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Overview

The pion plays a fundamental role in QCD, due to its Goldstone boson
nature, which is associated with the dynamical generation of the mass of
hadrons and nuclei. It is also the simplest hadronic bound state.

From the theory side, the current challenge is to extract from Euclidean
calculations (e.g. LQCD), some Minkowskian physical quantities, e.g.
PDFs, TMDs.

Nowadays, the momentum distributions have been a target of intense
investigation and the future EIC will certainly bring a detailed 3D image of
the hadronic structure.

The goal is to calculate pion observables in Minkowski space.

The approach we are pursuing is based on solving the BSE, in Minkowski
space, using the Nakanishi Integral Representation.
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Pion as a quark-antiquark bound state

Bethe-Salpeter equation (0−) :

Φ(k;P) = S
(
k + P

2

) ∫ d4k ′

(2π)4
Sµν(q)Γµ(q)Φ(k ′;P)Γ̂ν(q)S

(
k − P

2

)
Γ̂ν(q) = C Γν(q) C−1

where we use: i) bare propagators for the quarks and gluons;
ii) ladder approximation with massive gluons,
iii) an extended quark-gluon vertex

S(P) =
i

/P −m + iε
, Sµν(q) = −i gµν

q2 − µ2 + iε
, Γµ = ig

µ2 − Λ2

q2 − Λ2 + iε
γµ ,

We consider one of the Longitudinal components of the QGV

We set the value of the scale parameter (300 MeV) from the combined analysis of
Lattice simulations, the Quark-Gap Equation and Slanov-Taylor identity.

Oliveira, WP, Frederico, de Melo EPJC 78(7), 553 (2018) & EPJC 79 (2019) 116 & EPJC 80 (2020) 484
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NIR for fermion-antifermion 0− Bound State
WP, Frederico, Salme, Viviani, PRD 94, 071901(R) (2016)

Φ(k ;P) =
4∑

i=1

Si (k ;P)φi (k;P)

Dirac structures for a pseudoscalar system is given by

S1 = γ5,S2 =
/P

M
γ5,S3 =

k · P
M3

/Pγ5 −
/k

M
γ5,S4 =

i

M2
σµνPµkνγ5

Using the NIR for each scalar functions

φi (k ;P) =

∫ 1

−1

dz ′
∫ ∞

0

dγ′
gi (γ

′, z ′;κ2)

[k2 + z ′(P · k)− γ′ − κ2 + iε]3

System of coupled integral equations
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Projecting BSE onto the LF hyper-plane x+ = 0

Light-Front variables: xµ = (x+, x−, ~x⊥)
x0

x3

x2

hyperplane
x +

=
0

LF-time x+ = x0 + x3

x− = x0 − x3

~x⊥ = (x1, x2)

Within the LF framework, one introduces
LF-projected amplitudes for each φi (k,P)
through their integral on k−

(⇒ s.t. x+ = 0, with x+ relative LF-time)):

ψi (γ, ξ) =

∫
dk−

2π
φi (k , p) = − i

M

∫ ∞
0

dγ′
gi (γ

′, z ;κ2)

[γ + γ′ + m2z2 + (1− z2)κ2]2

By LF-projecting both sides of BSE (after applying the suitable traces on Dirac
indexes) one gets a coupled integral-equation system.
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The coupled integral-equation system (see also NIR+covariant LF, Carbonell and
Karmanov, EPJA 46 (2010) 387) in ladder approximation, reads (cf. de Paula,et al,
PRD 94, 071901 (2016) & EPJC 77, 764 (2017))

∫ ∞
0

dγ′ gi (γ
′, z ;κ2)

[γ + γ′ + m2z2 + (1− z2)κ2]2 = iMg 2
∑
j

∫ ∞
0

dγ′
∫ 1

−1

dz ′Lij(γ, z ; γ′, z ′) gj(γ
′, z ′;κ2)

In ladder approximation, the Nakanishi Kernel, Lij , has an analytical expression and
contains singular contributions that can be regularized ’a la Yan (Chang and Yan,
Quantum field theories in the infinite momentum frame. II. PRD 7, 1147 (1973)).

Numerical solutions are obtained by discretizing the system using a polynomial basis,
given by the Cartesian product of Laguerre(γ) × Gegenbauer(z). One remains with a
Generalized eigenvalue problem, where a non-symmetric matrix and a symmetric one are
present

A ~c = λ B ~c

N.B. the eigenvector ~c contains the coefficients of the expansion of the Nakanishi weight
functions gi (z , γ;κ2).
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LF Momentum Distributions

LF valence amplitude in terms of BS amplitude is:

ϕ2(ξ, k⊥, σi ; M, J
π
, Jz ) =

√
Nc

p+

1

4
ūα(q̃2, σ2)

∫
dk−

2π

[
γ

+ Φ(k, p) γ+
]
αβ

vβ (q̃1, σ1) .

which can be decomposed into two spin contributions:

Anti-aligned configuration:

ψ↑↓(γ, z) = ψ2(γ, z) +
z

2
ψ3(γ, ξ) +

i

M3

∫ ∞
0

dγ′
∂g3(γ′, z)/∂z

γ + γ′ + z2m2 + (1− z2)κ2

Aligned configuration:

ψ↑↑(γ, z) = ψ↓↓(γ, z) =

√
γ

M
ψ4(γ, z)

with the LF amplitudes given by

ψi (γ, z) = − i

M

∫ ∞
0

dγ′
gi (γ

′, z)

[γ + γ′ + m2z2 + (1− z2)κ2]2
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Quantitative results: Static properties

WP, Ydrefors, Nogueira, Frederico and Salme PRD 103 014002 (2021).

The set VIII reproduces the pion decay constant

mq = 255 MeV,mg = 637.5 MeV and Λ = 306 MeV

The contributions beyond the valence component are important, ∼ 30%
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Pion em form factor in ladder approximation
Ydrefors, WP, Nogueira, Frederico and Salmè PLB 820, 136494 (2021)
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Good agreement with experimental data (black solid curve).
For high Q2 we obtain the valence dominance (dashed black curve)

Right Panel: Dash-dotted line; asymptotic expression from Brodsky-Lepage PRD

22 (1980): Q2Fasy(Q2) = 8παs(Q2)f 2
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Pion charge radius

Ydrefors, WP, Nogueira, Frederico and Salmè PLB 820, 136494 (2021)

Pion charge radius and its decomposition in valence and non valence
contributions.

where r2
π = −6 dFπ(Q2)/dQ2

∣∣∣
Q2=0

Pval(nval) r
2
val(nval) = −6 dFval(nval)(Q

2)/dQ2
∣∣∣
Q2=0

The set I is in fair agreement with the PDG value:

rPDG
π = 0.659± 0.004 fm
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Pion Transverse Momentum Distributions

One can define the T-even subleading quark uTMDs, starting from the decomposition of
the pion correlator (Mulders and Tangerman, Nucl. Phys. B 461, 197 (1996)).

twist -2 uTMD:

f q1 (γ, ξ) =
Nc

4

∫
dφk̂⊥

∫ ∞
−∞

dy−dy⊥
2(2π)3

e i [k̃·ỹ ] 〈P|ψ̄q(−y

2
) 1̂ ψq(

y

2
)|P〉

∣∣
y+=0

twist-3 uTMD

M

P+
eq(γ, ξ) =

Nc

4

∫
dφk̂⊥

∫ ∞
−∞

dy−dy⊥
2(2π)3

e i [k̃·ỹ ] 〈P|ψ̄q(−y

2
) γ+ ψq(

y

2
)|P〉

∣∣
y+=0

and

M

P+
f ⊥q(γ, ξ) =

NcM

4|k⊥|2

∫
dφk̂⊥

∫ ∞
−∞

dy−dy⊥
2(2π)3

e i [k̃·ỹ ] 〈P|ψ̄q(−y

2
) k⊥ · γ⊥ ψq(

y

2
)|P〉

∣∣
y+=0

with k̃ · ỹ = ξP+y−/2− k⊥ · y⊥.
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Parton distribution function
WP, Ydrefors, Nogueira, Frederico, Salme, PRD 105, L071505 (2022).
From the charge-symmetric expression for the leading-twist TMD f S1 (γ, ξ), one gets the
PDF at the initial scale u(ξ)

f
S(AS)

1 (γ, ξ) =
f q1 (γ, ξ)± f q̄1 (γ, 1− ξ)

2
⇒ u(ξ) =

∫ ∞
0

dγ f S1 (γ, ξ).

0 0.25 0.5 0.75 1
 ξ

0

0.5

1

1.5

2

u(
 ξ

)

Solid line: full calculation of the BSE at
the model scale
Dashed line: The LF valence contribu-
tion .
At the initial scale, for ξ → 1, the expo-
nent of (1− ξ)η0 is η0 = 1.4.
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Parton distribution function II
Low order Mellin moments at scales Q = 2.0 GeV and Q = 5.2 GeV.

LQCD, Q = 2.0 GeV: 〈x〉 - Alexandrou et al PRD 103, 014508 (2021)
〈x2〉 and 〈x3〉 - Alexandrou et al PRD 104, 054504 (2021)

LQCD, Q = 5.0 GeV: 〈x〉 - Alexandrou et al PRD 103, 014508 (2021)

N.B. following Cui et al EPJC 2020 80 1064, lowest order DGLAP equations used for
evolution. One needs:

Hadronic scale and effective charge for dealing with DGLAP
Q0 = 0.330± 0.030 GeV

Within the error, we choose Q0 = 0.360 GeV to fit the first Mellin moment.
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Parton distribution function III

Comparison with the data at 5.2 GeV scale

0 0.25 0.5 0.75 1
 ξ

0

0.1

0.2

0.3

0.4

0.5

 ξ
u(

 ξ
)

Solid line: full calculation of the BSE
evolved from the initial scale Q0 =
0.360 GeV to Q = 5.2 GeV
Dashed line: The evolved LF valence
contribution
Full dots: experimental data from E615
Full squares: reanalyzed experimental
data from Aicher et al PRL 105, 252003
(2010) evolved to Q = 5.2 GeV
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Parton distribution function IV
Comparison with other theoretical calculations

0 0.25 0.5 0.75 1
 ξ

0

0.1

0.2

0.3

0.4

0.5

 ξ
u(

 ξ
)

Solid line: full calculation of the BSE
evolved from the initial scale Q0 =
0.360 GeV to Q = 5.2 GeV
Dashed line: DSE calculation from Cui
et al, Eur. Phys. J. A 58, 10 (2022)
Dash-dotted line: DSE calculation with
dressed quark-photon vertex from Bed-
nar et al PRL 124, 042002 (2020)
Dotted line: BLFQ collaboration, PLB
825, 136890 (2022)
Gray area: LQCD results from C.
Alexandrou et al (2021)
Black and Orange vertical lines from
JAM collaboration, private communica-
tion.

For the evolved ξ u(ξ), the exponent of (1− ξ)η5 is η5 = 2.94, when ξ → 1,

LQCD: Alexandrou et al PRD 104, 054504 (2021) obtained 2.20± 0.64

Cui et al EPJA 58, 10 (2022) obtained 2.81± 0.08
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Transverse Momentum-Dependent Distributions II

0 0.25 0.5 0.75 1
 ξ

-2

0

2

4

e(
 ξ

)

0 0.25 0.5 0.75 1
 ξ

-2

-1

0

1

2

3

f⊥
( ξ

)

Solid line: quark twist-3 uTMD e(ξ)
Dashed line: Sym. twist-3 uTMD eS(ξ)
Dotted: AS twist-3 uTMD eAS(ξ)

Solid line: quark twist-3 uTMD f ⊥(ξ)
Dashed line: Sym. twist-3 uTMD f ⊥S(ξ)
Dotted: AS twist-3 uTMD f ⊥AS(ξ)

The corresponding symmetric and antisymmetric collinear PDFs are:

eS(AS)(ξ) =

∫ ∞
0

dγ eS(AS)(γ, ξ) , f ⊥S(AS)(ξ) =

∫ ∞
0

dγ f ⊥S(AS)(γ, ξ)

For the quark ones: eq(ξ) = eS(ξ) + eAS(ξ) and f ⊥q(ξ) = f ⊥ S(ξ) + f ⊥ AS(ξ)
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Twist-2 uTMD f S1 (γ, ξ) Twist-3 uTMD eS(γ, ξ)

Twist-2 Twist-3

i) the peak at ξ = 0.5 for any γ/m2 Double-hump: smooth for larger γ/m2.
ii) the vanishing values at the end-points
iii) the order of magnitude fall-off already for γ/m2 > 2
Similar behavior in comparison with DSE calculations (Shi, Bednar, Cloët, PRD 101(7), 074014 (2020))
Different behavior in comparison to “LF constituent model” (Pasquini, Schweitzer, PRD 90(1), 014050 (2014)) and “LF
holographic models” (Bacchetta, Cotogno, Pasquini, PLB 771, 546 (2017). )
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A view of the pion from the light-cone
W. de Paula,et al, PRD 103, 014002 (2021)

The probability distribution of the quarks inside the pion, sitting on the the hyperplane
x+ = 0, tangent to the light-cone, is evaluated in the space given by the Cartesian
product of the Ioffe-time and the plane spanned by the transverse coordinates b⊥.

Why? In addition to the usual the infinite-momentum frame one can study the
deep-inelastic scattering processes in the target frame, adopting the configuration space,
so that a more detailed investigation of the space-time structure of the hadrons can be
performed. The Ioffe-time is useful for studying the relative importance of short and
long light-like distances.

x0

x3

x2

hyperplane
x +

=
0

The covariant definition of the Ioffe-
time is z̃ = x ·Ptarget , and it becomes
z̃ = x−P+

target/2 on the hyper-
plane x+ = 0
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The pion on the light-cone

Density plot of |b⊥|2 |ψ(z̃ , bx , by )|2, with ψ(z̃ , bx , by ) obtained from our
solutions of the ladder Bethe-Salpeter equation [W. de Paula et al PRD
103, (2021) 014002]

z̃ ≡ Ioffe-time {bx , by} ≡ transverse coordinates
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Dressed quark propagator
Castro, WP, Frederico, Salme, PLB 845 (2023) 138159

After completing the investigation of the pion BSE with fixed-mass quark, i.e. a qq̄
bound system, we are addressing the running-mass case.
Wave-function renorm. constant Z(p2) = 1 and a running-mass,
M(p2

E ) = m0 −m3/(p2
E − λ2), with m0 = 0.008 GeV, m = 0.648 GeV and λ = 0.9 GeV

adjusted to LQCD calculations by O. Oliveira, et al, PRD 99 (2019) 094506.

The quark running-mass, M(p2), as a
function of the Euclidean momentum
pE =

√
−p2, in units of the IR massM(0) =

0.344 GeV. Solid line: our model. Dashed
line: accurate fit of the LQCD calculations .
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0− Bound State with Running quark mass function
Castro, WP, Frederico, Salme, PLB 845 (2023) 138159

Dressed quark propagator: S(p) = SV (p2)/p + SS(p2)

Integral Representation: SV (p2) =
∫∞

0
ds ρV (s)

p2−s+iε ; SS(p2) =
∫∞

0
ds ρS (s)

p2−s+iε

Using the Nakanishi integral representation for φi (k , p), performing the loop
integral and projecting onto the LF, one obtains the BSE as

∫ ∞
0

dγ′
gi (γ

′, z)[
γ + z2M2/4 + γ′ + κ2 − iε

]2 =
α

2π

×
∑
j

∫ 1

−1

dz ′
∫ ∞

0

dγ′Lij(γ, z ; γ′, z ′) gj(γ
′, z ′) .
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0− Bound State with Running quark mass function
Castro, WP, Frederico, Salme, PLB 845 (2023) 138159

Longitudinal momentum distribution

Parameters: Λ = 0.12 GeV, µ = 0.469 GeV.
Thick solid line: running mass model for M = 0.653 GeV.
Thick dashed Line: fixed quark mass (344 MeV) for M = 0.653 GeV.
Thin solid line: running mass model for M = 0.516 GeV.
Thin dashed line: fixed quark mass (344 MeV) for M = 0.516 GeV.
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0− Bound State with Running quark mass function
Castro, WP, Frederico, Salme, PLB 845 (2023) 138159

Transverse momentum distribution

Parameters: Λ = 0.12 GeV, µ = 0.469 GeV.
Thick solid line: running mass model for M = 0.653 GeV.
Thick dashed Line: fixed quark mass (344 MeV) for M = 0.653 GeV.
Thin solid line: running mass model for M = 0.516 GeV.
Thin dashed line: fixed quark mass (344 MeV) for M = 0.516 GeV.
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Dressing the Quark: Schwinger-Dyson equation
Duarte, Frederico, WP, Ydrefors PRD 105, 114055 (2022)

The model: Bare vertices, massive vector boson, Pauli-Villars regulator

The rainbow ladder Schwinger-Dyson equation in Minkowski space is:

S−1
q (k) = /k −mB + ig2

∫
d4q

(2π)4
Γµ(q, k)Sq(k − q)γνD

µν(q) ,

where mB is the quark bare mass and g is the coupling constant.
The massive gauge boson is given by (Dudal, Oliveira and Silva, PRD 89 (2014) 014010)

Dµν (q) =
1

q2 −m2
g + ıε

[
gµν − (1− ξ)qµqν

q2 − ξm2
g + ıε

]
. (1)

The dressed fermion propagator is

Sq (k) =
[
/k A
(
k2
)
− B

(
k2
)

+ iε
]−1

.
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Schwinger-Dyson equation in Rainbow ladder truncation
The vector and scalar self-energies are given by the KLR, respectively as:

A
(
k2
)

= 1 +

∫ ∞
0

ds
ρA (s)

k2 − s + iε
,

B
(
k2
)

= mB +

∫ ∞
0

ds
ρB (s)

k2 − s + iε
.

The quark propagator can also be written as:

Sq(k) = R
/k + m0

k2 −m2
0 + iε

+ /k

∫ ∞
0

ds
ρv (s)

k2 − s + iε
+

∫ ∞
0

ds
ρs (s)

k2 − s + iε
,

where m0 is the renormalized mass.
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Phenomenological Model
Duarte, Frederico, WP, Ydrefors PRD 105, 114055 (2022)

We can calibrate the model to reproduce Lattice Data for M(p2)

Lattice data from: Oliveira, Silva, Skullerud and Sternbec, PRD 99 (2019) 094506

Next step: To use a solution of the DSE to obtain the Fermion-Antifermion
bound state
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Conclusions and Perspectives

The near future will offer an innovative view of the dynamics inside the
hadrons, thanks to the experimental activity planned at the Electron-ion
colliders, and plenty of measurements pointing to the 3D tomography of
hadrons will become available.

For the pion, many results, em form factor, PDF, TMDs, Ioffe-time×
transverse plane distribution, have been obtained by using the
ladder-approximation of the qq̄-BSE.

The 3D imaging is in line with the goal of the future Electron Ion Collider.

Future plan is to include dressing functions for quark and gluon propagators
and a more realistic quark-gluon vertex .
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