

Enhanced charm CP asymmetries from Final State Interactions

Patricia C. Magalhães

Universidade Estadual de Campinas p.magallhaes@cern.ch

Collaborators:

Ignacio Bediaga - CBPF (Rio) Tobias Frederico - ITA (S.J. dos Campos) José Ramon Pelaez - UCM (Madrid)

context

high data sample from LHCb run II

→ more to come from LHCb, Bellell, BESIII $d\Gamma = \frac{m_{12}^2 = (p_1 + p_2)^2}{256\pi^3 M^3} | \Lambda$ → $s_{23} = m_{23}^2 = (p_2 + p_3)^2$ are needed (challenge) $s_{31} = m_{31}^2 = (p_3 + p_1)^2$

CP asymmetry measurements

context

• CPV in $B^{\pm} \rightarrow h^{\pm}h^{-}h^{+}$

Run II 5.9 fb⁻¹

PRD D 108 012008 (2023)

 $A_{CP}(B^{\pm} \to K^{\pm}\pi^{+}\pi^{-}) = +0.011 \pm 0.002,$ $A_{CP}(B^{\pm} \to K^{\pm}K^{+}K^{-}) = -0.037 \pm 0.002,$ $A_{CP}(B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}) = +0.080 \pm 0.004,$ $A_{CP}(B^{\pm} \to \pi^{\pm}K^{+}K^{-}) = -0.114 \pm 0.007,$

Light Cone 2023

• $\Delta A_{CP}^{\text{LHCb}} = A_{cp}(D^0 \rightarrow K^+K^-) - A_{cp}(D^0 \rightarrow \pi^+\pi^-) = -(1.54 \pm 0.29) \times 10^{-3}$ Phys. Rev. Lett. 122, 211803 (2019) $B^ \overline{u}$

Light Cone 2023

•
$$\Delta A_{CP}^{\text{LHCb}} = A_{cp}(D^0 \to K^+K^-) - A_{cp}(D^0 \to \pi^+\pi^-) = -(1.54 \pm 0.29) \times 10^{-3}$$

Phys. Rev. Lett. 122, 211803 (2019)

→ direct CP asymmetry observation

• $A_{CP}^{LHCb}(KK) = (0.77 \pm 0.57) \times 10^{-3}$

→
$$A_{CP}^{LHCb}(\pi\pi) = (2.32 \pm 0.61) \times 10^{-10}$$

arXiv:2209.03179

 $V_{cd}V_{ud}^*$

•
$$\Delta A_{CP}^{\text{LHCb}} = A_{cp}(D^0 \to K^+K^-) - A_{cp}(D^0 \to \pi^+\pi^-) = -(1.54 \pm 0.29) \times 10^{-3}$$

Phys. Rev. Lett. 122, 211803 (2019)

• $A_{CP}^{LHCb}(KK) = (0.77 \pm 0.57) \times 10^{-3}$

$$A_{CP}^{LHCb}(\pi\pi) = (2.32 \pm 0.61) \times 10^{-2}$$

arXiv:2209.03179

 $V_{cd}V_{ud}^*$

• QCD \rightarrow LCSR predictions $A_{CP} \approx 10^{-4}$ (1 order magnitude bellow) Khodjamirian, Petrov, > new physics? nonperturbative effects?! Phys. Lett. B 774, 235 (2017)

•
$$\Delta A_{CP}^{\text{LHCb}} = A_{cp}(D^0 \to K^+K^-) - A_{cp}(D^0 \to \pi^+\pi^-) = -(1.54 \pm 0.29) \times 10^{-3}$$

Phys. Rev. Lett. 122, 211803 (2019)

•
$$A_{CP}^{LHCb}(KK) = (0.77 \pm 0.57) \times 10^{-3}$$

$$A_{CP}^{LHCb}(\pi\pi) = (2.32 \pm 0.61) \times 10^{-1}$$

arXiv:2209.03179

 $V_{cd}V_{ud}^*$

• QCD \rightarrow LCSR predictions $A_{CP} \approx 10^{-4}$ (1 order magnitude bellow) Khodjamirian, Petrov, > new physics? nonperturbative effects?! Phys. Lett. B 774, 235 (2017)

 \rightarrow what about CPV on $D \rightarrow hhh?$ \rightarrow searches in many process at LHCb, BESIII, BeleII is expected soon with LHCb run II

Light Cone 2023

direct CP violation

Interference effect

2 amplitudes: SAME final state, \neq strong (δ_i) and weak (ϕ_i) phases

$$\langle f | T | M \rangle = A_1 e^{i(\delta_1 + \phi_1)} + A_2 e^{i(\delta_2 + \phi_2)}$$

$$\langle \bar{f} | T | \bar{M} \rangle = A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_2 - \phi_2)}$$

direct CP violation

- Interference effect
 - 2 amplitudes: SAME final state, \neq strong (δ_i) and weak (ϕ_i) phases

•
$$A_{CP} = \frac{\Gamma(M \to f) - \Gamma(\bar{M} \to \bar{f})}{\Gamma(M \to f) + \Gamma(\bar{M} \to \bar{f})} \longrightarrow \left| \frac{P}{-f} \left|^2 \neq \left| \frac{\bar{P}}{-f} \left|^2 \right|^2 \right|^2$$

• $\Gamma(M \to f) - \Gamma(\bar{M} \to \bar{f}) = |\langle f | T | M \rangle|^2 - |\langle \bar{f} | T | \bar{M} \rangle|^2 = -4A_1A_2\sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2)$

- weak phase $\phi \rightarrow \mathsf{CKM}$
- strong phase $\delta \rightarrow \text{QCD}$

direct $(B-vjolation^{+\phi_1}) + A_2e^{i(\delta_2+\phi_2)}$

$A(\bar{B} \to \bar{f}) = A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_2 - \phi_2)}$

• CPV a 'ark leve: BSS model Bander Silverman & Soni PRL 43 (1979) 242

 $A(\bar{B} \to \bar{f}) = A_1 e^{i(\delta_1 - \delta_1)}$

not enough for CPV

 $|A_{B\to f}|^2 - |A_{\bar{B}\to\bar{f}}|^2 = -4A_1A_2\sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2) |A_{B\to f}|^2 - |A_{\bar{B}\to\bar{f}}|^2 = -4A_1A_1A_2\sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2) |A_{B\to f}|^2 - |A_{\bar{B}\to\bar{f}}|^2 = -4A_1A_1A_2\sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2) |A_{B\to f}|^2 - |A_{\bar{B}\to\bar{f}}|^2 = -4A_1A_2\sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2) |A_{B\to f}|^2 - |A_{\bar{B}\to\bar{f}}|^2 = -4A_1A_2\sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2) |A_{B\to f}|^2 - |A_{\bar{B}\to\bar{f}}|^2 = -4A_1A_2\sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2) |A_{B\to f}|^2 - |A_{\bar{B}\to\bar{f}}|^2 = -4A_1A_2\sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2) |A_{B\to f}|^2 - |A_{\bar{B}\to\bar{f}}|^2 = -4A_1A_2\sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2) |A_{B\to f}|^2 - |A_{\bar{B}\to\bar{f}}|^2 = -4A_1A_2\sin(\delta_1 - \delta_2)\sin(\delta_1 - \delta_2)\sin(\delta_1 - \delta_2) |A_{B\to f}|^2 - |A_{\bar{B}\to\bar{f}}|^2 = -4A_1A_2\sin(\delta_1 - \delta_2)\sin(\delta_1 - \delta_2)\sin(\delta$

direct $(B-v_jolation^{+\phi_1}) + A_2e^{i(\delta_2+\phi_2)}$

$A(\bar{B} \to \bar{f}) = A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_2 - \phi_2)}$

• CPV a 'ark leve: BSS model Bander Silverman & Soni PRL 43 (1979) 242

 $A(\bar{B} \to \bar{f}) = A_1 e^{i(\delta_1 - \delta_1)}$

not enough for CPV

 $|A_{B\to f}|^2 - |A_{\bar{B}\to\bar{f}}|^2 = -4A_1A_2\sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2)$ • hadronic (not quark) interactions are natural solutions of strong $\bar{\rho}hase^{1/4}$

FSI to enhance CPV

Patricia Magalhães

FSI as source of CP asymmetry in B decays

LHCD

 $[\text{GeV}^2/c^4]$ $A_{\rm raw}^N$ 0.0 $m^2(K^+\pi^-)$ [GeV $^2/c^{4_-}$ $A_{
m raw}^N$ 25 -20 -LHCb LHCb 5.9 fb⁻¹ 5.9 fb⁻¹ 20 suggest 0.4 0.2 $m^2(K^+K^-)_{\mathrm{high}}$ 0.2 dynamic effect 0.1 15F Κππ 0 0 10 -0.2 -0.1 -0.4 -0.2 5 KKK -0.6 -0.3 0 E, 0 $m^2(K^+K^-)_{\rm low} \,[{\rm GeV}^2/c^4]$ 0 5 10 15 20 5 $m^2(\pi^+\pi^-)$ [GeV²/c⁴] $\mathbf{A}_{\mathrm{raw}}^{\mathrm{N}8.0}$ $m^2(\pi^+\pi^-)_{\mathrm{high}} [\mathrm{GeV}^2/c^4]$ $\mathbf{A}_{\mathrm{raw}}^{\mathrm{V}8.0}$ $m^2(K^+\pi^-)$ [GeV²/ c^4] 25 E LHCb 0.6 LHCb 0.6 5.9 fb⁻¹ 20 5.9 fb⁻¹ 0.4 20 E 0.4 0.2 ΚΚπ 0.215⊦ 15 10 -0.2 -0.2 -0.4 -0.4 5 - πππ 5 -0.6 -0.6 0F-0.8 -0.8 0 0 10 0 10 20 5 15 $m^2(\pi^+\pi^-)_{\rm low} [{\rm GeV}^2/c^4]$ $m^2(K^+K^-)$ [GeV²/c⁴]

giant localized Acp

• $B^{\pm} \rightarrow h^{\pm}h^{-}h^{+}$

 $A_{CP} = \frac{\Gamma(M \to f) - \Gamma(M \to f)}{\Gamma(M \to f) + \Gamma(\bar{M} \to \bar{f})}$

• CPT must be preserved

 $\Gamma_{\text{total}} = \Gamma_1 + \Gamma_2 + \Gamma_3 + \Gamma_4 + \Gamma_5 + \Gamma_6 + \dots$

 $\Gamma_{\text{total}} = \Gamma_1 + \Gamma_2 + \Gamma_3 + \Gamma_4 + \Gamma_5 + \Gamma_6 + \dots$

Lifetime $\tau = 1 / \Gamma_{total} = 1 / \Gamma_{total}$

$$\Rightarrow \quad \sum \Delta \Gamma_{CP} = 0$$

CPV in one channel should be compensated by another, same quantum #, with opposite sign

• LHCb run 1 projections

 $\Delta\Gamma_f = \Gamma(M \to f) - \Gamma(\bar{M} \to \bar{f}) = |\langle f | T | M \rangle|^2 - |\langle \bar{f} | T | \bar{M} \rangle|^2$

• CPT must be preserved

 $\Gamma_{\text{total}} = \Gamma_1 + \Gamma_2 + \Gamma_3 + \Gamma_4 + \Gamma_5 + \Gamma_6 + \dots$

 $\Gamma_{\text{total}} = \Gamma_1 + \Gamma_2 + \Gamma_3 + \Gamma_4 + \Gamma_5 + \Gamma_6 + \dots$

Lifetime $\tau = 1 / \Gamma_{total} = 1 / \Gamma_{total}$

$$\rightarrow \sum \Delta \Gamma_{CP} = 0$$

CPV in one channel should be compensated by another, same quantum #, with opposite sign

• LHCb run 1 projections

• rescattering $(\pi \pi \to KK)$

 $\Delta \Gamma_f = \Gamma(M \to f) - \Gamma(\bar{M} \to \bar{f}) = |\langle f \mid T \mid M \rangle|^2 - |\langle \bar{f} \mid T \mid \bar{M} \rangle|^2$

CPV at [1 -1.6] GeV Frederico, Bediaga, Lourenço PRD89(2014)094013

• CPT must be preserved

 $\Gamma_{\text{total}} = \Gamma_1 + \Gamma_2 + \Gamma_3 + \Gamma_4 + \Gamma_5 + \Gamma_6 + \dots$

 $\overline{\Gamma}_{\text{total}} = \overline{\Gamma}_1 + \overline{\Gamma}_2 + \overline{\Gamma}_3 + \overline{\Gamma}_4 + \overline{\Gamma}_5 + \overline{\Gamma}_6 + \dots$

Lifetime $\tau = 1 / \Gamma_{total} = 1 / \Gamma_{total}$

$$\Rightarrow \quad \sum \Delta \Gamma_{CP} = 0$$

CPV in one channel should be compensated by another, same quantum #, with opposite sign

 $\Delta \Gamma_f = \Gamma(M \to f) - \Gamma(\bar{M} \to \bar{f}) = |\langle f \mid T \mid M \rangle|^2 - |\langle \bar{f} \mid T \mid \bar{M} \rangle|^2$

• LHCb run 1 projections

• $B \rightarrow K\pi\pi$ - LHCb full run1 data

revisit previous work, improving FSI amplitudes

• $B \rightarrow K\pi\pi$ - LHCb full run1 data

revisit previous work, improving FSI amplitudes

 \searrow conclusion remains the same: $KK \rightarrow \pi\pi$ dominates between 1-1.5 GeV

CPV at high energy

- $B^+ \to K^- K^+ K^+$ Bediaga, Frederico, MAGALHAES, PLB 780 (2018) 357
- analogue of $\pi\pi \leftrightarrow KK$ but with $D\bar{D} \rightarrow K^+K^-(\pi^+\pi^-)$

CPV at high energy

- $B^+ \rightarrow K^- K^+ K^+$ Bediaga, Frederico, MAGALHAES, PLB 780 (2018) 357
- analogue of $\pi\pi \leftrightarrow KK$ but with $D\bar{D} \rightarrow K^+K^-(\pi^+\pi^-)$

 $Br\left[B
ightarrow DD_{s}^{*}
ight]$ ~1%

 \rightarrow 1000 x $Br[B \rightarrow KKK]$

CPV at high energy

- $B^+ \to K^- K^+ K^+$ Bediaga, Frederico, MAGALHAES, PLB 780 (2018) 357
- analogue of $\pi\pi \leftrightarrow KK$ but with $D\bar{D} \rightarrow K^+K^-(\pi^+\pi^-)$

HAES, PLB 780 (2018) 357 $K^+K^-(\pi^+\pi^-)$ $K^+X^-(\pi^+\pi^-)$ $K^+X^-(\pi^+\pi^-)$ $K^+X^-(\pi^+\pi^-)$ $K^+X^-(\pi^+\pi^-)$ $K^+X^-(\pi^+\pi^-)$ $K^+X^-(\pi^+\pi^-)$ $K^+X^-(\pi^+\pi^-)$

 \rightarrow 1000 x $Br[B \rightarrow KKK]$

• change sign ~ $D\bar{D}$ open channel

LHCb 5.9 fb⁻¹

 $m^{2}(K^{+}K^{-})^{10}_{low} [\text{GeV}^{2}/c^{4}]^{15}$

5

charm rescattering in $B^{\pm} \rightarrow \pi^{\pm}\pi^{-}\pi^{+}$

Bediaga, Frederico, MAGALHAES - PLB 806 (2020) 135490

•
$$A_{B^{\pm} \to \pi^{-} \pi^{+} \pi^{\pm}}(s_{12}, s_{23}) = \frac{\mathbf{P}^{*(0)} \mathbf{P}^{(0)}}{\mathbf{P}^{(0)} \mathbf{T}^{-}} + a_{0} e^{\pm i\gamma}$$

 π +

$$\gamma = 70^{\circ}$$
$$a_0 = 2 e^{i(\delta_s = 45^{\circ})}$$

• charm rescattering as a source of strong phase

charm rescattering in $B^{\pm} \rightarrow \pi^{\pm}\pi^{-}\pi^{+}$

•
$$A_{B^{\pm} \to \pi^{-} \pi^{+} \pi^{\pm}}(s_{12}, s_{23}) = \underbrace{B^{+}}_{B^{+}} \underbrace{B^{0}}_{D^{0}(+)} \underbrace{B^{0}}_{\pi^{-}} + a_{0} e^{\pm i\gamma}$$

$$\gamma = 70^{\circ}$$
$$a_0 = 2 e^{i(\delta_s = 45^{\circ})}$$

• charm rescattering as a source of strong phase

charm rescattering in $B^{\pm} \rightarrow \pi^{\pm}\pi^{-}\pi^{+}$

• $A_{B^{\pm} \to \pi^{-} \pi^{+} \pi^{\pm}}(s_{12}, s_{23}) = \frac{1}{B^{+}} \frac{1}{D^{0(+)}} \frac{1}{\pi^{-}} + a_{0} e^{\pm i\gamma}$

$$\gamma = 70^{\circ}$$
$$a_0 = 2 e^{i(\delta_s = 45^{\circ})}$$

Bediaga, Frederico, MAGALHAES - PLB 806 (2020) 135490

• charm rescattering as a source of strong phase

charm rescattering in $B^{\pm} \rightarrow \pi^{\pm} \pi^{-} \pi^{+}$

• $A_{B^{\pm} \to \pi^{-} \pi^{+} \pi^{\pm}}(s_{12}, s_{23}) = \frac{\mathbf{P}^{*} \mathbf{P}^{0}}{\mathbf{P}^{0}} + a_{0} e^{\pm i\gamma}$

$$\gamma = 70^{\circ}$$
$$a_0 = 2 e^{i(\delta_s = 45^{\circ})}$$

Bediaga, Frederico, MAGALHAES - PLB 806 (2020) 135490

• charm rescattering as a source of strong phase

mimic CPV pattern at high mass

→ New mechanism of CPV!

FSI as source of CP asymmetry in D decays

• how to explain the CPV in charm?

$$\Delta A_{CP}^{\text{LHCb}} = A_{cp}(D^0 \to K^+ K^-) - A_{cp}(D^0 \to \pi^+ \pi^-) = -(1.54 \pm 0.29) \times 10^{-10}$$

 D^0

b

 \overline{u}

F F

 B^-

HCL

FSI as source of CP asymmetry in D decays

• how to explain the CPV in charm?

$$\Delta A_{CP}^{\text{LHCb}} = A_{cp}(D^0 \to K^+ K^-) - A_{cp}(D^0 \to \pi^+ \pi^-) = -(1.54 \pm 0.29) > 0.000 + 0.000$$

single cabibbo suppressed decays

 V_{tb}

 V_{td}^*

 W^-

 $W^ \pi^-$

_{R0} ht Cone 2023

b

FSI as source of CP asymmetry in D decays

• how to explain the CPV in charm?

$$\Delta A_{CP}^{\text{LHCb}} = A_{cp}(D^0 \to K^+ K^-) - A_{cp}(D^0 \to \pi^+ \pi^-) = -(1.54 \pm 0.29) \times 10^{-10} +$$

single cabibbo suppressed decays

Theoretical approaches to CPV on charm

QCD short-distance

QCDF → how to calculate penguin contributions? call BSM effects

Pich, Solomonidi, Silva arXiv:2305.11951 Chala, Lenz, Rusov, Scholtz, JHEP 07, 161 (2019).

 LCSR > QCD, model independent but predictions are 1 order Khodjamirian, Petrov, magnitude bellow
 Khodjamirian, Petrov, Phys. Lett. B 774, 235 (2017)

long distance effect:

topological and group symmetry approach

- with SU(3) breaking through FSI (fit agrees)
- with resonances (fit agrees)
- FSI with CPT (prediction agrees)

H.-Y. Cheng and C.-W. Chiang, PRD 100, 093002 (2019).
F. Buccella, A. Paul and P. Santorelli, PRD 99, 113001 (2019)
Franco, Mishima, Silvestrini JHEP05, 140 (2012)

Schacht and A. Soni, Phys. Lett. B 825, 136855 (2022). Y. Grossman and S. Schacht, JHEP 07, 20 (2019)

Bediaga, Frederico, Magalhaes PRL131, 051802 (2023)

arxiv 2203.04056v2

FSI as the source of

 $\propto \lambda^4$

 \overline{n}

 \mathbf{n}

 \overline{u}

FSI as the source of

FSI to enhance CPV

Decay amplitudes

 \overline{n}

diagram

Decay amplitudes

diagram

EFGIRO enhance GRV the B_{1}

Light Cone 2023

Patricia Magalhães

•
$$\Delta \Gamma_f = \Gamma \left(D^0 \to f \right) - \Gamma (\bar{D}^0 \to f)$$

$$\mathcal{A}_{D^{0} \to \pi\pi} = \eta \,\mathrm{e}^{2i\delta_{\pi\pi}} \, V_{cd}^{*} V_{ud} \, a_{\pi\pi} + i\sqrt{1-\eta^{2}} \,\mathrm{e}^{i(\delta_{\pi\pi}+\delta_{KK})} \, V_{cs}^{*} V_{us} \, a_{KK}$$
$$\mathcal{A}_{D^{0} \to KK} = \eta \,\mathrm{e}^{2i\delta_{KK}} \, V_{cs}^{*} V_{us} \, a_{KK} + i\sqrt{1-\eta^{2}} \,\mathrm{e}^{i(\delta_{\pi\pi}+\delta_{KK})} \, V_{cd}^{*} V_{ud} \, a_{\pi\pi}$$

•
$$\Delta \Gamma_f = \Gamma \left(D^0 \to f \right) - \Gamma (\bar{D}^0 \to f)$$

$$\mathcal{A}_{D^{0} \to \pi\pi} = \eta \,\mathrm{e}^{2i\delta_{\pi\pi}} \, V_{cd}^{*} V_{ud} \, a_{\pi\pi} + i\sqrt{1-\eta^{2}} \,\mathrm{e}^{i(\delta_{\pi\pi}+\delta_{KK})} \, V_{cs}^{*} V_{us} \, a_{KK}$$
$$\mathcal{A}_{D^{0} \to KK} = \eta \,\mathrm{e}^{2i\delta_{KK}} \, V_{cs}^{*} V_{us} \, a_{KK} + i\sqrt{1-\eta^{2}} \,\mathrm{e}^{i(\delta_{\pi\pi}+\delta_{KK})} \, V_{cd}^{*} V_{ud} \, a_{\pi\pi}$$

$$\Rightarrow \Delta \Gamma_{\pi\pi} = -\Delta \Gamma_{KK} = 4 \operatorname{Im}[V_{cs}V_{us}^*V_{cd}^*V_{ud}] a_{\pi\pi} a_{KK} \eta \sqrt{1-\eta^2} \cos \phi$$

•
$$\phi = \delta_{KK} - \delta_{\pi\pi}$$

• the sign of $\Delta\Gamma_f$ is determined by the CKM elements and the S-wave phase-shifts

•
$$\Delta \Gamma_f = \Gamma \left(D^0 \to f \right) - \Gamma (\bar{D}^0 \to f)$$

$$\mathcal{A}_{D^{0} \to \pi\pi} = \eta \,\mathrm{e}^{2i\delta_{\pi\pi}} \, V_{cd}^{*} V_{ud} \, a_{\pi\pi} + i\sqrt{1-\eta^{2}} \,\mathrm{e}^{i(\delta_{\pi\pi}+\delta_{KK})} \, V_{cs}^{*} V_{us} \, a_{KK}$$
$$\mathcal{A}_{D^{0} \to KK} = \eta \,\mathrm{e}^{2i\delta_{KK}} \, V_{cs}^{*} V_{us} \, a_{KK} + i\sqrt{1-\eta^{2}} \,\mathrm{e}^{i(\delta_{\pi\pi}+\delta_{KK})} \, V_{cd}^{*} V_{ud} \, a_{\pi\pi}$$

$$\rightarrow \Delta\Gamma_{\pi\pi} = -\Delta\Gamma_{KK} = 4 \operatorname{Im}[V_{cs}V_{us}^*V_{cd}^*V_{ud}] a_{\pi\pi} a_{KK} \eta \sqrt{1-\eta^2} \cos\phi$$

$$\bullet \phi = \delta_{KK} - \delta_{\pi\pi}$$

• the sign of $\Delta\Gamma_f$ is determined by the CKM elements and the S-wave phase-shifts

• need to quantify $a_{\pi\pi}$ and a_{KK} :

at
$$D^0$$
 mass $\sqrt{1-\eta^2} \ll 1$ \longrightarrow $\Gamma_{\pi\pi} \approx \eta^2 |V_{cd}^* V_{ud}|^2 a_{\pi\pi}^2$
 $\Gamma_{KK} \approx \eta^2 |V_{cs}^* V_{us}|^2 a_{KK}^2$

$$Br[D \rightarrow f] = \Gamma_f / \Gamma_{total}$$

we can use
experimental input

•
$$\Delta\Gamma_{f} = \Gamma\left(D^{0} \rightarrow f\right) - \Gamma(\bar{D}^{0} \rightarrow f)$$

 $A_{D^{0} \rightarrow \pi\pi} = \eta e^{2i\delta_{\pi\pi}} V_{cd}^{*} V_{ud} a_{\pi\pi} + i\sqrt{1-\eta^{2}} e^{i(\delta_{\pi}}$
 $A_{D^{0} \rightarrow KK} = \eta e^{2i\delta_{KK}} V_{cs}^{*} V_{us} a_{KK} + i\sqrt{1-\eta^{2}} e^{i(\delta_{\pi\pi}+\delta_{KK})} D_{cd}^{*} V_{ud} \frac{a_{\pi\pi}+\pi}{\pi} - K^{+}K^{-}$
 $\Rightarrow \Delta\Gamma_{\pi\pi} = -\Delta\Gamma_{KK} = 4 \operatorname{Im}[V_{cs}V_{us}^{*}V_{cd}^{*}V_{ud}] \underline{a_{\pi\pi}} a_{KK} \eta \sqrt{1} V_{cd} U_{ud}^{*} \cos \phi$
 $\phi = \delta_{KK} - \delta_{\pi\pi}$
 $\bullet \text{ the sign of } \Delta\Gamma_{f} \text{ is determined by the CKM elements and the S-wave phase-shifts}$
 $\bullet \text{ need to quantify } a_{\pi\pi} \text{ and } a_{KK}$:
 $at D^{0} \text{ mass } \sqrt{1-\eta^{2}} << 1$ $\Rightarrow \Gamma_{\pi\pi} \approx \eta^{2} |V_{cd}^{*}V_{ud}|^{2} a_{\pi\pi}^{2}$
 $K_{KK} \approx \eta^{2} |V_{cs}^{*}V_{us}|^{2} a_{KK}^{2}$
 $\bullet A_{CP}(f) = \frac{\Gamma(D^{0} \rightarrow f) - \Gamma(D^{0} \rightarrow f)}{\Gamma(D^{0} \rightarrow f) + \Gamma(D^{0} \rightarrow f)} = \Delta\Gamma_{f}/2\Gamma_{f}$
 $How have the set of the set of$

FSI to enhance CPV

Patricia Magalhães

•
$$A_{CP}(f) \approx \pm 2 \frac{\operatorname{Im}[V_{cs}V_{us}^*V_{cd}^*V_{ud}]}{|V_{cs}V_{us}^*V_{cd}^*V_{ud}|} \eta^{-1} \sqrt{1-\eta^2} \cos \phi \left[\frac{\operatorname{Br}(D^0 \to K^+K^-)}{\operatorname{Br}(D^0 \to \pi^+\pi^-)}\right]^{\pm \frac{1}{2}}$$

•
$$\operatorname{Br}(D^0 \to \pi^+ \pi^-) = (1.455 \pm 0.024) \times 10^{-3}$$
 PDG
 $\operatorname{Br}(D^0 \to K^+ K^-) = (4.08 \pm 0.06) \times 10^{-3}$

•
$$\frac{\text{Im}[V_{cs}V_{us}^*V_{cd}^*V_{ud}]}{|V_{cs}V_{us}^*V_{cd}^*V_{ud}|} = (6.02 \pm 0.32) \times 10^{-4} \text{ PDG}$$

• cos
$$\phi$$
: $\phi = \delta_{KK} - \delta_{\pi\pi} = (\delta_{KK} + \delta_{\pi\pi}) - 2\delta_{\pi\pi}$

•
$$A_{CP}(f) \approx \pm 2 \frac{\operatorname{Im}[V_{cs}V_{us}^*V_{cd}^*V_{ud}]}{|V_{cs}V_{us}^*V_{cd}^*V_{ud}|} \eta^{-1} \sqrt{1-\eta^2} \cos \phi \left[\frac{\operatorname{Br}(D^0 \to K^+K^-)}{\operatorname{Br}(D^0 \to \pi^+\pi^-)}\right]^{\pm \frac{1}{2}}$$

•
$$\operatorname{Br}(D^0 \to \pi^+ \pi^-) = (1.455 \pm 0.024) \times 10^{-3}$$
 PDG
 $\operatorname{Br}(D^0 \to K^+ K^-) = (4.08 \pm 0.06) \times 10^{-3}$

•
$$\frac{\text{Im}[V_{cs}V_{us}^*V_{cd}^*V_{ud}]}{|V_{cs}V_{us}^*V_{cd}^*V_{ud}|} = (6.02 \pm 0.32) \times 10^{-4} \text{ PDG}$$

•
$$\mathbf{COS} \phi : \phi = \delta_{KK} - \delta_{\pi\pi} = (\delta_{KK} + \delta_{\pi\pi}) - 2\delta_{\pi\pi}$$

•
$$A_{CP}(f) \approx \pm 2 \frac{\operatorname{Im}[V_{cs}V_{us}^*V_{cd}^*V_{ud}]}{|V_{cs}V_{us}^*V_{cd}^*V_{ud}|} \eta^{-1} \sqrt{1-\eta^2} \cos \phi \left[\frac{\operatorname{Br}(D^0 \to K^+K^-)}{\operatorname{Br}(D^0 \to \pi^+\pi^-)}\right]^{\pm \frac{1}{2}}$$

•
$$\operatorname{Br}(D^0 \to \pi^+ \pi^-) = (1.455 \pm 0.024) \times 10^{-3}$$
 PDG
 $\operatorname{Br}(D^0 \to K^+ K^-) = (4.08 \pm 0.06) \times 10^{-3}$

•
$$\frac{\text{Im}[V_{cs}V_{us}^*V_{cd}^*V_{ud}]}{|V_{cs}V_{us}^*V_{cd}^*V_{ud}|} = (6.02 \pm 0.32) \times 10^{-4} \text{ PDG}$$

•
$$\phi_0^0$$

•
$$\cos\phi: \qquad \phi = \delta_{KK} - \delta_{\pi\pi} = (\delta_{KK} + \delta_{\pi\pi}) - 2\delta_{\pi\pi}$$

from $\pi\pi$ and $\pi\pi \rightarrow KK$ data: $\cos\phi = 0.99 \pm 0.18$.

•
$$A_{CP}(f) \approx \pm 2 \frac{\operatorname{Im}[V_{cs}V_{us}^*V_{cd}^*V_{ud}]}{|V_{cs}V_{us}^*V_{cd}^*V_{ud}|} \eta^{-1} \sqrt{1-\eta^2} \cos \phi \left[\frac{\operatorname{Br}(D^0 \to K^+K^-)}{\operatorname{Br}(D^0 \to \pi^+\pi^-)}\right]^{\pm \frac{1}{2}}$$

•
$$\operatorname{Br}(D^0 \to \pi^+ \pi^-) = (1.455 \pm 0.024) \times 10^{-3}$$
 PDG
 $\operatorname{Br}(D^0 \to K^+ K^-) = (4.08 \pm 0.06) \times 10^{-3}$

•
$$\frac{\text{Im}[V_{cs}V_{us}^*V_{cd}^*V_{ud}]}{|V_{cs}V_{us}^*V_{cd}^*V_{ud}|} = (6.02 \pm 0.32) \times 10^{-4} \text{ PDG}$$

•
$$\phi_0^0$$

•
$$\cos\phi: \qquad \phi = \delta_{KK} - \delta_{\pi\pi} = (\delta_{KK} + \delta_{\pi\pi}) - 2\delta_{\pi\pi}$$

from $\pi\pi$ and $\pi\pi \rightarrow KK$ data: $\cos\phi = 0.99 \pm 0.18$.

•
$$A_{CP}(\pi\pi) = (1.99 \pm 0.37) \times 10^{-3} \sqrt{\eta^{-2} - 1}$$

 $A_{CP}(KK) = -(0.71 \pm 0.13) \times 10^{-3} \sqrt{\eta^{-2} - 1}$

as a function of inelasticity

Predictions for ΔA_{CP}

$$\Delta A_{CP}^{\rm LHCb} = -(1.54 \pm 0.29) \times 10^{-3}$$

•
$$\Delta A_{CP}^{th} = -(2.70 \pm 0.50) \times 10^{-3} \sqrt{\eta^{-2} - 1}$$

$$\Delta A_{CP}^{\rm LHCb} = -(1.54 \pm 0.29) \times 10^{-3}$$

•
$$\Delta A_{CP}^{th} = -(2.70 \pm 0.50) \times 10^{-3} \sqrt{\eta^{-2} - 1}$$

• from $\pi\pi \rightarrow KK$ data (only one set) $\rightarrow \eta \approx 0.973 \pm 0.011$

$$\Delta A_{CP}^{th} = -(0.64 \pm 0.18) \times 10^{-3} \qquad 3\sigma$$

 \rightarrow largest theoretical prediction within SM without relying on fitting parameters

 \rightarrow systematic uncertainties are unknown in $\eta \rightarrow$ error is underestimated

$$\Delta A_{CP}^{\rm LHCb} = -(1.54 \pm 0.29) \times 10^{-3}$$

•
$$\Delta A_{CP}^{th} = -(2.70 \pm 0.50) \times 10^{-3} \sqrt{\eta^{-2} - 1}$$

• from $\pi\pi \rightarrow KK$ data (only one set) $\rightarrow \eta \approx 0.973 \pm 0.011$

$$\Delta A_{CP}^{th} = -(0.64 \pm 0.18) \times 10^{-3} \qquad 3\sigma$$

→ largest theoretical prediction within SM without relying on fitting parameters → systematic uncertainties are unknown in η → error is underestimated

- Alternatively one can assume all inelasticity in $\pi\pi \to \pi\pi$ is due to KK
- \rightarrow more precise data (Grayer) \rightarrow $\eta = 0.78 \pm 0.08$ *

$$\Delta A_{CP}^{th} = -(1.31 \pm 0.20) \times 10^{-3} \quad \mathbf{1}\sigma$$

 $-\eta^2 pprox 1$ not valid

Predictions for $A_{CP}(hh)$

Predictions for $A_{CP}(hh)$

$$A_{CP}(KK) = -(0.34 \pm 0.15) \times 10^{-5}$$
$$A_{CP}(\pi\pi) = (0.97 \pm 0.05) \times 10^{-3}$$

 2σ

Predictions for $A_{CP}(hh)$

we still need more data to fully understood it

23

- hadronic FSI (and their strong phases) are crucial to explain CP violation in B and D decays at low and high mass regions
 - by including the FSI $\pi\pi \to KK$ we are able to identify:
 - one of the GIANT source of CPV observed in $B^\pm \to K^\pm \pi^+ \pi^-$
 - explain the large CPV observed in $D^0(\bar{D}^0) \rightarrow \pi\pi$ and $K\bar{K}$

- hadronic FSI (and their strong phases) are crucial to explain CP violation in B and D decays at low and high mass regions
 - by including the FSI $\pi\pi \to KK$ we are able to identify:
 - one of the GIANT source of CPV observed in $B^\pm \to K^\pm \pi^+ \pi^-$
 - explain the large CPV observed in $D^0(\bar{D}^0) \rightarrow \pi\pi$ and $K\bar{K}$

Backup slides

25

CPV on multi -body

- 2-body decays: $a \leftarrow B \rightarrow a$
 - energy if fixed by the decay particle
 - FSI is relevant at the fix energy (ie is a number)
 - CPV is also a number
 - 3-body decays:
 B
 m
 - energy is distributed by particle momenta and $\sum p_i = M_B^2$
 - FSI is a function that depend on the invariant moment of each pair
 - the strong phase contributing to CPV will by a distribution in energy
 - → FSI affects more drastically CPV in 3-body

$B \rightarrow hhh$ data run I and run II

• run I ($3fb^{-1}$ luminosity) PRD90 (2014) 112004

arXiv:2206.07622 PRD accepted

*K*ππ: 2.8 *KKK*: 3.3 πππ: 4.1 *KK*π: 5.3

Patricia Magalhães

Three-body kinematics : DALITZ plot

In three-body decay phase-space is NOT one-dimension!
 bi-dimension phase-space information

• DALITZ PLOT : proposed by Richard Dalitz (1925-2006) in 9953

FSI to enhance CPV

 p_1, m_1

 p_{2}, m_{2}

 p_{3}, m_{3}

Three-body kinematics : DALITZ plot

- In three-body decay phase-space is NOT one-dimension!
 bi-dimension phase-space information
 - DALITZ PLOT : proposed by Richard Dalitz (1925-2006) in 9953

 p_1, m_1

 $\boldsymbol{P}, \boldsymbol{M}$

 p_{2}, m_{2}

 p_{3}, m_{3}

CPV: amplitude analysis $B^{\pm} \rightarrow \pi^{-}\pi^{+}\pi^{\pm}$

29

recent Amplitude analysis $B^{\pm} ightarrow \pi^{-}\pi^{+}\pi^{\pm}$ prd101 (2020) 012006; prl 124 (2020) 031801

- $(\pi^{-}\pi^{+})_{S-Wave}$ 3 different model:
 - $rightarrow \sigma$ as BW (!) + rescattering;
 - P-vector K-Matrix;
 - binned freed lineshape (QMI);

 $m_{
m low}~[{
m GeV}/c^2]$

Contribution	Fit fraction (10^{-2})	$A_{CP} \ (10^{-2})$	B^+ phase (°)	B^- phase (°)
sobar model				
$ ho(770)^{0}$	$55.5 \pm 0.6 \pm 2.5$	$+0.7 \pm 1.1 \pm 1.6$		
$\omega(782)$	$0.50 \pm 0.03 \pm 0.05$	$-4.8 \pm 6.5 \pm 3.8$	$-19\pm 6\pm 1$	$+8\pm 6\pm 1$
$f_2(1270)$	$9.0\ \pm 0.3\ \pm 1.5$	$+46.8 \pm 6.1 \pm 4.7$	$+5\pm$ $3\pm$ 12	$+53\pm2\pm12$
$ ho(1450)^{0}$	$5.2\ \pm 0.3\ \pm 1.9$	$-12.9 \pm 3.3 \pm 35.9$	$+127\pm~4\pm~21$	$+154\pm 4\pm 6$
$ ho_3(1690)^0$	$0.5\ \pm 0.1\ \pm 0.3$	$-80.1 \pm 11.4 \pm 25.3$	$-26\pm7\pm14$	$-47\pm18\pm~25$
S-wave	$25.4\ \pm 0.5\ \pm 3.6$	$+14.4 \pm 1.8 \pm 2.1$	—	
Rescattering	$1.4 \pm 0.1 \pm 0.5$	$+44.7 \pm 8.6 \pm 17.3$	$-35\pm~6\pm~10$	$-4\pm$ $4\pm$ 25
σ	$25.2 \pm 0.5 \pm 5.0$	$+16.0 \pm 1.7 \pm 2.2$	$+115\pm2\pm14$	$+179\pm1\pm95$
K-matrix				
$ ho(770)^{0}$	$56.5 \pm 0.7 \pm 3.4$	$+4.2 \pm 1.5 \pm 6.4$		_
$\omega(782)$	$0.47 \pm 0.04 \pm 0.03$	$-6.2 \pm 8.4 \pm 9.8$	$-15\pm 6\pm 4$	$+8\pm 7\pm 4$
$f_2(1270)$	$9.3 \pm 0.4 \pm 2.5$	$+42.8 \pm 4.1 \pm 9.1$	$+19\pm$ $4\pm$ 18	$+80\pm 3\pm 17$
$ ho(1450)^{0}$	$10.5 \ \pm 0.7 \ \pm 4.6$	$+9.0\pm\ 6.0\pm47.0$	$+155\pm5\pm29$	$-166\pm 4\pm 51$
$\rho_3(1690)^0$	$1.5 \ \pm 0.1 \ \pm 0.4$	$-35.7 \pm 10.8 \pm 36.9$	$+19\pm8\pm34$	$+5\pm$ $8\pm$ 46
S-wave	$25.7 \ \pm 0.6 \ \pm 3.0$	$+15.8 \pm 2.6 \pm 7.2$		
QMI				
$\rho(770)^0$	$54.8 \pm 1.0 \pm 2.2$	$+4.4 \pm 1.7 \pm 2.8$		
$\omega(782)$	$0.57 \pm 0.10 \pm 0.17$	$-7.9 \pm 16.5 \pm 15.8$	$-25\pm 6\pm 27$	$-2\pm7\pm11$
$f_2(1270)$	$9.6 \pm 0.4 \pm 4.0$	$+37.6 \pm 4.4 \pm 8.0$	$+13\pm5\pm21$	$+68\pm 3\pm 66$
$\rho(1450)^0$	$7.4 \pm 0.5 \pm 4.0$	$-15.5 \pm 7.3 \pm 35.2$	$+147\pm7\pm152$	$-175\pm5\pm171$
$\rho_3(1690)^0$	$1.0\ \pm 0.1\ \pm 0.5$	$-93.2 \pm 6.8 \pm 38.9$	$+8 \pm 10 \pm 24$	$+36\pm26\pm$ 46
S-wave	$26.8 \pm 0.7 \pm 2.2$	$+15.0 \pm 2.7 \pm 8.1$		

• ANA for $B^{\pm} \to \pi^{\pm} K^{-} K^{+}$ PRL 123 (2019) 231802

Contribution	Fit Fraction(%)	$A_{CP}(\%)$	Magnitude (B^+/B^-)	Phase ^[o] (B^+/B^-)
$K^{*}(892)^{0}$	$7.5\pm0.6\pm0.5$	$+12.3 \pm 8.7 \pm 4.5$	$0.94 \pm 0.04 \pm 0.02$	0 (fixed)
			$1.06 \pm 0.04 \pm 0.02$	0 (fixed)
$K_0^*(1430)^0$	$4.5\pm0.7\pm1.2$	$+10.4 \pm 14.9 \pm 8.8$	$0.74 \pm 0.09 \pm 0.09$	$-176\pm10\pm16$
			$0.82 \pm 0.09 \pm 0.10$	$136\pm11\pm21$
Single pole	$32.3 \pm 1.5 \pm 4.1$	$-10.7 \pm 5.3 \pm 3.5$	$2.19 \pm 0.13 \pm 0.17$	$-138\pm7\pm5$
			$1.97 \pm 0.12 \pm 0.20$	$166 \pm 6 \pm 5$
$\rho(1450)^0$	$30.7 \pm 1.2 \pm 0.9$	$-10.9 \pm 4.4 \pm 2.4$	$2.14 \pm 0.11 \pm 0.07$	$-175\pm10\pm15$
			$1.92 \pm 0.10 \pm 0.07$	$140\pm13\pm20$
$f_2(1270)$	$7.5\pm0.8\pm0.7$	$+26.7 \pm 10.2 \pm 4.8$	$0.86 \pm 0.09 \pm 0.07$	$-106\pm11\pm10$
			$1.13 \pm 0.08 \pm 0.05$	$-128\pm11\pm14$
Rescattering	$16.4 \pm 0.8 \pm 1.0$	$-66.4 \pm 3.8 \pm 1.9$	$1.91 \pm 0.09 \pm 0.06$	$-56\pm12\pm18$
			$0.86 \pm 0.07 \pm 0.04$	$-81\pm14\pm15$
$\phi(1020)$	$0.3\pm0.1\pm0.1$	$+9.8 \pm 43.6 \pm 26.6$	$0.20 \pm 0.07 \pm 0.02$	$-52\pm23\pm32$
			$0.22 \pm 0.06 \pm 0.04$	$107\pm33\pm41$

Patricia Magalhães

Light Cone 2023

FSI to enhance CPV

CPV: amplitude analysis $B^{\pm} \rightarrow \pi^{-}\pi^{+}\pi^{\pm}$

29

recent Amplitude analysis $B^{\pm} \to \pi^{-}\pi^{+}\pi^{\pm}$ prd101 (2020) 012006; prl 124 (2020) 031801

- $(\pi^{-}\pi^{+})_{S-Wave}$ 3 different model:
 - $rightarrow \sigma$ as BW (!) + rescattering;
 - P-vector K-Matrix;
 - binned freed lineshape (QMI);

 $m_{\rm low} \, [{
m GeV}/c^2]$

\sqrt{c}	800		Isobar K-Matrix		$B^+ \rightarrow K$ Combina	$+\pi^+\pi^-$ torial	(x10)
95 5	700		QMI	+	Data		E
201	600						, FH
(U. L	500	LH	Cb .	 	+ ++		╶┼ <u></u> ╪┽╵ ╶┼┙
S	400		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•т + т'	╵ [┑] ╋╌╌╴╄╴┇ ┿┑┇ _{╈┿╋}		al [₽]
ale	300	(b)	+			'+'+ <mark>+</mark> ++	
	200	ال ليوطيع	₽ ^{₽₽} + a +				
Ca	100	Ţ Ţ					
	0	1					
Pull	د 0 3-3	^ĸ Ŀſ		٩	چار از از از از	╒ᡗ᠘ᢩᡏᡃ᠋	جاكى ئۇنى
	-	10 1	.5 2.0	2.5	3.0 3.5	4.0	4.5 5.

Contribution	Fit fraction (10^{-2})	A_{CP} (10 ⁻²) B^+ phase (°)) B^- phase (°)	
Isobar model					
$ ho(770)^{0}$	$55.5 \pm 0.6 \pm 2.5$	$+0.7 \pm 1.1 \pm 1.6$			
$\omega(782)$	$0.50 \pm 0.03 \pm 0.05$	$-4.8 \pm 6.5 \pm 3.8$	$-19\pm 6\pm 1$	$+8\pm 6\pm 1$	
$f_2(1270)$	$9.0\ \pm 0.3\ \pm 1.5$	$+46.8 \pm 6.1 \pm 4.7$	$+5\pm 3\pm 12$	$+53\pm2\pm12$	
$ ho(1450)^{0}$	$5.2 \pm 0.3 \pm 1.9$	$-12.9 \pm 3.3 \pm 35.9$	$+127\pm 4\pm 21$	$+154 \pm 4 \pm 6$	
$ ho_3(1690)^0$	$0.5\ \pm 0.1\ \pm 0.3$	$-80.1 \pm 11.4 \pm 25.3$	$-26\pm7\pm14$	$-47\pm18\pm~25$	
S-wave	$25.4\ \pm 0.5\ \pm 3.6$	$+14.4 \pm 1.8 \pm 2.1$		—	
Rescattering	$1.4 \pm 0.1 \pm 0.5$	$+44.7 \pm 8.6 \pm 17.3$	$-35\pm~6\pm~10$	$-4\pm 4\pm 25$	
σ	$25.2 \pm 0.5 \pm 5.0$	$+16.0 \pm 1.7 \pm 2.2$	$+115\pm2\pm14$	$+179\pm1\pm95$	
K-matrix					
$ ho(770)^{0}$	$56.5 \pm 0.7 \pm 3.4$	$+4.2 \pm 1.5 \pm 6.4$			
$\omega(782)$	$0.47 \pm 0.04 \pm 0.03$	$-6.2 \pm 8.4 \pm 9.8$	$-15\pm 6\pm 4$	$+8\pm7\pm4$	
$f_2(1270)$	$9.3 \pm 0.4 \pm 2.5$	$+42.8 \pm 4.1 \pm 9.1$	$+19\pm 4\pm 18$	$+80\pm 3\pm 17$	
$ ho(1450)^{0}$	$10.5 \pm 0.7 \pm 4.6$	$+9.0 \pm 6.0 \pm 47.0$	$+155\pm5\pm29$	$-166 \pm 4 \pm 51$	
$\rho_3(1690)^0$	$1.5 \pm 0.1 \pm 0.4$	$-35.7 \pm 10.8 \pm 36.9$	$+19\pm8\pm34$	$+5\pm$ $8\pm$ 46	
S-wave	$25.7\ \pm 0.6\ \pm 3.0$	$+15.8 \pm 2.6 \pm 7.2$			
QMI					
$\rho(770)^0$	$54.8 \pm 1.0 \pm 2.2$	$+4.4 \pm 1.7 \pm 2.8$			
$\omega(782)$	$0.57 \pm 0.10 \pm 0.17$	$-7.9 \pm 16.5 \pm 15.8$	$-25\pm 6\pm 27$	$-2\pm7\pm11$	
$f_2(1270)$	$9.6 \pm 0.4 \pm 4.0$	$+37.6 \pm 4.4 \pm 8.0$	$+13\pm5\pm21$	$+68 \pm 3 \pm 66$	
$\rho(1450)^0$	$7.4 \pm 0.5 \pm 4.0$	$-15.5 \pm 7.3 \pm 35.2$	$+147 \pm 7 \pm 152$	$-175\pm5\pm171$	
$\rho_3(1690)^0$	$1.0\ \pm 0.1\ \pm 0.5$	$-93.2 \pm 6.8 \pm 38.9$	$+8 \pm 10 \pm 24$	$+36\pm26\pm$ 46	
S-wave	26.8 + 0.7 + 2.2	$+15.0 \pm 2.7 \pm 8.1$			

• ANA for $B^{\pm} \to \pi^{\pm} K^{-} K^{+}$ PRL 123 (2019) 231802

Contribution	Fit Fraction(%)	$A_{CP}(\%)$	Magnitude (B^+/B^-)	Phase ^[o] (B^+/B^-)
$K^{*}(892)^{0}$	$7.5\pm0.6\pm0.5$	$+12.3 \pm 8.7 \pm 4.5$	$0.94 \pm 0.04 \pm 0.02$	0 (fixed)
			$1.06 \pm 0.04 \pm 0.02$	0 (fixed)
$K_0^*(1430)^0$	$4.5\pm0.7\pm1.2$	$+10.4 \pm 14.9 \pm 8.8$	$0.74 \pm 0.09 \pm 0.09$	$-176\pm10\pm16$
			$0.82 \pm 0.09 \pm 0.10$	$136\pm11\pm21$
Single pole	$32.3 \pm 1.5 \pm 4.1$	$-10.7 \pm 5.3 \pm 3.5$	$2.19 \pm 0.13 \pm 0.17$	$-138 \pm 7 \pm 5$
			$1.97 \pm 0.12 \pm 0.20$	$166 \pm 6 \pm 5$
$\rho(1450)^0$	$30.7 \pm 1.2 \pm 0.9$	$-10.9 \pm 4.4 \pm 2.4$	$2.14 \pm 0.11 \pm 0.07$	$-175\pm10\pm15$
			$1.92 \pm 0.10 \pm 0.07$	$140\pm13\pm20$
$f_2(1270)$	$7.5\pm0.8\pm0.7$	$+26.7 \pm 10.2 \pm 4.8$	$0.86 \pm 0.09 \pm 0.07$	$-106\pm11\pm10$
			$1.13 \pm 0.08 \pm 0.05$	$-128\pm11\pm14$
Rescattering	$16.4\pm0.8\pm1.0$	$-66.4 \pm 3.8 \pm 1.9$	$1.91 \pm 0.09 \pm 0.06$	$-56\pm12\pm18$
			$0.86 \pm 0.07 \pm 0.04$	$-81\pm14\pm15$
$\phi(1020)$	$0.3\pm0.1\pm0.1$	$+9.8 \pm 43.6 \pm 26.6$	$0.20 \pm 0.07 \pm 0.02$	$-52\pm23\pm32$
			$0.22 \pm 0.06 \pm 0.04$	$107\pm33\pm41$

Patricia Magalhães

Light Cone 2023

FSI to enhance CPV

Full story in 3-body decay

Any 3-body decay amplitude

=

*K*₁₂ *K*₁₂

╋

vrinari diagrams. Baltark decay hapid⁴ Tark decay hap λ^4 V_{us}^* some for the KIKARUK MKIKARUK MKICARUK MKIC HAB AVA TO ALL THE DEAL KForkhenBinantFekhinka digrams W⁻ boson emission restricting invertual d'R⁰ bpspittenpission re res 7 and 1.8 depict two Feynman allagrams and the Be • assume only 2 couple-channels to FS Bens through the emission of a Welv. busions pens Through The $\begin{array}{c} \mathcal{B}^{\text{decays}} \stackrel{\text{in}}{\pi} \stackrel{\pi}{\pi} \stackrel{\pi}{\pi} \stackrel{\pi}{\pi} \stackrel{(\mathcal{B}^{K+}K^{-})}{(\mathcal{B}^{2}i \, \delta \xrightarrow{\rightarrow}} \stackrel{\pi}{\pi} \stackrel{\text{in}}{} \stackrel{\text{the}}{} \stackrel{\text{perefits}}{(\mathcal{B}^{2}i \, \delta \xrightarrow{\rightarrow}} \stackrel{\pi}{\pi} \stackrel{\pi}{} \stackrel{\text{in}}{} \stackrel{\text{the}}{} \stackrel{\text{perefits}}{(\mathcal{B}^{2}i \, \delta \xrightarrow{\rightarrow}} \stackrel{\pi}{\pi} \stackrel{\pi}{} \stackrel{\text{in}}{} \stackrel{\text{the}}{} \stackrel{\text{perefits}}{(\mathcal{B}^{2}i \, \delta \xrightarrow{\rightarrow}} \stackrel{\pi}{\pi} \stackrel{\pi}{} \stackrel{\pi}{} \stackrel{\text{the}}{} \stackrel{\text{perefits}}{(\mathcal{B}^{2}i \, \delta \xrightarrow{\rightarrow}} \stackrel{\pi}{\pi} \stackrel{\pi}{} \stackrel{$ $\rightarrow S_{2M,2M} = \begin{pmatrix} S_{\pi\pi,\pi\pi} & S_{\pi\pi,KK} \\ S_{KK,\pi\pi} & S_{KK,KK} \end{pmatrix}$

landlaBsorperenter and she and she and she Figures 1.9 and 1.10 show two Feynman grant is the show two feynmat grant is the show two feynm

through a virtual W⁻ boson emission restricted avertual WR⁰ bpson emission

- two pions cannot go to three pions due to G-parity
- ignore four pion coupling to the 2M channel based on 1/Nc counting
- ignore $\eta\eta$ channel once their coupling to the $\pi\pi$ channel are suppressed with respect to $K\bar{K}$.

Balles Andrea y haprid boson emission restating in KE land KRUBPSON Engission reskilting in KE land R • assume only 2 couple-channels to FSI is Rpens through the emission of a Wive building the - In-the pensiti Ana the $\rightarrow S_{2M,2M} = \begin{pmatrix} S_{\pi\pi,\pi\pi} & S_{\pi\pi,KK} \\ S_{KK,\pi\pi} & S_{KK,KK} \end{pmatrix}$ ys, respectively. In the free diagram, the b

- two pions cannot go to three pions due to G-parity
- ignore four pion coupling to the 2M channel based on 1/Nc counting
- ignore $\eta\eta$ channel once their coupling to the $\pi\pi$ channel are suppressed with respect to $K\bar{K}$.
- CPT constraint restricted to the two-channels: $\sum_{f=(\pi\pi,KK)} (|\mathcal{A}_{D^0\to f}|^2 |\mathcal{A}_{\bar{D}^0\to f}|^2) = 0$

ICHEP2020, 28 July – 6 August 2020

11

back

FSI as source of CP asymmetry before us

• R1, R2 make 2 approximations:

1 only 2-channel can interact
$$(S_{\lambda\lambda'}) = \begin{pmatrix} \eta e^{2i\delta_{11}} & i\sqrt{1-\eta^2}e^{i(\delta_{11}+\delta_{22})} \\ i\sqrt{1-\eta^2}e^{i(\delta_{11}+\delta_{22})} & \eta e^{2i\delta_{22}} \end{pmatrix}$$

 $\Rightarrow \delta_{\pi\pi KK} \simeq \delta_{\pi\pi\pi\pi} + \delta_{KKKK}$
 $\Rightarrow |S_{\pi\pi KK}| \rightarrow \sqrt{1-\eta^2},$

2 crudely assume $\delta_{KKKK} \simeq \delta_{\pi\pi\pi\pi}$

FSI as source of CP asymmetry before us

• R1, R2 make 2 approximations:

1 only 2-channel can interact
$$(S_{\lambda\lambda'}) = \begin{pmatrix} \eta e^{2i\delta_{11}} & i\sqrt{1-\eta^2}e^{i(\delta_{11}+\delta_{22})} \\ i\sqrt{1-\eta^2}e^{i(\delta_{11}+\delta_{22})} & \eta e^{2i\delta_{22}} \end{pmatrix}$$

 $\Rightarrow \delta_{\pi\pi KK} \simeq \delta_{\pi\pi\pi\pi} + \delta_{KKKK}$
 $\Rightarrow |S_{\pi\pi KK}| \rightarrow \sqrt{1-\eta^2},$

2 crudely assume
$$\delta_{KKKK} \simeq \delta_{\pi\pi\pi\pi}$$

 $\delta_{\pi\pi KK} \simeq 2\delta_{\pi\pi\pi\pi}$

• clearly a distortion from $\pi^+\pi^- \rightarrow K^+K^-$ phase and $|S_{\pi\pi KK}|$

FSI as source of CP asymmetry before us

• R1, R2 make 2 approximations:

1 only 2-channel can interact
$$(S_{\lambda\lambda'}) = \begin{pmatrix} \eta e^{2i\delta_{11}} & i\sqrt{1-\eta^2}e^{i(\delta_{11}+\delta_{22})} \\ i\sqrt{1-\eta^2}e^{i(\delta_{11}+\delta_{22})} & \eta e^{2i\delta_{22}} \end{pmatrix}$$

 $\searrow \delta_{\pi\pi KK} \simeq \delta_{\pi\pi\pi\pi} + \delta_{KKKK}$
 $\searrow |S_{\pi\pi KK}| \rightarrow \sqrt{1-\eta^2},$

2 crudely assume
$$\delta_{KKKK} \simeq \delta_{\pi\pi\pi\pi}$$

 $\searrow \delta_{\pi\pi KK} \simeq 2\delta_{\pi\pi\pi\pi}$

- clearly a distortion from $\pi^+\pi^- \rightarrow K^+K^-$ phase and $|S_{\pi\pi KK}|$
- Are the conclusions still valid? We can do better!

