q^2
 - ✓ Improves endpoint behavior in PDF/PDA
 - \checkmark Generates more gluon at moderate x/less gluon at small x
 - ✓ Improves agreement on J/ψ production cross section with experimental data
- $\pi \rho$ mass splitting ~ a large spin-flip matrix element ~ a peak at low-x for quark PDF
- Preliminary results on **gluon** GPDs and TMDs of light mesons
- Light meson => Strangeonia and strange mesons
- Beyond leading twist structure needs to be studied in the EIC era
- Systematically expandable by including higher Fock sectors

 $|\text{Meson}\rangle = a|q\bar{q}\rangle + b|q\bar{q}g\rangle + c|q\bar{q}q\bar{q}\rangle + d|q\bar{q}gg\rangle + e|gg\rangle + \cdots$

Welcome to visit us !

High Intensity Heavy-ion Accelerator Facility (HIAF)

1-2 Postdoctoral Positions

(EicC)

