Spectra, form factors and hadronic structure functions from a deformed AdS model

Henrique Boschi-Filho Instituto de Física Universidade Federal do Rio de Janeiro Light-Cone 2023, September 21, 2023

Work done in collaboration with:

 Miguel A. Martín Contreras (Viña del Mar, Chile) Eduardo Folco Capossoli (Colégio Pedro II, Rio de Janeiro) Danning Li (Jinan University, Guangzhou, China) Alfredo Vega (Valparaíso, Chile)

Holography from AdS/CFT Correspondence

AdS space (d+1) dim. Curved space AdS_5 AdS_4 Gravity (Classical)

Holography from AdS/CFT Correspondence

AdS space (d+1) dim. Curved space

$$ds^{2} = \frac{L^{2}}{z^{2}} \left(-dt^{2} + d\vec{x}^{2} + dz^{2} \right)$$

L = AdS radius

 $ds^2 = -dt^2 + d\vec{x}^2$

 $ds^2 = dt^2 + d\vec{x}^2$

AdS/QCD Holographic models for SU(N) interactions

AdS space with an IR cut off

Hard Wall model Polchinski & Strassler '02 HBF and N Braga'03

Action
$$= \int d^d x \, dz \sqrt{-g} \, \mathscr{L}$$

$$ds^{2} = \frac{L^{2}}{z^{2}} \left(-dt^{2} + d\vec{x}^{2} + dz^{2} \right)$$
$$0 \le z \le z_{max} \quad \leftarrow$$

IR scale:
$$z_{max} \sim 1/\Lambda_{QCD}$$

Applications: Glueball masses and for any other hadron.

Field Theory with an IR cut off

Examples:

Soft Wall model KKSS (Karch et al'06)

Action
$$= \int d^d x \, dz \sqrt{-g} \, e^{-kz^2} \mathscr{L}$$
$$ds^2 = \frac{L^2}{z^2} \left(-dt^2 + d\vec{x}^2 + dz^2 \right)$$

 $0 \le z \le \infty$

IR scale:
$$k \sim \Lambda_{QCD}^2$$

Application: Vector meson masses. Does not work with other hadrons.

$$C = C - \frac{k_{z}^{2}}{A(z) = -\log(z) + \frac{k_{z}^{2}}{L_{2}} = (-1)^{L}}$$

$$Capossoli, Contreras, Li, Vega, HBS$$

$$C = +1$$

$$AdS metric P = C = -1$$

$$ds^{2} = \frac{L^{2}}{\sqrt{z^{2}}} (-dt^{2} + dx^{2} + dz^{2})$$

$$ds^{2} = \frac{L^{2}}{\sqrt{z^{2}}} (-dt^{2} + dx^{2} + dz^{2})$$

$$ds^{2} = \frac{L^{2}}{\sqrt{z^{2}}} (-dt^{2} + dx^{2} + dz^{2})$$

$$ds^{2} = \int d^{5}x \sqrt{-g} [g^{mn}\partial_{m}X\partial^{n}X + M_{5}^{2}X^{2}].$$

$$\Delta = 6 \Delta = 4$$

$$C = -1$$

$$\int d^{5}x \sqrt{-g} [g^{mn}\partial_{m}X\partial^{n}X + M_{5}^{2}X^{2}].$$

$$\Delta = 6 + J$$

$$ds^{2} = (J + 6)(J + 2);$$

$$ds^{2} = (J + 6)$$

Hadronic spectra for scalar mesons $A^2 = (A^{f_0}(S) + A^{f_1} + B^{f_2} + B^{f_1})$ AdS/CFT preservation $M_5^2 = (\Delta - p)(\Delta + p^{n-1})_{M_{\text{th}}}$ $p = J \stackrel{M_e}{=} \mathfrak{V}$ $R \equiv \mathcal{J} = 0^{\Delta}$ AdS₅ $S = \frac{\Delta_{3/2}}{M_{\text{th}}} = 3/2 \qquad \qquad M_{\text{th}} \qquad M_{\text{th}} \qquad \qquad M_{\text{th}} \qquad M_{\text{th}} \qquad \qquad M_{\text{th}} \qquad \qquad M_{\text{th}} \qquad M_{\text{th}} \qquad M_{\text{th}} \qquad \qquad M_{\text{th}} \qquad$ $M_5^2 \equiv \pm 3$ $\begin{bmatrix} B'^{2}(z) & B''(z) \\ \hline B''(z) & -\frac{3}{2} e^{-\frac{2B(z)}{3}} \\ \hline M_{exp}/GeV^{3}[69] & U(z) \\ \hline M_{th}/GeV^{4}(z), \\ \hline M_{th}/GEV^{4}(z)$ $-\psi^{\prime\prime}(z)+$ 9.97 1.089 0.990 ± 0.02 $J = L - {}^{n} \overline{B} (z) L = + - B^{f} A(z)$ $f_0(1370)$ $1.34 R_{\rm sm} = -0.93 2^2$ 1.2 to 1.5 *n* = 2 $^{n} \mathcal{T}^{\mathcal{G}}(J^{PC})^{f_{0}(1500)}$ 1.562 3.87 1.504 ± 0.006 $1.723_{-0.005}^{G} = 0^{+} (0_{1.757}^{++})_{757}$ ${}^{n} \mathcal{G}^{\ddagger} = (-1)^{1} \mathcal{I}^{\ddagger} \mathcal{I}^{ } \mathcal$ 1.96 $n = 5 P = (f_{0}, 40)^{20}$ 1.992 ± 0.016 1.933 2.96 $C = (-)^{L+S} f_0(2100)$ 2.101 ± 0.007 2.095 0.27 2.246 2.61 $f_0(2200)$ 2.189 ± 0.013 *n* = 7 2.17 2337 ± 0.014 With n = 8i=16 –

$$\epsilon_{v} = 1/2(1, 1, 1, 1)$$

$$\partial_{\mu}A^{\mu} = 0$$
Hadronic Spectra for mesons $F_{zn} = 1, 2, 3, 4$ for $M_{z} = 0$
AdS/CFT prescription $M_{z}^{2} = (\Delta - p)(\Delta + M_{z}) = 0$
AdS/CFT prescription $M_{z}^{2} = (\Delta - p)(\Delta + M_{z}) = 0$

$$M_{exp} = J = 1^{(z)} + \left[\frac{B^{22}(z)}{4} - \frac{B^{\prime\prime}(z)}{4} - \frac{B^{\prime\prime}(z)$$

$$\int x \sqrt{g} \bar{\Psi}(D - m_5) \Psi.$$

$$\mu_{5}e^{A(z)}A'(z)] \psi_{R/L}(z) = M_{n}^{2}\psi_{R/L}^{n}(z),$$

$$|color\rangle_{A} \otimes |space; spin-flavor\rangle_{S}. \qquad (44)$$

hal fermion masses.

$$SU(3)$$

$$og \frac{L}{z} + \frac{k}{2} z^2 O(6)$$

L =	Ū			M_n			Λ
,5		Hac (52) ¹⁹)		(m_5)	.		
Δ^{A}	dS/CF	prescription	Mexp	, Resu	lts	for s	pin
$\{ , \} = '$	$\frac{1}{2}$	$-\Lambda$				$N(1/2^{+})$	
	$[m_{5}]_{\kappa_{1/2}}$	$-\Delta - \angle .$				A	dS_5
	$\Delta_{ ext{quark}}$	= 3/2	$\Delta_{\rm E}$	$Baryon = 9/\underline{A} =$	3	/ <u>M</u> 5 =	= 5/
			$\sqrt{\frac{1}{2}}$	$\frac{2^+}{2^+}$ - $-\Lambda$ =	$=$ $n^{\frac{1}{2}}$	$9/m_5$	= 5
5/2	1		. (- / -	Baryons M	D	$2^+_{\ell} D_{\ell}$	qD_{i}
= 5/	2	n = 1 N baryon	Mexp	$M_{\rm exp}/{\rm GeV}$ [69]	7/1	M_{th}/GeV	7
= 0.		$(53)^{(139)}$	(0.93949 ± 0.00005	/ V (1	0.98683 AdS 5)
	$k_{1/2}^{}$	$= 0.205^{(1440)}$	Ι	$\begin{pmatrix} 1,360 \text{ to } 1.380 \\ J^{T} \end{pmatrix} = \frac{1}{1} \frac{1}{720}$	(1	$\binom{1.264}{2}_{1.53}^{+}$	$L \stackrel{\scriptscriptstyle N}{=}$
	n = 3 n = 4	N(1710) N(1880)		1.080 to 1.720 N(1/2) 1.820 to 1.900	2+	1.791	
	$n = 5_{n=1}^{5}$	N(2100) N(939)	0	$M_{\rm exp}$ 2 050 to 2.150 .93949 ± 0.00005	$M_{ m th}$	2.046	Δ
	$n = 6_{2}$	$2 \qquad N_{2}(2,3,4,9)$		$2300^{+0.006}_{-0.0050-0}$		2.296	
$(z)\gamma$,) , n - 1	$(52)_{10}$		1.680 to 1.720			
		$(5 4)^{1} (1880)$		[69] PDG 20 ⁻ 1. 8 20 to 1.900	18		$n_r =$
(X),		$(34)_{(2100)}$		2050 ± 2150			

Deep Inelastic Scattering (DIS)

The so-called *Bjorken variable* parametrizes this fragmentation according to:

Scattering Amplitude

 $i\mathcal{M}_{lp\to lX} = (iQ)\bar{u}\gamma_{\mu}u\left(\frac{i}{q^2}\right)$

$$x = -\frac{q^2}{2P \cdot q},\tag{1}$$

where q^2 is the transferred momentum from the lepton to the proton by a virtual photon and P is the initial proton momentum, with mass defined as $P^2 = -M^2$.

$$_{\overline{2}}\left(ie\right)\int d^{4}ye^{iq\cdot y}\langle X|J^{\mu}(y)|P\rangle,$$

Deep Inelastic Scattering (DIS)

the optical theorem

$$\sum_{X} \int d\Pi_{X} |\mathcal{M}_{\gamma p \to X}|^{2} = 2 \mathbb{I} m \mathcal{M}_{\gamma p \to \gamma p}$$

$$2 \operatorname{Im} \left[a \qquad b \ \right] = \sum_{r} \int d\Pi_{f} a \qquad f \qquad b$$

Hadronic Tensor

$$W^{\mu\nu} = \frac{i}{4\pi} \sum_{s} \int d^4 y e^{iq.y} \langle P, s | \mathcal{T} \{ J^{\mu}(y) J^{\nu}(0) \} | P, s \rangle.$$

$$W^{\mu\nu} = F_1 \left(\eta^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{q^2} \right) + \frac{2x}{q^2} F_2 \left(P^{\mu} + \frac{q^{\mu}}{2x} \right) \left(P^{\nu} + \frac{q^{\nu}}{2x} \right).$$

 $F_{1,2} \equiv F_{1,2}(x, q^2)$, Structure functions.

DIS from AdS/QCD

for three regimes: large, small and very small x;

Maldacena, Nature'03: "Particles such as the proton can be imagined as vibrating strings. We also know that protons contain smaller, point-like particles, going against the string theory. But in five dimensions, the contradiction disappears"

Polchinski & Strassler'03 Scalar and Fermionic (S=1/2) DIS within the Hard Wall Model,

$$S = \int d^5 x$$

 $A(z) = \log \frac{L}{z} + \frac{k}{2}z^2$

Capossoli, Contreras, Li, Vega, HBF PRD 2020

 $z_{\sqrt{-g\mathcal{L}}}$

$ds^{2} = g_{mn}dx^{m}dx^{n} = e^{2A(z)}(dz^{2} + \eta_{\mu\nu}dy^{\mu}dy^{\nu}).$

A. Computing the electromagnetic field

$$S = -\int d^5x \sqrt{-g} \frac{1}{4} F^{mn} F_{mn},$$

$$\phi_{\mu} = -\frac{1}{2} \eta_{\mu} e^{iq \cdot y} B(z,q)$$

$$B(z,q) = k z^2 \Gamma \left[1 - \frac{q^2}{2k} \right] U \left(1$$

$$F^{mn}=\partial^m\phi^n-\partial^n\phi^m.$$

$$\frac{q^2}{2k}; 2; -\frac{kz^2}{2}\right)$$

B. Computing the baryonic states

$$S = \int d^5 x \sqrt{g} \bar{\Psi} (D - m_5) \Psi,$$

$$\Psi_i = e^{iP \cdot y} z^2 e^{-kz^2} \left[\left(\frac{1+\gamma_5}{2} \right) \psi_L^i(z) + \left(\frac{1-\gamma_5}{2} \right) \psi_R^i(z) \right] u_{s_i}(P)$$

$$\Psi_X = e^{iP_X \cdot y} z^2 e^{-kz^2} \left[\left(\frac{1+\gamma_5}{2} \right) \psi_L^X(z) + \right]$$

$$|m_5| = \Delta_{\rm can} + \gamma - 2.$$

anomalous dimension

$$\left(\frac{1-\gamma_5}{2}\right) \psi_R^X(z) \left| \begin{array}{c} u_{s_X}(P_X) \end{array} \right|$$

Chiral wave functions for left (solid line) and right (dashed line) for the proton $(M_p \equiv M_1 = 0.938 \text{ GeV})$ using $k = 0.443^2 \text{ GeV}^2$ and $m_5 = 0.878 \text{ GeV}$.

Chiral wave functions for some excited states with n=2, 3, 4, 5 using $k=0.443^2$ GeV² and $m_5=0.878$ GeV. In each panel, the left chirality is represented by a solid line, and the right chirality by a dashed line.

$$\eta_{\mu} \langle P + q, s_X | J^{\mu}(q) | P, s \rangle = S_{\text{int}}$$
$$= g_V \int d$$

$$=\frac{g_V}{2}(2\pi)^4\delta^4(P_X-P-q)\eta^4$$

with
$$\mathcal{I}_{R/L} = \int dz B(z, q)$$

and $B(z, q) = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n}$

 $dz d^4 y \sqrt{-g} \phi^{\mu} \overline{\Psi}_X \Gamma_{\mu} \Psi_i.$

 $\gamma^{\mu} [\bar{u}_{S_{X}} \gamma_{\mu} \hat{P}_{R} u_{S_{i}} \mathcal{I}_{L} + \bar{u}_{S_{X}} \gamma_{\mu} \hat{P}_{L} u_{S_{i}} \mathcal{I}_{R}],$

 $\psi_{R/L}^X(z, P_X)\psi_{R/L}^i(z, P).$

 $B(z,q) = k z^2 \Gamma \left[1 - \frac{q^2}{2k} \right] U \left(1 - \frac{q^2}{2k}; 2; -\frac{k z^2}{2} \right)$

$$\begin{split} \eta_{\mu}\eta_{\nu}W^{\mu\nu} &= \frac{g_{\text{eff}}^2}{4} \sum_{M_X^2} \left\{ (I_L^2 + I_R^2) \left[(P \cdot \eta)^2 - \frac{1}{2} \eta \cdot \eta (P^2 + P \cdot q) \right] + I_L I_R M_X^2 M_0^2 \eta \cdot \eta \right\} \\ &\times \delta(M_X^2 - (P + q)^2) \end{split}$$

$$= \eta^2 F_1(q^2, x) + \frac{2x}{q^2} (\eta \cdot P)^2$$

 ${}^{2}F_{2}^{2}(q^{2},x).$

$$\delta(M_X^2 - (P+q)^2) \propto \left(\frac{\partial M_n^2}{\partial n}\right)^{-1}$$

$$F_2(q^2, x) = \frac{g_{\text{eff}}^2 q^2}{8} \frac{q^2}{x} (\mathcal{I}_L^2 + \mathcal{I}_R^2) \frac{1}{M_X^2},$$

in the limit of $M_X \gg M_0$, $q \gg M_0$, and $x \to 1$,

$$F_1(q^2, x) \approx \frac{1}{2} F_2(q^2, x),$$

which behaves like the Callan-Gross relation $2xF_1 = F_2$, for $x \to 1$.

x	$m_5 \; ({ m GeV})$	$k \; ({ m GeV^2})$	$g^2_{ m eff}$	γ
0.85	0.878	0.443^{2}	1.83	0.378
0.75	0.565	0.583^{2}	1.65	0.065
0.65	0.505	0.612^2	3.65	0.005

Numerical fit of experimental data. These parameters provide the proton mass as 0.938 GeV and the structure $F_2(x, q^2)$ in next slide

$$\Delta_{\rm can} + \gamma - 2.$$

anomalous dimension

$$S = \int d^5 x \sqrt{-g} \mathcal{L}, \qquad ds^2 = g_{mn}^I dx^m dx^n = \frac{e^{k_I z^2}}{z^2} \left(dz^2 + \eta_{\mu\nu} dy^\mu dy^\nu \right),$$

2.1. Scalar field in the deformed AdS/QCD model

$$S = \int d^5 x \sqrt{-g_\pi} \left[g_\pi^{mn} \partial_m X \partial^n X + M_5^2 X^2 \right], \qquad \qquad A_\pi(z) = \log \frac{L}{z} + \frac{k}{2} z^2$$

$$-\psi''(z) + \left[\frac{9}{4}A'^2(z) + \frac{3}{2}A''(z) + e^{2A(z)}M_5^2\right]\psi(z) = -q^2\psi(z), \qquad \dot{M}_5^2 = -3$$

Pion form factor from an AdS deformed background

Contreras, Capossoli, Li, Vega, HBF, NPB 2022

- where the index $I = \pi, \gamma$ is associated with the pion and the photon, respectively.

This equation does not have analytic solutions. Solving it numerically with $k_{\pi} = -0.0425^2 \text{ GeV}^2$ we get $m_{\pi} = 0.139$ GeV compatible with the meson π mass.

Holographic Potential for Pions

Holographic potential for bulk eigenmodes dual to pions.

Holographic Pion Eigenfunctions

Ground and first two excited bulk eigenmode states dual to pions.

2.2. Gauge boson field in the deformed AdS/QCD model

$$S = -\frac{1}{c_{\gamma}^2} \int d^5 x \sqrt{-g_{\gamma}} \frac{1}{4} F^{mn} F_{mn} ,$$
$$A(z) = \log \frac{L}{z} - \frac{1}{z} \log \frac{L}{z} - \frac{1}{z} \log \frac{L}{z} + \frac{1}{z} + \frac{1}{z} \log \frac{L}{z} + \frac{1}{z} + \frac{1$$

$$\begin{split} \phi_{\mu}(z,q) &= -\frac{\eta_{\mu}e^{iq\cdot y}}{2} k_{\gamma} z^2 \Gamma \bigg[1 - \frac{q^2}{2k_{\gamma}} \bigg] \mathcal{U} \\ &\equiv -\frac{\eta_{\mu}e^{iq\cdot y}}{2} \mathcal{B}(z,q) \,, \end{split}$$

 $F^{mn} = \partial^m \phi^n - \partial^n \phi^m.$ $+\frac{k}{2}z^2$ $\mathcal{U}\left(1-\frac{q^2}{2k_{\gamma}};\,2;\,-\frac{k_{\gamma}\,z^2}{2}\right)$

3. Pion form factor

$$S_{\rm eff} = g_{\rm eff} \int d^5 x \sqrt{-g_\pi} g_\pi^{mn} \phi_m(x, z) \left[Z_{\rm eff} \right]$$

$$F_{\pi}(q^2) = \int dz \,\psi_1(z) \,\mathcal{B}(z, q^2) \,\psi_1(z).$$

$$\langle r_{\pi}^2 \rangle = -6 \left. \frac{dF_{\pi}(q^2)}{dq^2} \right|_{q^2=0}$$

 $g_{\rm eff} = 1$

Scattering pions and leptons via the exchange of a virtual photon. The shaded blob represents the effective vertex used to define the electromagnetic pion form factor.

Pion form factor from an AdS deformed background

 $X_{p_1}(x,z) \partial_m X_{p_2}^*(x,z) - X_{p_2}^*(x,z) \partial_m X_{p_1}(x,z) \Big|,$

4. Numerical results for the pion form factor

4.1. Pion form factor and pion radius for $\Delta = 3$

Our results for the Pion Form Factor with $\Delta = 3$

- 4.2. Pion form factor and pion radius for $\Delta = 3$ and k dependent of the momentum
 - $k_{\gamma} \to k_{\gamma}(q) = q \, k_{\gamma}.$

Our results for the Pion Form Factor with $\Delta = 3$ and $k_y \rightarrow k_y(q) = q k_y$

Appendix A. Large q^2 analysis in the AdS deformed background

$$F_{\pi}(q^2)\Big|_{q\to\infty} \to \left(\frac{1}{q^2}\right)^{\Delta-1} \qquad \Delta =$$

Appendix B. Pion form factor in the original softwall model

$$F_{\pi}(q) = \frac{32k_{\gamma}^2}{\left(q^2 + 4|k_{\gamma}|\right)\left(q^2 + 8|k_{\gamma}|\right)},$$

$$F_{\pi}(q^2) \sim \frac{1}{q^2},$$

fulfilling the expected scaling law even considering $\Delta = 3$.

- $\Delta = 3$, our case;
- = 2 in light-front softwall model.

$$k_{\gamma} \to k_{\gamma}(q) = q \, k_{\gamma}$$

- holographic coordinate.
- We are considering improving theses results and the deformed model.

• We have found reasonable results for the hadronic spectra, DIS structure functions and form factors within the deformed AdS/QCD model with a quadratic exponential in the

Backup slides

Contreras, Capossoli, Li, Vega, HBF, PLB 2021

$$I_{\text{int}} = \int d^5 x \sqrt{-g^B} \left\{ \bar{\psi}_f \, \Gamma^m \, \phi_m \, \psi_i + \frac{i \, \eta_N}{2} \, \bar{\psi}_f \, \left[\Gamma^m, \Gamma^n \right] \, F_{mn} \, \psi_i \right\},$$

$$C_1(q) = \frac{1}{2} \int dz \, \left[\psi_L(z)^2 + \psi_R(z)^2 \right] B(z, q)$$

$$C_2(q) = \frac{1}{2} \int dz \, e^{A_B(z)} \, \partial_z \, B(z, q) \, \left[\psi_L(z)^2 - \psi_R(z)^2 \right]$$

$$C_3(q) = \int dz \, e^{A_B(z)} \, 2 \, M_n \, \psi_L(z) \, \psi_R(z) \, B(z, q).$$

These functions will define the form factors for nu

Another set of form factors that we can describe electric and magnetic ones, defined for nucleons as

$$G_E^N$$

ucleons as

$$F_1^N(q) = C_1(q) + \eta_N C_2(q), \quad F_2^N(q) = \eta_N C_2$$

e are the Sachs

$$(q) = F_1^N(q) - \frac{q^2}{4M_N^2} F_2^N(q), \quad G_M^N(q) = F_1^N(q) + F_2^N$$

Proton

Neutron

nucleon magnetic moments

Ratios

 $G_M^p(0) = \mu_p$ and $G_M^n(0) = \mu_n$,

Table 1

Nucleon	Experimental (fm)	This work (fm)
Proton charge radius	0.8409 ± 0.0004	0.8576
Proton magnetic radius	0.851 ± 0.026	0.7929
Neutron charge radius*	-0.1161 ± 0.0022	-0.0668
Neutron magnetic radius	$0.864\substack{+0.009\\-0.008}$	0.7933

$$\langle r_{N,E}^2 \rangle = -6 \left. \frac{d G_E^N(q^2)}{d q^2} \right|_{q^2 \to 0}$$

Holographic results are calculated with $\kappa_{\gamma} = -0.450$ GeV², in Eq. (19). Experimental data is taken from PDG [45]. For the neutron charge radius, the mean square charge radius, given in fm², is considered.

$$\langle r_{N,M}^2 \rangle = -\frac{6}{G_M^N(0)} \left. \frac{d G_M^N(q^2)}{d q^2} \right|_{q^2 \to 0}$$

Maldacena '97:

- String Theory defined in $AdS_5 \times S^5$ is dual to Conformal $\mathcal{N} = 4$ Super SU(N) Yang-Mils Theory with $N \rightarrow \infty$ in d = 4 Minkowski (or Euclidean) space (Strong Statement = Conjecture);
- Supergravity fields (low energy limit of string theory) in $AdS_5 \times S^5$ are dual to operators in the Hilbert Space of Conformal $\mathcal{N} = 4$ Super SU(N) Yang-Mils Theory with $N \rightarrow \infty$ in d = 4 Minkowski (or Euclidean) space (Weak Statement = Proven).
- Other forms of the correspondence in other spacetimes, Strong and Weak, were also proposed or proven.

- Kinar, Schreiber, Sonnenschein '00: General Criteria for Confining theories from the AdS/ CFT correspondence defined in diagonal metrics $ds^{2} = -g_{00}dt^{2} + g_{ii}dx_{i}^{2} + g_{77}dz^{2} + g_{TT}dx_{T}^{2};$
- Hard Wall is confining at zero and finite temperatures (HBF, N. Braga, C. N. Ferreira'06); • Original Soft Wall is not confining \Rightarrow Solution: Modified metric

 $ds^{2} = \frac{L^{2}}{r^{2}}e^{kz^{2}}\left(-dt^{2} + d\vec{x}^{2} + dz^{2}\right)$ instead of exponential in the Action, confining at

zero and finite temperatures (Andreev, Zakharov'06);

• This solution implies the same spectrum for vector mesons as in the Original Soft Wall model.

);

AdS/CFT prescription (scalars)

$$M_5^2 = (\Delta)(\Delta - 4),$$

Scalar Glueballs $\Delta = 4$

$$\mathcal{O}_4 = \mathrm{Tr} \, \left(F^2 \right) = \mathrm{Tr} \, \left(F^{\mu\nu} F_{\mu\nu} \right)$$

Higher Spin JGlueballs

$$\mathcal{O}_{4+J} = \operatorname{Tr}\left(FD_{\{\mu 1\dots}D_{\mu J\}}F\right)$$

de Teramond-Brodsky Prescription

 $\Delta = 4 + J$

 $M_5^2 = J(J+4);$ $(\operatorname{even} J)$

Glueballs

Oddballs Capossoli, HBF 2013 $\mathcal{O}_6 = \operatorname{Sym} \operatorname{Tr} \left(\tilde{F}_{\mu\nu} F^2 \right),$ $\Delta = 6$

Higher Spin J Oddballs

$$\mathcal{O}_{6+J} = \operatorname{Sym} \operatorname{Tr} \left(\tilde{F}_{\mu\nu} F D_{\{\mu 1 \dots} D_{\mu J\}} F \right),$$

$$\Delta = 6 + J$$

 $M_5^2 = (J+6)(J+2);$ $(\operatorname{odd} J),$

Partial Summary: Hadronic Spectra from Deformed AdS backgrounds

- Forkel, Beyer, Tobias JHEP 2007:
- Capossoli, Contreras, Li, Vega, HBF CPC 2020: Mexp Baryons

$$M_{\rm em}$$

Different warp factors (functions) for different family particles $f_0 (S = C = B = 0)$

One warp factor with different scales k for different family particles $n = 1, 2, 3, \cdots$ $\begin{array}{ll} & & & & \\ \text{fexp} \\ \text{Glueballs (even/odd)} \\ & & & \\ n = 1 \\ \text{Scalar/Vector mesons} \\ & & \\ & & \\ \end{array} \begin{array}{ll} k_{\text{gbe}} = k_{\text{gbo}} = 0.31^2 \text{GeV}^2 \\ & & \\ M_{\text{gbe}} = k_{\text{gbo}} = 0.31^2 \text{GeV}^2 \\ & & \\ M_{\text{gbe}} = k_{\text{gbo}} = 0.31^2 \text{GeV}^2 \\ & & \\ M_{\text{ds}} = 0.332^2 \text{GeV}^2 \\ & & \\ M_{\text{th}} = 0.332^2 \text{GeV}^2 \\ & & \\ N(1/2^+) \end{array}$ $M_{\text{th}} = 0.205^2 \text{ GeV}^{2M_{\text{exp}}}; \quad k_{1/2} = k_{3/2} \approx k_{5/2} \quad AdS_5$ $f_0 \quad 0^+(0^{++})$ $M_{exp} \qquad M_{th}$

Previous works of UFRJ Group on DIS from AdS/QCD

- large x.
- Ballon Bayona, HBF, Braga'08b DIS for mesons within the D3-D7 Brane Model for large and intermediate values of x, and elastic form factors; • Ballon Bayona, HBF, Braga'08c DIS for scalars within Supergravity for small x
- \Rightarrow Geometric Scaling;
- Ballon Bayona, HBF, Braga'10 DIS off a **plasma** with flavor from the D3-D7 brane model;
- Ballon Bayona, HBF, Braga, Torres'10 DIS for vector mesons in holographic D4-D8 model;
- proton structure functions in the Sakai–Sugimoto model;
- Capossoli, HBF'15 DIS in the exponentially small x from the holographic softwall model \Rightarrow Saturation;

• ...

• Ballon Bayona, HBF, Braga,'08a DIS for scalars within the Soft Wall Model for large and small x, and for Fermions in a hybrid (soft + hard wall) model for

• Ballon Bayona, HBF, Braga, Ihl, Torres'13 Generalized baryon form factors and

