Multigluon Correlation Functions from lattice QCD

The four gluon vertex

Orlando Oliveira (U. Coimbra, Portugal, <u>orlando@uc.pt</u>)

Manuel Colaço, Paulo Silva

Mauricio Ferreira, Joannis Papavassiliou **@U. Valencia, Spain** Arlene C Aguilar, Leonardo R Santos **@U.** Campinas, Brazil

@U. Coimbra, Portugal

Light Cone, Rio de Janeiro, September 2023

Motivation

QCD Dynamics at a fundamental level

DSE, etc.)

Effective charge $\frac{g^2}{\Lambda \pi} \Gamma^{(4g)}(p^2) p^2 D(p^2)$

Landau gauge

importance of higher order corrections (two loop contributions to gluon

Test our understanding of QCD Green functions (ghost dominance at IR)

(pure gauge) Lattice point of view

Lattice Approach

$A^a_\mu(x)$ Importance Sampling allows to access the gluon field

Larger sets of configurations

$\mathcal{G}^{(n)}(x_1, \dots, x_n) = \langle 0 | T \left(A^{a_1}_{\mu_1}(x_1) \cdots A^{a_n}_{\mu_n}(x_n) \right) | 0 \rangle$

Disconnected parts

kinematical configurations <u>or</u> **Combinations of components**

Gluon Propagator

lattice studies support a massless ghost

0.5

0.0

Xy

-1.0

-0.5

A F Falcão et al, Phys. Rev. D 102 (2020) 11, 114518

Re p^2

1.5

1.0

-2.0

IR Ghost Dominance / Log Divergence

Full QCD $\lambda_1(p_1, p_2, p_3) = \frac{F(p_3^2)}{2} \left\{ A(p_1^2) \left[X_0 + \left(p_1^2 - (p_1 p_2) \right) X_3 \right] + \right\}$ $A(p_2^2) \left[\overline{X}_0 + (p_2^2 - (p_1 p_2)) \overline{X}_3 \right] +$ $B(p_1^2) \left[X_1 + X_2 \right] +$ $B(p_2^2)\left[\overline{X}_1 + \overline{X}_2\right]$

IR Ghost Dominance / Log Divergence

Full QCD $\lambda_1(p_1, p_2, p_3) =$

A. Kizilersu et al, Phys.Rev.D 103 (2021) 11, 114515

4-gluon correlation function

$\langle A_{\mu_1}(p_1) A_{\mu_2}(p_2) A_{\mu_3}(p_3) A_{\mu_4}(p_4) \rangle =$

 $= \int \mathcal{D}A \ A_{\mu_1}(p_1) \ A_{\mu_2}(p_2) \ A_{\mu_3}(p_3) \ A_{\mu_4}(p_4) \ e^{-S}$

 V^2

 V^2

 V^2

+

Single momentum scale

In Landau gauge simplifies the tensor analysis

Contributions only from the tensors proportional to $\,\delta_{\mu
u}$

Recent Continuum Calculations

C Kellermann, C S Fischer, *Phys. Rev. D* **78** (2008) 025015 D Binosi, D Ibañez, J Papavassiliou, *JHEP* **1409** (2014) 059 A K Cyrol, M Q Huber, L von Smekal, *Eur Phys J C* **75** (2015) 102

C Kellermann, C S Fischer, Phys. Rev. D 78 (2008) 025015

D Binosi, D Ibañez, J Papavassiliou, JHEP 1409 (2014) 059

 $\left. \Gamma^{abcd}_{\mu\nu\rho\sigma}(p,p,p,-3p) \right|_{gg} = V_{\Gamma^{(0)}}(p^2) \Gamma^{abcd(0)}_{\mu\nu\rho\sigma} + V_G(p^2) G^{abcd}_{\mu\nu\rho\sigma},$

 $G^{abcd}_{\mu\nu\rho\sigma} = (\delta^{ab}\delta^{cd} + \delta^{ac}\delta^{bd} + \delta^{ad}\delta^{bc})\left(g_{\mu\nu}g_{\rho\sigma} + g_{\mu\rho}g_{\nu\sigma} + g_{\mu\sigma}g_{\nu\rho}\right)$

+ 2 permutations

+ 2 permutations

 $R_{\mu
u
ho\sigma}$

 $p \; [\text{GeV}]$

A K Cyrol, M Q Huber, L von Smekal, Eur Phys J C 75 (2015) 102

IR dominant (primitively divergent diagrams) One-loop contributions (disregard contributions with five-point diagrams and ghost-gluon five-point functions) Take tree level tensor structure for three-gluon and four-gluon diagrams

First tentative of a lattice calculation can be found in G T R Catumba Master Thesis ArXiv: 2101.06074

p, p, p, -3p Two tensor structures

 $G^{abcd}_{\mu\nu\eta\zeta} = \left(\delta^{ab}\,\delta^{cd} + \delta^{ac}\,\delta^{bd} + \delta^{ad}\,\delta^{bc}\right)\left(\delta_{\mu\nu}\,\delta_{\eta\zeta} + \delta_{\mu\eta}\,\delta_{\nu\zeta} + \delta_{\mu\zeta}\,\delta_{\nu\eta}\right)$

D. Binosi, D. Ibañez, J. Papavassiliou JHEP 9, 059 (2014) arXiv:1407.3677

 $\widetilde{\Gamma}^{(0)}_{\mu\nu\eta\zeta} = f_{abr}f_{cdr}\left(\delta_{\mu\eta}\delta_{\nu\zeta} - \delta_{\mu\zeta}\delta_{\nu\eta}\right) + f_{acr}f_{bdr}\left(\delta_{\mu\nu}\delta_{\eta\zeta} - \delta_{\mu\zeta}\delta_{\nu\eta}\right) + f_{adr}f_{bcr}\left(\delta_{\mu\nu}\delta_{\eta\zeta} - \delta_{\mu\eta}\delta_{\nu\zeta}\right)$

800 $\frac{40}{20}$ 600 $\begin{array}{r} 20\\ 0\\ -20\\ -40\\ -60\\ -80\\ -100\\ -120\\ -140\end{array}$ 400 $V_G(p^2)/a^4$ 200 1 $1.4 \ 1.8 \ 2.2$ 0.60 -200 $64^4 - (n, n, 0, 0)$ -400 $64^4 - (n, n, n, 0)$ 1.50.52.5 $\mathbf{2}$ 1 \hat{p} (GeV)

For tensor analysis see:

J A Gracey, Phys Rev D90, 025011 (2014) arXiv: 1406.1618 G Eichmann, C S Fischer, W Heupel, Phys Rev D92, 056006 (2015) arXiv: 1505.06336

$$\widetilde{\Gamma}^{(0)\ abcd}_{\mu\nu\eta\zeta} = f_{abr}f_{cdr}\left(\delta_{\mu\eta}\delta_{\nu\zeta} - \delta_{\mu\zeta}\delta_{\nu\eta}\right) + f_{acr}f_{bdr}\left(\delta_{\mu\nu}\delta_{\eta\zeta} - \delta_{\mu\zeta}\delta_{\nu\eta}\right) + f_{adr}f_{bcr}\left(\delta_{\mu\nu}\delta_{\eta\zeta} - \delta_{\mu\eta}\delta_{\nu\zeta}\right)$$
$$\widetilde{\Gamma}^{(1)\ abcd}_{\mu\nu\eta\zeta} = d_{abr}d_{cdr}\left(g_{\mu\eta}g_{\nu\zeta} + g_{\mu\zeta}g_{\nu\eta}\right) + d_{acr}d_{bdr}\left(g_{\mu\zeta}g_{\nu\eta} + g_{\mu\nu}g_{\eta\zeta}\right) + d_{adr}d_{bcr}\left(g_{\mu\nu}g_{\eta\zeta} + g_{\mu\eta}g_{\eta\zeta}\right)$$

$$\widetilde{\Gamma} = F(p^2) \,\widetilde{\Gamma}^{(0)} + G(p^2) \,\widetilde{\Gamma}^{(1)} + H(p^2) \,\widetilde{\Gamma}^{(2)}$$

Not an orthogonal basis

 $\mathcal{G}^{(4)} = \widetilde{\Gamma} \left(P^{\perp}(p) D(p^2) \right)^3 \left(P^{\perp}(3p) D(9p^2) \right)$

Measure the three form factors

$$F^{(0)}(p^2) \qquad F$$

Tree Level Tensor

 $F^{(1)}(p^2) = F^{(2)}(p^2)$

$$\beta = 6.0$$
 $a = 0.102$

Lattice	Configs	Pmin
324	4620	381 MeV
64 ⁴	2000	191 MeV
804	1801	153 MeV

2 fm $a^{-1} = 1.943 \text{ GeV}$

Averaged over equivalent momenta, including the negative momenta !

Bare Amputated Green Function

Bare Amputated Green Function

Bare Amputated Green Function

Continuum Calculations

A K Cyrol, M Q Huber, L von Smekal, Eur Phys J C 75 (2015) 102

Continuum Calculations

One loop truncated Dyson-Schwinger equation by

A C Aguilar, M N Ferreira, J Papavassiliou, L R

Continuum Calculations

Curci-Ferrari Model (one-loop)

M Peláez, P Pais

Summary and Conclusions

- gluon correlation functions up to 4-external legs are possible with standard lattice methods (require large statistical ensembles)
- increase the statistics and improve the tensor analysis
- At mid range momentum or larger tree level structure dominates
- Study better the good (at least) qualitative agreement between Lattice and DSE approach
- Look at other kinematics and extend collaboration to get a better picture

Work supported by national funds from FCT -- Fundação para a Ciência e a Tecnologia, I.P., Portugal, within projects UIDB/04564/2020, UIDP/04564/2020 and CERN/FIS-PAR/0023/2021. Simulations performed in supercomputers Navigator, managed by LCA -- University of Coimbra [url: www.uc.pt/lca], Lindgren, Sisu (through PRACE) projects COIMBRALATT [DECI-9] and COIMBRALATT2 [DECI-12]) and Bob through FCT project CPCA/A2/6816/2020. FAPESP grant 2022/05328-3...

