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PRELUDE

Bethe Salpeter equation deals with a - pre-existing - QFT object (Gell-Mann Low)

Its Fourier transform Φ(k,P)

2 BS

Γ(k, P ) =

∫

d4k′

(2π)4
iK(k, k′; P ) S1(p

′
1) S2(p

′
2) Γ(k′, P ) (1)

ΦE(k4, k⃗) ≡ ΦM (k0 = ik4, k⃗)

ΦM(k0, k⃗) ≡ ΦE(k4 = −ik0, k⃗)

(p2
1,E + m2)(p2

2,E + m2)ΦE(p4, p⃗) = g2

∫

dk4dk⃗

(2π)4

1

(p − k)2
E + µ2

ΦE(k4, k⃗)

(p0, p ≡| p⃗ |)

Φ(x1, x2, P ) =< 0 | T{φ(x1)φ(x2)} | P > (2)

often expressed in terms of his Fourier transfom

Φ(x1, x2, P ) =

∫

dp1

(2π)4

dp2

(2π)4
Φ(p1, p2) e−iPx e−ikx

= e−iPx

∫

dk

(2π)4
Φ(k, P ) e−ikx (3)

where P = p1 + p2 2k = p1 − p2

3 BSMINK

∫

dβ Φ(k + βω, p) =

∫

dβ G(12)
0 (k + βω, p)

∫

d4k′

(2π)4
iK(k + βω, k′, p) Φ(k′, p) (4)

V (γ, z, γ′, z′) =

{

W (γ, z, γ′, z′) if −1 ≤ z′ ≤ z
W (γ,−z, γ′,−z′) if z ≤ z′ ≤ 1

(5)

avec

W (γ, z, γ′, z′) =
αm2

2π

(1 − z)2

γ + m2z2 + κ2(1 − z2)

∫ 1

0

v2

D2(v)
dv (6)

et

D(γ, z, γ′, z′, v) = v(1 − v)(1 − z′)γ + (1 − z)[(1 − v)µ2 + vγ′]
+ vm2 [(1 − v)(1 − z′)z2 + vz′2(1 − z) ]
+ vκ2(1 − z)(1 − z′) [1 + z − v(z − z′) ]

Nakanishi integral representation [?, ?]:

2

satisfies a 4D equation. For bound states it reads :  

1.2 Méthode graphique (fonction de vertex)

!!!!!!!

✶

p2 = P
2 − k

✏✏✏✏✏✏✏

$

p1 = P
2 + k

✉

P
=

✲p2 p′2 = P
2 − k′

✲p1
p′1 = P

2 + k′

!!!!!!!

✶
✏✏✏✏✏✏✏

$

✉

Γ(k, P ) K(k, k′, P )

p1 + p2 = P
p1 − p2 = 2k

On suppose la ”Vertex fonction” Γ, sur qui s’appliquent les règles de Feynmann

Γ(p1, p2) ≡ Γ(k, P )

satisfaire l’équation intégrale de la figure. On obtient suivant ces règles1

Γ(k, P ) =
∫

d4k′

(2π)4
iK(k, k′;P ) S1(p1) S2(p2) Γ(k′, P ) (1)

où:

1. Si sont les propagateurs2

S1(p1) =
i

p2
1 − m2 + iϵ

=
i

(

P
2 + k

)2
− m2 + iϵ

S2(p2) =
i

p2
2 − m2 + iϵ

=
i

(

P
2 − k

)2
− m2 + iϵ

2. K est le interaction kernel, qui correspond à la boite et est donné par les diagrammes de Feynman. Pour le
cas d’echange scalaire on a3

K = −
g2

(k − k′)2 − µ2 + iϵ

Si on introduit la fonction – ou amplitude – de BS par

Φ(k, P ) = S1(k, P ) S2(k, P ) Γ(k, P )

elle obéit l’équation de BS ”canonique”

Φ(k, P ) = S1(k, P )S2(k, P )
∫

d4k′

(2π)4
iK(k, k′;P ) Φ(k′, P ) (2)

ou encore
[

(

P

2
+ k

)2

− m2

] [

(

P

2
− k

)2

− m2

]

Φ(k, P ) = −
∫

d4k′

(2π)4
iK(k, k′;P ) Φ(k′, P ) (3)

1. Correspond à l’équation (1) de EPJA 27 (2006) 1

2. Il faut faire le lien avec la definition en QFT (Low)

Φ(x1, x2) =< 0|T{φ(x1)φ(x2)}|0 >

ou les champs sont écrtis en representation d’Heisenberg

1En fait il faut iΓ de chaque coté
2S = i∆, signe de ϵ toujours opposé a celui de m
3Ne correspond pas a Gross pag 600
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2

iK=Interaction kernel 
- if K would contain all the IR graphs, solving (*) would be equivalent to solve the full QFT
- This is however a wishful thinking. In practice one uses a poor restriction: ladderwith simple kernels 

Si = free propagators

P2=M2 with M the total mass of the two-body system
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1. Correspond à l’équation (1) de EPJA 27 (2006) 1

2. Il faut faire le lien avec la definition en QFT (Low)

Φ(x1, x2) =< 0|T{φ(x1)φ(x2)}|0 >
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where P = p1 + p2 2k = p1 − p2

S1(p1) =
i

p2
1 − m2 + iϵ

=
i

(

P
2 + k

)2 − m2 + iϵ

S2(p2) =
i

p2
2 − m2 + iϵ

=
i

(

P
2 − k

)2 − m2 + iϵ

S1(k,P) =
i

(

P
2

+ k
)2 − m2 + iϵ

S2(k,P) =
i

(

P
2
− k

)2 − m2 + iϵ

3

(*) 



PRELUDE

We will consider solutions of (*) with scalar massless exchange kernel (Wick-Cutkosky)

-> Coulomb potential

and its natural extension to the massive case !=g2/4"

-> Yukawa potential

The massless case has the peculiarity to accept solutions which have no counterpart
in the non relativistic limit (Schrodinger eq)…. even if they involve very small energies.
Solved by G.C. Wick and R.E. Cutkosky in 54, our contribution to this field was presented
by V.A.K. in several Conferences, e.g. LCM 2018 (USA) and LCM 2019 (France)

AIM OF THIS CONTRIBUTION

I. Briefly summarize the main results of the massless case
II. Present our (new) results for the massive exchanges

S1(p1) =
i

p21 �m2 + i✏
=

i
�
P
2 + k

�2 �m2 + i✏

S2(p2) =
i

p22 �m2 + i✏
=

i
�
P
2 � k

�2 �m2 + i✏

S1(k,P) =
i

�
P
2 + k

�2 �m2 + i✏

S2(k,P) =
i

�
P
2 � k

�2 �m2 + i✏

iK(k, k0) = � g2

(k � k0)2 + i✏

iK(k, k0) = � g2

(k � k0)2 � µ2 + i✏
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3
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i

�
P
2 � k
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(k � k0)2 + i✏
=) V (r) = � g2

4⇡

1

r

iK(k, k0) = � g2

(k � k0)2 � µ2 + i✏
=) V (r) = � g2
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r
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Since P2=M2, and   

BS equation

is an implicit e.v. equation :                   ϕn= g2
n O(M2) ϕn

For a given M2, there is a discret set of g2 a that « solve » the problem : M2(g2)
It is customary to introduce M=2m-B and !=g2/4" and present rather B(!)

In the non relativistic case :    Bn(!)=m!2/4n2      n=1,2,3…  (always En=-Bn )

THE MASSLESS CASE (Wick-Cutkosky model)

2 BS

� = �B +

Z
iKS1S2�

Z

�1

f(z)dz =

Z

�2

f(z)dz
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Z
d4k0
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1) S2(p
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2) �(k
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Z
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(2⇡)4
iK(k, k0;P ) �(k0, P ) (2)

�(k, P ) =
�(k, P )

S1(p1) S2(p2)

�E(k4,~k) ⌘ �M(k0 = ik4,~k)

�M(k0,~k) ⌘ �E(k4 = �ik0,~k)

(p21,E +m2)(p22,E +m2)�E(p4, ~p) = g2
Z
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1
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◆2
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#
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W&C found that their model had indeed a familly of solution (ϕn,Bn) that, for small values 
of !, were « tangent » to the NR limit (logarithmic corrections)

(1)   

But for each n=1,2,3… they found an additional infinite series of ev labeled by a new 
quantum number "=0,1,2,…  (due to the SO4 symmetry of the problem)

En" (!) n=1,2,3,… "=0,1,2,3,….

The subset " =0 correspond to the « Balmer series »  (1)

And the rest ????

- It was shown (*) that the odd values " =1,3,..of  do not contribute to S-matrix

- What about "=0,2,4.... ?

(*) M. Ciafaloni and P. Menotti, PR140 (1965), B929 
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Let us plot !(B) as before  (rather λ=!/") 
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Spectrum µ=0

n=5

n=6

Black states (#=0) have an « acumulation point » at (B=0, !=0) as in NR equations
All others go somewhere else, but « decoupled » from the NR solutions :  « ABNORMAL »
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A Log-Log zoom of the same picture… and comparison with the NR results (n=1)

Abnormal states require a non zero value of ! in the limit B→0 (as in massive exchange!)



A zoom of the zoom….with two remarkable horizontal values λ=2 and λ=1/4
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If normal states - all of them ! - exist for any value of !,
« building » an abnormal states requires large coupling contants …even if it has B=0 !

For abnormal states, !/" → ¼ (by above) with, for small B, the assymptotic relation

Result independent of n: all abnormal states tend to the same point (B=0,!/"=1/4) !
But very slowly…(for #=2 one still misses a factor 2 at B=10-6)

This is the relevance of the !/"=1/4 horizontal line in previous figures
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TEST POUR VOLODIA
Encadrement N=400
B lambda alpha k
0.000090 0.006338 0.019911 0
0.000091 0.006374 0.020025 0
0.000095 0.006518 0.020477
0.000098 0.006624 0.020811
0.000099 0.006659 0.020921
0.000100 0.006694 0.021030
0.000101 0.006729 0.021139

0.00628 0.063718 0.200177
0.00629 0.063777 0.200363
0.00630 0.063836 0.200548

0.2360 0.635991 1.998026 0
0.2361 0.636174 1.998600 0
0.2362 0.636357 1.999173 0
0.2363 0.636539 1.999746 0

0.999 1.591333 4.999321
0.9992 1.591500 4.999845
0.9993 1.591584 5.000108

0.0000100 0.635992 1.998026 2 400
0.0000100 0.638161 2.004840 2 800
0.0000099 0.637498 2.002760 2 800
0.0000098 0.636831 2.000664 2 800
0.00000978 0.636697 2.000242
0.00000976 0.636563 1.999820 2 800

0.00352 1.592400 5.002672 2 800
0.00351 1.591376 4.999456 2 800

1.591376 4.999456 2 400
0.00350 1.590351 4.996234 2 800

0.000217 1.597401 5.018385 3 800
0.000213 1.592659 5.003486 3 800
0.000212 1.591463 4.999730 3 800
0.000210 1.589060 4.992179 3 800
0.0000217 1.665830 5.233360 4 800
0.0000155 1.592746 5.003759 4 800
0.0000154 1.591393 4.999508
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The value !/"=2 has another meaning….
The ground state of WC model (n=1,#=0) has M=0 (B=2) for !=2" (λ=!/"=2) 

3.6 Results for ↵pBq
• Ground state (n “ 1, “ 0) exists for
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For ↵ ° 2⇡ there exist solutions with M2 † 0 (tachyonic solutions) and which are all regular as possible !
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• All normal excited states (n ° 1, “ 0) exist for all values of ↵ P r0, 2⇡s and are below the curve Bp↵q or
above the Mp↵q. This follows from the fact that normal states tend to the NR ones in the B Ñ 0 limit
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n2

Once is proved in this limit is true everywere

• Abnormal states exists only for
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Above that, !>2",  the GS 
becomes « tachyonic » : M2<0

Some people dont care,
we prefer avoid them !
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SPECTRUM OF µ=0

If one does not take care about the tachyonic states :

- Normal solutions exist for any value of !

- Abnormal solutions only for !>"/2  (λ>1/4) 

If one restrict to non–tachyonic solutions 

- Normal solutions limited to 

- Abnormal states limited to the range

Their energy is always very small B<0.009 !!!
NB: The existence of a minimal coupling constant for a bound state is

typical from a massive exchange (Yukawa like).
Abnormal states behaves like if a « massive photon » with m/M=0.4
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How to « characterize » the abnormal solutions ?
(apart from their behaviour at small B) 



How to « characterize » the abnormal solutions ?

This was the main result of our recent work

The state vector ∣P> apprearing in the definition of BS amplitude " is a QFT state involve 
many body components (Fock expansion)

Its total norm results from the norms of 

The two-body contribution N2 to the total norm can be obtained through the Light-Front 
projection of the BS amplitude

according to
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We found striking differences in the two-body contents of the WC solutions
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Fig. 7 N2-dependence on the binding energy for the n= 1 and n= 2
states: normal (upper panel) and abnormal (lower panel)

and N2(2m) ≈ 0.59 for n=2. For the ground state n=1, these
limiting values were found analytically in [9], as well as
the perturbative expansion in their vicinity. Thus, the limit
B → 0 is described by Eq. (A.13), i.e.,

N2(B) = 1 + 1
π

√
4B
m

ln
(

4B
m

)
.

At B/m = 10−5, this perturbative expansion gives N2 =
0.980 in close agreement with the black curve of Fig. 7. We
conclude from this study that the normal states are dominated
by two-body norms. This is particularly true in the limit B →
0, where N2 → 1, but remains also true in all the energy
domain, although decreasing with increasing B.

A very different behaviour is observed with the abnormal
states, represented in the lower panel of Fig. 7. As one can see,
the two body norm N2 of these states not only remains com-
paratively very small, but also vanishes in the non-relativistic
limit, making them, in this region, genuine many-body states.
The one order of magnitude observed in Table 1 for the bind-
ing energies hides in fact a deeper and striking difference
between normal and abnormal BS states, independent of their

Table 2 Same as in Table 1, for the abnormal states with κ = 4

No. n κ B N2

5 1 4 1.54091 · 10−5 6.19 · 10−3

6 2 4 4.95065 · 10−6 2.06 · 10−5

Fig. 8 g0
14 from state No. 5 in Table 2

comparison with the non-relativistic spectrum. It is provided
by their two-body content: abnormal states do not have in the
limit B → 0 any two-body contribution and have, thus, gen-
uine many-body structures. Beyond this limit the norm of the
two-body sector remains extremely small. This is the reason
why they are absent in the non-relativistic limit reduced to
the two-body Schrödinger equation.

The results presented in Table 1 are completed in Table
2 by studying the κ = 4 excitations of n= 1, 2 states. The
same conclusion holds, even in a more dramatic way. Their
two body norms are one order of magnitude smaller than for
the κ = 2 states of Table 1. This can be expected due to
their smaller binding energies and in view of the behaviour
described in the lower panel of Fig. 7.

The abnormal solution g0
14 for n= 1, κ = 4 state (No. 5

in Table 2), is shown in Fig. 8, displaying its more involved
nodal structure (4 zeros in ] −1,+1[). The functions gν

24
of the abnormal state n = 2, κ = 4 (No. 6 in Table 2),
are plotted in Fig. 9. The extreme smallness of the binding
energy of this state generates a huge enhancement factors
in the inhomogeneous equation (23) (through the factor Q)
which results in a huge dominance of the ν = 1 component
in the full BS amplitude. Notice that g1

24 has been reduced
by a factor 105 to become comparable with g0

24.

4 Electromagnetic form factors

We suppose that one of the two constituent particles is
charged. The electromagnetic form factor of the system can
be expressed in terms of its BS amplitude. It is enough to

123
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« Normal states »  are essentially two-body  
with N->1 when B->0

« Abnormal states », are genuine 
many-body sates with N2->0 when B->0

Details of this and further calculations
concerning « wave functions » and EM 
form factors can be found in our recent
publication

and will be extended to unequal mass in the next talk by V.A. Karmanov
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Abstract In the Wick–Cutkosky model, where two scalar
massive constituents interact by means of the exchange of
a scalar massless particle, the Bethe–Salpeter equation has
solutions of two types, called “normal” and “abnormal”. In
the non-relativistic limit, the normal solutions correspond to
the usual Coulomb spectrum, whereas the abnormal ones do
not have non-relativistic counterparts – they are absent in the
Schrödinger equation framework. We have studied, in the for-
malism of the light-front dynamics, the Fock-space content
of the abnormal solutions. It turns out that, in contrast to the
normal ones, the abnormal states are dominated by the mass-
less exchange particles (by 90 % or more), what provides
a natural explanation of their decoupling from the two-body
Schrödinger equation. Assuming that one of the massive con-
stituents is charged, we have calculated the electromagnetic
elastic form factors of the normal and abnormal states, as
well as the transition form factors. The results on form fac-
tors confirm the many-body nature of the abnormal states, as
found from the Fock-space analysis. The abnormal solutions
have thus properties similar to those of hybrid states, made
here essentially of two massive constituents and several or
many massless exchange particles. They could also be inter-
preted as the Abelian scalar analogs of the QCD hybrid states.
The question of the validity of the ladder approximation of
the model is also examined.

1 Introduction

In their pioneering papers [1,2], Wick and Cutkosky (W-C)
have found the solutions of the Bethe–Salpeter (BS) equa-
tion [3] for two scalar particles interacting by the exchange
of a massless scalar particle. In addition to the states which,

a e-mail: carbonell@ipno.in2p3.fr
b e-mail: karmanovva@lebedev.ru (corresponding author)
c e-mail: sazdjian@ipno.in2p3.fr

in the non-relativistic limit, reproduce the spectrum of the
Schrödinger equation with the Coulomb potential, there was
found another set of solutions which do not have any non-
relativistic counterparts. These solutions were called “abnor-
mal”. Their discovery triggered the discussion as to whether
they do indicate a mathematical inconsistency of the W-C
model or of the BS equation, or whether they represent new
physical systems, whose existence does not contradict any
physical principles, although they are not covered by the
Schrödinger equation. In the latter case, they might provide
examples of relativistic systems which could exist in nature,
but which would not be described by continuous extensions
of non-relativistic quantum mechanics. A thorough discus-
sion of this issue can be found in Ref. [4] (Sects. 6 and 8).

One would hope that a complementary lighting to the
above questioning might come from experimental data.
Unfortunately the conditions of the emergence of abnormal
states are not easy to realize. Considering the W-C model as
a simplified model of QED, abnormal states would appear
as highly excited states for values of the fine structure con-
stant α above 0.5 ÷ 1. Such values might be reached with
the aid of heavy ions and dedicated electron-ion scattering
experiments might be envisaged. However, to have a clear
experimental distinction of abnormal bound states from the
ionization threshold, one actually would need to increase the
values of α up to 4 ÷ 5, which then further reduce the prob-
ability of an experimental success. Another possibility is an
analogy of the model with hadron dynamics, where hadrons
mutually interact by means of the exchange of light particles,
like the pions, and where the coupling constants might lie in
the range of values needed for the existence of abnormal
states. However, here, the exchanged particles being mas-
sive, drastic changes occur with respect to the massless case:
the interaction forces become of short-range and one real-
izes that abnormal states are produced only with very small
mass values of the exchanged particle, much smaller than
the pion mass. The framework of Quantum Chromodynam-
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Abstract In the Wick–Cutkosky model, where two scalar
massive constituents interact by means of the exchange of
a scalar massless particle, the Bethe–Salpeter equation has
solutions of two types, called “normal” and “abnormal”. In
the non-relativistic limit, the normal solutions correspond to
the usual Coulomb spectrum, whereas the abnormal ones do
not have non-relativistic counterparts – they are absent in the
Schrödinger equation framework. We have studied, in the for-
malism of the light-front dynamics, the Fock-space content
of the abnormal solutions. It turns out that, in contrast to the
normal ones, the abnormal states are dominated by the mass-
less exchange particles (by 90 % or more), what provides
a natural explanation of their decoupling from the two-body
Schrödinger equation. Assuming that one of the massive con-
stituents is charged, we have calculated the electromagnetic
elastic form factors of the normal and abnormal states, as
well as the transition form factors. The results on form fac-
tors confirm the many-body nature of the abnormal states, as
found from the Fock-space analysis. The abnormal solutions
have thus properties similar to those of hybrid states, made
here essentially of two massive constituents and several or
many massless exchange particles. They could also be inter-
preted as the Abelian scalar analogs of the QCD hybrid states.
The question of the validity of the ladder approximation of
the model is also examined.

1 Introduction

In their pioneering papers [1,2], Wick and Cutkosky (W-C)
have found the solutions of the Bethe–Salpeter (BS) equa-
tion [3] for two scalar particles interacting by the exchange
of a massless scalar particle. In addition to the states which,
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in the non-relativistic limit, reproduce the spectrum of the
Schrödinger equation with the Coulomb potential, there was
found another set of solutions which do not have any non-
relativistic counterparts. These solutions were called “abnor-
mal”. Their discovery triggered the discussion as to whether
they do indicate a mathematical inconsistency of the W-C
model or of the BS equation, or whether they represent new
physical systems, whose existence does not contradict any
physical principles, although they are not covered by the
Schrödinger equation. In the latter case, they might provide
examples of relativistic systems which could exist in nature,
but which would not be described by continuous extensions
of non-relativistic quantum mechanics. A thorough discus-
sion of this issue can be found in Ref. [4] (Sects. 6 and 8).

One would hope that a complementary lighting to the
above questioning might come from experimental data.
Unfortunately the conditions of the emergence of abnormal
states are not easy to realize. Considering the W-C model as
a simplified model of QED, abnormal states would appear
as highly excited states for values of the fine structure con-
stant α above 0.5 ÷ 1. Such values might be reached with
the aid of heavy ions and dedicated electron-ion scattering
experiments might be envisaged. However, to have a clear
experimental distinction of abnormal bound states from the
ionization threshold, one actually would need to increase the
values of α up to 4 ÷ 5, which then further reduce the prob-
ability of an experimental success. Another possibility is an
analogy of the model with hadron dynamics, where hadrons
mutually interact by means of the exchange of light particles,
like the pions, and where the coupling constants might lie in
the range of values needed for the existence of abnormal
states. However, here, the exchanged particles being mas-
sive, drastic changes occur with respect to the massless case:
the interaction forces become of short-range and one real-
izes that abnormal states are produced only with very small
mass values of the exchanged particle, much smaller than
the pion mass. The framework of Quantum Chromodynam-

0123456789().: V,-vol 123

DO THE ABNORMAL STATES  SURVIVE IN THE MASSIVE CASE ?

Eur. Phys. J. C           (2021) 81:50 
https://doi.org/10.1140/epjc/s10052-021-08850-1

Regular Article - Theoretical Physics

Hybrid nature of the abnormal solutions of the Bethe–Salpeter
equation in the Wick–Cutkosky model

J. Carbonell1,a, V. A. Karmanov2,b, H. Sazdjian1,c

1 Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
2 Lebedev Physical Institute, Leninsky prospect 53, 119991 Moscow, Russia

Received: 12 November 2020 / Accepted: 8 January 2021
© The Author(s) 2021

Abstract In the Wick–Cutkosky model, where two scalar
massive constituents interact by means of the exchange of
a scalar massless particle, the Bethe–Salpeter equation has
solutions of two types, called “normal” and “abnormal”. In
the non-relativistic limit, the normal solutions correspond to
the usual Coulomb spectrum, whereas the abnormal ones do
not have non-relativistic counterparts – they are absent in the
Schrödinger equation framework. We have studied, in the for-
malism of the light-front dynamics, the Fock-space content
of the abnormal solutions. It turns out that, in contrast to the
normal ones, the abnormal states are dominated by the mass-
less exchange particles (by 90 % or more), what provides
a natural explanation of their decoupling from the two-body
Schrödinger equation. Assuming that one of the massive con-
stituents is charged, we have calculated the electromagnetic
elastic form factors of the normal and abnormal states, as
well as the transition form factors. The results on form fac-
tors confirm the many-body nature of the abnormal states, as
found from the Fock-space analysis. The abnormal solutions
have thus properties similar to those of hybrid states, made
here essentially of two massive constituents and several or
many massless exchange particles. They could also be inter-
preted as the Abelian scalar analogs of the QCD hybrid states.
The question of the validity of the ladder approximation of
the model is also examined.
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in the non-relativistic limit, reproduce the spectrum of the
Schrödinger equation with the Coulomb potential, there was
found another set of solutions which do not have any non-
relativistic counterparts. These solutions were called “abnor-
mal”. Their discovery triggered the discussion as to whether
they do indicate a mathematical inconsistency of the W-C
model or of the BS equation, or whether they represent new
physical systems, whose existence does not contradict any
physical principles, although they are not covered by the
Schrödinger equation. In the latter case, they might provide
examples of relativistic systems which could exist in nature,
but which would not be described by continuous extensions
of non-relativistic quantum mechanics. A thorough discus-
sion of this issue can be found in Ref. [4] (Sects. 6 and 8).

One would hope that a complementary lighting to the
above questioning might come from experimental data.
Unfortunately the conditions of the emergence of abnormal
states are not easy to realize. Considering the W-C model as
a simplified model of QED, abnormal states would appear
as highly excited states for values of the fine structure con-
stant α above 0.5 ÷ 1. Such values might be reached with
the aid of heavy ions and dedicated electron-ion scattering
experiments might be envisaged. However, to have a clear
experimental distinction of abnormal bound states from the
ionization threshold, one actually would need to increase the
values of α up to 4 ÷ 5, which then further reduce the prob-
ability of an experimental success. Another possibility is an
analogy of the model with hadron dynamics, where hadrons
mutually interact by means of the exchange of light particles,
like the pions, and where the coupling constants might lie in
the range of values needed for the existence of abnormal
states. However, here, the exchanged particles being mas-
sive, drastic changes occur with respect to the massless case:
the interaction forces become of short-range and one real-
izes that abnormal states are produced only with very small
mass values of the exchanged particle, much smaller than
the pion mass. The framework of Quantum Chromodynam-
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THE MASSIVE EXCHANGE CASE 

When !>0, the SO4 symmetry is broken and the " quantum number disappears
The (partial wave) of the 4d BS equation is bidimensional (instead of 1d for !=0)
Eigenstates are only labelled by En
However the parity ϕn(k,k4) is not destroyed by ! ! : 
Normal and abnormal states are even on k4

3

0 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1

B

0

5

10

15

20

α

Even

Odd

Non relativistic

n=2

n=1

n=1

n=2

n=3

n=1

n=2

n=3

µ=0.15

Fig. 1 Lower states of the ↵(B) spectrum for µ = 0.15. Even
k4 (z) solution are in solid black line and the odd ones in red.
Dashed blue lines correspond to the non relativistic vleus.

The first one concerns the parity properties : the
normal solutions of the BS equation (4) correspond are
even solution in k4, or equivalently in z. This can be
already seen in the massless case, where the normal
solutions correspond are all even in z, a property that
cannot be obviously lost by introducing a non zero µ in
the interaction kernel.

However, we would like mention from now, that the
even parity of a solution is not a su�cient condition to
be normal. We will see in the next section that the
ground abnormal state is also k4-even.

On the other hand, there exist many solutions odd
in k4 in the spectrum of BS equation, which are the
analytic continuation of the abnormal odd solutions of
the WC model but they do not contribute to the S-
matrix [1].

We have plotted in Figure 1 the lower states of the
↵(B) spectrum for the case µ = 0.15. The first even so-
lutions (n=1,2,3) are indicated in solid black lines. The
first odd solutions (n=1,2) are in solid red lines. The
non relativistic solutions are in blue dashed line. As
one can see the energies of the normal states get closer
to the non relativistic ones in the limit of small B (al-
though are di↵erent [24]), while the abnormal ones have
a very di↵erent behaviour. The non relativistic limit of
the BS equation, and in particular the fact that, for
the massive exchange, the zero binding energies never
coincide with the Schrodinger equation is discussed in
Appendix C.

A typical BS euclidean amplitude �E(k, k4) for the
case µ = 0.15 and B = 0.2 is displayed in Figure 2, in
the upper panel as a function of k4 for some selected
values of k and in the lower panel as a function of k for
selected values of k4. The solution of eq. (4) in the form

(10) provides ↵ ⇡ 2.10 and corresponds tot the ground
state.

The same solution in terms of Nakanishi weight func-
tion g, is represented in Figure 4, as a function of � for
some selected values of z in the upper panel and panel
as a function of z for selected values of � in the lower.

As one can see, the �-dependence if g is not trivial.
The g solutions are constant in a triangular domain
�(�, z) of the (�, z) plane illustrated in Figure 3, and
decreases continuously outside.

The analytic expression of�(�, z) is given by�(�, z) =
[0, �0(z)]⇥ [�1, 1] with �0(z) is given by

�0(z) =
µ

2

⇢
1 + z if�1  z  0
1� z if 0  z  +1

This non trivial behaviour, pointed out in the recent
contributions [4,3], was missed in our firsts calculations
[8] – due to the procedure used to regularise some nu-
merical instabilities – as well as in the following cal-
culations [10–12] using basis expansion which were not
well adapted to such �-dependece. The formal demon-
stration of this result is first derived in Appendix D.

The nodal structure of g is also peculiar: the ground
state has one node in the �-dependence (at fixed z),
while in z-variable oscillates for large value of �. This is
in contrast with µ =0 case which had no nodes for any
normal state, indepedently of its excitation. [comment
- JC: I do not understand the nodal structure of g: it
is a ground state and has zeroes]

The solutions displayed in Figures 2 and 4 corre-
spond to the ground state for a given parameter set
(µ,↵) and shows no any nodal structure in �E . Higher
excitations manifest by an increasing the number of ze-
roes. The k-dependence of the euclidean BS amplitude
�E(k, 0) behaves like for the radial wave function of the
non relativistic: the number of zeroes gives the order of
the excited states (starting from a ground stets without
zeroes). In the Nakanishi weight function g the order of
the state is visible in [comment - JC: ??? To com-
pute]. We have plotted in Figure 5 the k-dependence of
�E solution corresponding to the 2d excited state ob-
tained with the same parameters (µ,B) than in Figures
2 and 4. They are shown for variopus values of k4 and
the solid black line correspondq to k4 = 0. The zeros
of �E(k) are located at k ⇡ 0.3 and k ⇡ 1. depending
on the value of k4. The second zero is not visible in the
upper panel and was zoomed in the lower one.

In the case of the massive exchanged particles, the
interaction kernel becomes short-range and some im-
portant qualitative di↵erences with respect to the solu-
tions of the WC presented in [1] are in order:

Where are hidden the
abnormal states ?



Start from what we know in the !=0 case
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Fig. 7 Squared bound state mass M2 of the ground state as
a function of the coupling constant ↵ and for di↵erent values
of µ.

mal solution for which N2 ⇠ 1, with N2 = 1 in the
limit B ! 0. This result, found numerically in [1], is

demonstrated analytically in Appendix E and exhibits
the following dominant behaviour at B ! 0

N
(A)
2 (B) ⇠

p
B log2 B (14)

From that we concluded with an intrinsic many-body
nature of the abnormal states.

The spectrum ↵(B) of the massless case for the
lower normal (=0 in solid black lines) and abnormal
states (=2, in solid blue lines) is summarised in Figure
8, which is a simplified version of Figure 2 of Ref. [1].
The horizontal line at ↵=2⇡ indicates the maximal al-
lowed value of the coupling constant to avoid tachyonic
ground state solutions. As one can see there is no trace
of discontinuity in the ↵(B) spectrum when crossing
this ”physical” line.
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1
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α
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κ=2
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n=1

n=11
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n=5n=6
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n=3

Fig. 8 Spectrum of the first normal (=0 in black) and ab-
normal (=2 in blue) states in the W-C model. The solid hor-
izontal line denotes the boundary ↵=2⇡ for a regular ground
state (M2 > 0).

The spectrum displayed in Figure 8 has been inten-
tionally restricted to the vicinity of the abnormal
ground state1 n=1, =2 which is indicated by
a bold solid blue line. We will hereafter denote
↵
⇤(B) the coupling constant of this state along

this line.
As one can see, the abnormal ground state spreads

over all the values of binding energies but ↵⇤(B) crosses
the horizontal line ↵=2⇡ at B=B⇤ ⇡0.00903. Since ↵⇤(B)
is an increasing function and values larger than ↵=2⇡
are forbidden by the stability condition (M2

> 0) of the
ground state, B⇤ constitutes un upper bound for the
binding energy of a regular abnormal state for µ = 0.
This must be located in the window B 2 [0, B⇤].

1Notice that any abnormal state is an excited state in the
full spectrum. However, we use the terminology of ”abnormal
ground state” to identify the abnormal state having the lower
energy (maximal binding).

Maximum energy of the Ground abnormal state (GAS)
(blue state "=2,n=1) is B≈0.00903



For B=0.009, GAS corresponds 
to the 11th state of the spectrum  
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But for smaller B, GAS corresponds
to higher excitations :
B=0.003  n>15

If B→0, n → ∞ !

Level crossings: not fixed n !!!!
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Our « fishing strategy » was

1. Identify the GAS at !=0 
2. follow its evolution as a  function of (B,",!) 
3.  determine « the parameter domain of its existence » … if at all !!!
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Fig. 9 Left panel: Spectrum of ↵ at B=0.1 for di↵erent values of µ displaying a level crossing at µ ⇡ 0.025. Right panel: Zoom
of the upper panel in the vicinity of µ = 0.025.

value (EV5 of Figure 9 at µ = 0). It has 4 zeros in the
k-dependence (the ground state n = 1 of the  = 0 se-
ries has none). It is compared (right panel) to � of the
first abnormal state which, despite corresponding to a
higher excitation (EV6 in Figure 9 at µ = 0) neverthe-
less displays a much simpler structure, with only one
zero in the k-dependence.
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Fig. 10 Vertex functions of the normal n=5,=0 excited
state (left panel) and 6th excitation n=1,=2 (right panel)
states with B=0.1 and µ = 0.

The relative simplicity in the � structure of
the abnormal state remains at µ 6= 0 and allows
to disentangle in the ↵-spectrum at fixed B the abnor-
mal ground state from its neighbouring normal excited
states. For instance � of the abnormal ground state at
µ = 0.040, represented in the right panel of Figure 11,
is very similar – in particular has identical nodal struc-
ture – to the vertex function of the abnormal state at
µ = 0 represented in the right panel of Figure 10, al-
though corresponding to the di↵erent excitations (EV5
and EV6 respectively). The same happens for EV6 rep-
resented in the left panel of Figure 11 and the corre-
sponding EV5 in Figure 10.

An even more clear distinction is manifested when
examining the corresponding Nakanishi weigh functions
g(�, z). Here the nodal structure on variable .... [comment
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Fig. 11 Vertex functions of the 5th (left) and 6th excitations
(right) with B = 0.1 and µ = 0.040, arising continuously from
the states of Fig. 10.

- JC: One should include here the corresponding g’s
computed with g=Ng equation]

A second criteria, which put forward a striking
di↵erence between normal and abnormal solutions, is
the limit c ! 1. This was first considered in some
detail in our previous works [4,3,?]...

[comment - JC: Il faut developper ceci en utilisant
les contributions]

As it was already pointed out, the previous study
for the B=0.1 ground abnormal state involve values of
the coupling constant (↵⇤) much larger than the crit-
ical value ↵max(µ) given in Table 1, thus implying a
tachyonic ground state of the theory. To avoid such in-
convenience one must start with B < B

⇤ = 0.0093 and
increase slowly µ until ↵⇤(B,µ) = ↵max(µ). This de-
fines µmax(B), the maximal value of µ accessible for a
given binding energy B

↵
⇤(B,µmax) = ↵max(µmax) (15)

For B = 0.008 and µ=0 one has ↵⇤ ⇡ 6.0915, which
is indeed smaller than ↵max(0) = 2⇡ but the increasing
of ↵ with µ observed in the case B=0.1, on one hand,
and the comparatively very slow increasing of ↵max(µ)
observed in Figure 6, on the other one, lets little room
for a detailed study of abnormal states at thos energy.
Lower values of B are thus required.

Exemple for B=0.1,  just for illustrative purposes  (tachyonic!) 
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Fig. 12 Zoom (in linear vertical scale) of the µ = 0 spectrum
displayed in Figure 8, in the low energy region of interest
B 2 [0.001, 0.01] .

We have plotted in Figure 12 a zoom of the ↵(B)
spectrum represented in Figure 8 in the region of in-
terest B2 [0.001, 0.01] (with linear scale in the vertical
axis). One sees that for B=0.01, the abnormal ground
state is the 11th excitation in ↵ instead of the 6th for
B=0.1. It becomes the 12th for B=0.008, the 13th at
B=0.006, and this tendency to increase the order of ex-
citation of the abnormal state is pursued indefinitely
when decreasing B.

Thus, the research of abnormal states in the
non tachyonic region is made quite di�cult for
its involves (i) very small values of binding en-
ergies which implies (ii) accurate computation
of highly excited states in the ↵-spectrum and
(iii) very small values of µ resulting into quasi-
singular kernel (5).

The results for B=0.007 are displayed in Figure
13. The (almost) horizontal dashed line corresponds to
the ↵max(µ) which, for the small values of µ involved,
is practically indistinguishable from the constant value
↵=2⇡ corresponding to µ=0. For µ=0, the abnormal
state is the 12th eigenvalue in the ↵-spectrum (solid
blue line), and the coupling constant takes the value
↵
⇤(B=0.007,µ=0)⇡5.89. When increasing µ, ↵

⇤ in-
creases as well but remains smaller than ↵max(µ)
until µ=µmax(B)⇡ 0.0030. This provides the first so-
lution of equation (15), which is in fact our ultimate
goal.

The µ-dependence of the abnormal ground state is –
as it was the case for its B-dependence – softer than the
neighbouring normal states what generates level cross-
ings and changes in the level ordering when increasing
µ. At µ ⇡0.0034, EV12 ! EV11 and will in fact cross

again with a lower value and transform himself into
EV10 at µ ⇡ 0.006.

This constitutes the first conclusive example of ab-
normal state at finite exchange mass, and a proof of
their existence in a dynamical scheme other than W-C
model. The research can be pursued to smaller binding
energies at increasing numerical cost.
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1
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α/π
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EV10
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EV12 Abnormal state
EV13

Spectrum B=0.007

Fig. 13 Dependence of the ↵-spectrum at B=0.007 as a func-
tion of µ. The horizontal dashed line corresponds to ↵max(µ)
which for these small values of µ is practically indistinguish-
able from the the constant value ↵=2⇡. The value of ↵⇤ – cor-
responding to the ground abnormal state – remains smaller
than ↵max(µ) until µ ⇡0.0034. The µ-dependence of ↵⇤,
which at µ=0 is the 12th excitation, displays a level cross-
ing at µ ⇡0.0034 and becomes the 11th excited state.

For B=0.006, the abnormal ground is now the
13th eigenvalue with ↵

⇤(B) = 1.805⇡ (see vertical
line in Figure 12). The µ-dependence of the ↵-spectrum
at B=0.006 is represented in Figure 14. The ab-
normal ground state has a first crossing the the 12th
eigenvalue at µ ⇡0.0012 and a second one at µ ⇡0.004
where it becomes the 10th eigenvalue and it reaches
↵max. Thus, at B=0.006 the abnormal solution can ex-
ist up tu larger µ values, µmax = 0.004.

For B=0.005, represented in Figure 15, the ab-
normal state at µ = 0 is the 14th eigenvalue. When
increasing µ it has two level crossing and becomes the
11th state. The maximum value of µ allowed at this
energy is µmax = 0.005.

The results presented in this section are sum-
marized in Figure 16. They constitute the main
findings of our work.

On the left panel, we have plotted the maximum
value of µ compatible with a regular ground state so-
lution (M2

> 0), as a function of the binding energy
B. As expected, the values of µmax increases monotoni-
cally when the binding energy is decreased. This figure,

The GAS starts at 12th excitation, has one level crossing and becomes the 11th above !=0.0030

First evidence that (non tachyonic) abnormal states survive for !>0 
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The GAS starts as 14th excitation, has 2 level crossings and becomes the12th   
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Fig. 14 The same than figure 13 for B=0.006. The 13th
excitation at µ = 0, displays a level crossing at µ = 0.0012
with the 12th eigenvalue and at µ ⇡0.004 with the 10th and
becomes the 10th excited state.
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Fig. 15 The same than figures 14 and 13 for B=0.005.

simply collects the numerical values described above,
plus some additional computed lower values of B down
to 10�5. We are not able to reach much smaller val-
ues of B in our present calculation but the results of
this Figure indicates that the maxim value of µ tends
to a finite and small value µmax ⇡0.087. Care must be
taken when approaching the limit B ! 0: the abnormal
state has for µ = 0 an infinite number of normal excited
states below. This number become finite at µ > 0 but
remains very large.

On the right panel we present the accessible (↵, µ)
parameter region for a fixed value of B. It is the interior
of the region delimited by the plotted

�
↵
⇡

�
B
(µ) curve

(di↵erent colours correspond to di↵erent energies), plus
the positive horizontal and vertical axis. The big dot
point on the vertical axis correspond to the µ=0 solu-
tions of the Wick-Cutkosky model obtained in [1].

We would like to emphasise this quite a paradoxical
situation : a new solutions are predicted at extremely
small binding energies with a relativistic theory which

are nevertheless absent in a non relativistic one, a priori
more adapted to describe the low energy states.

4.1 Properties of the two-body norm

[comment - JC: Here we discuss the forma factors and
N2]

5 Concluding remarks

Our previous analysis devoted to study the abnormal
solutions of the Bethe-Salpeter equation for the mass-
less exchange kernel (W-C model) has been extended
here to the massive case µ 6= 0.

We have shown, for the first time, the existence of
abnormal solutions in the case of massive exchanged
particles. Disregarding the value of the coupling con-
stant, and so the regular (non tachyonic) or irregu-
lar ground state, these solutions exist for any value
of B and µ (in constituent mass units m). However
if we want to ensure at the same time a stable ground
state of the theory (M2

> 0) the abnormal solutions
of the massive case are limited to small binding en-
ergies B < 0.009 and exist only for small values of
µ < µmax(B), where the maximal value µmax increases
when the binding energy is decreased. One has typically
µmax = 0.003 at B=0.007, but one cannot exclude to
reach mesonic value of µ at extremely small binding en-
ergies (B⇠0.0001) which are not reachable by our nu-
merical techniques.

This is a paradoxical situation since a genuine rela-
tivistic theory, as Bethe-Salpeter equation, put in evi-
dence the existence of very bound states with extremely
small binding energies while these solution are absent
in a non relativistic framework, a priori more adapted
to describe the low energy states.

The model we have considered is an oversimplified
version of the dynamics. Further investigations are needed
in order to give a more solid ground to our findings. For
instance the inclusion of a non ladder kernel, which pro-
vides an extra binding [9], will lower ↵

⇤ at a given B

and goes in the direction of stabilizing our conclusion
to larger values of µ and B.

It would be also very interesting to inquire whether
the abnormal BS solutions exists in other relativistic
theories, like e.g. LFD [18], Gross equation [].

At present, we have no idea in what physical these
solutions can be manifested in nature. The range of µ
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Fig. 16 Left panel: the maximum value of µ compatible with a regular ground state solution (M2 > 0) plotted as function of
its binding energy B. Right panel: parameters window (↵, µ) of the ground abnormal state, for several values of B.

that play a role in nuclear and hadronic physics starts at
µ = 0.15 with pion. This would require B as small as....
Notice however that in EFT approach one uses contact
interactions which correspond e↵ectively to µ/m ! 0

In the hadronic physics the consitutent mass can
be very heavy fro bottom and top and any hadronic
model based on exchanged meson between heavy quarks
may reach much more smaller values of µ/m than in
standard nuclear physics. This

The BS equation is also widely used in condensed
matter, describing strong intercating electrons with a
dispersion relation similar to relativistic particles. We
are not acquainted of any situation in which

I’VE NOT YET INCLUDED WHAT IS BELOW
Mesons with masses as small as 0.02 are not known.

In the continuity of the properties found in the case
µ = 0 [Sec. ??], one may adopt the picture that abnor-
mal states are dominated, in Fock space, by the sec-
tors containing the two massive constituents and many
other massive exchange particles. However, in order to
be stable relative to the decay into two constituents
with mass m, they should have a total mass M smaller
than 2m. This means that huge attractive forces, requir-
ing very large values of the coupling constant, should
be at work to compensate the mass of dozens of the ex-
change particles with mass µ. For such big values of the
coupling constant the mass squared M

2 of the ground
state (consisting mainly of two constituents) becomes
negative and the system looses its stability property.

As a matter of illustration, if one takes the realistic
exchange mass value µ = 0.15 (i.e., the pion mass, in
case the two massive constituents are the nucleons) and
fits the coupling constant ↵ so that the abnormal state
exists (with B ⇡ 0, or M

2 ⇡ 4), one finds ↵ = 8.38.
However, for these values of µ and ↵, the ground state
mass squared is negative, M2 = �1.44, and the system
is unstable.

Our previous analysis of the W-C model shows that
the abnormal solutions have a di↵erent internal struc-
ture than the normal ones, which can be traced back to
their decomposition properties into Fock space sectors
on light-front planes. This constitutes a genuine prop-
erty of these states and we propose it as an alternative
characteristic to the traditional explanation in terms of
temporal degrees of freedom excitations. Whereas the
normal solutions are dominated by the two-body Fock
sector made of the two massive constituents, the ab-
normal ones are dominated by the Fock sectors made of
the two massive constituents and several or many mass-
less exchange particles. This feature is also manifested
through the fast decrease of the electromagnetic form
factors of the abnormal states, signalling their many-
body compositeness. Therefore, the abnormal states do
not appear as pathological solutions of the BS equation,
but rather as solutions having specifically a relativistic
origin, through the dominance, in their internal struc-
ture, of the massless exchange particles.

Another particular feature of the abnormal solutions
is the relatively large value of the coupling constant
needed for their existence (↵ > ⇡/4). While the sta-
bility condition of the W-C model also requires that
↵ be bounded by the upper value 2⇡, the correspond-

One can find non tachionic abnormal states in the energy range 0<B<0.0093
!max(B) decreases with B and has as maximim value !max(0)=0/0088 



By collecting all previous results (accessible up to B=10-5)
we have finally determined the (!,",B) « parameter window »
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Fig. 16 Left panel: the maximum value of µ compatible with a regular ground state solution (M2 > 0) plotted as function of
its binding energy B. Right panel: parameters window (↵, µ) of the ground abnormal state, for several values of B.
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µ = 0.15 with pion. This would require B as small as....
Notice however that in EFT approach one uses contact
interactions which correspond e↵ectively to µ/m ! 0

In the hadronic physics the consitutent mass can
be very heavy fro bottom and top and any hadronic
model based on exchanged meson between heavy quarks
may reach much more smaller values of µ/m than in
standard nuclear physics. This

The BS equation is also widely used in condensed
matter, describing strong intercating electrons with a
dispersion relation similar to relativistic particles. We
are not acquainted of any situation in which

I’VE NOT YET INCLUDED WHAT IS BELOW
Mesons with masses as small as 0.02 are not known.

In the continuity of the properties found in the case
µ = 0 [Sec. ??], one may adopt the picture that abnor-
mal states are dominated, in Fock space, by the sec-
tors containing the two massive constituents and many
other massive exchange particles. However, in order to
be stable relative to the decay into two constituents
with mass m, they should have a total mass M smaller
than 2m. This means that huge attractive forces, requir-
ing very large values of the coupling constant, should
be at work to compensate the mass of dozens of the ex-
change particles with mass µ. For such big values of the
coupling constant the mass squared M

2 of the ground
state (consisting mainly of two constituents) becomes
negative and the system looses its stability property.

As a matter of illustration, if one takes the realistic
exchange mass value µ = 0.15 (i.e., the pion mass, in
case the two massive constituents are the nucleons) and
fits the coupling constant ↵ so that the abnormal state
exists (with B ⇡ 0, or M

2 ⇡ 4), one finds ↵ = 8.38.
However, for these values of µ and ↵, the ground state
mass squared is negative, M2 = �1.44, and the system
is unstable.

Our previous analysis of the W-C model shows that
the abnormal solutions have a di↵erent internal struc-
ture than the normal ones, which can be traced back to
their decomposition properties into Fock space sectors
on light-front planes. This constitutes a genuine prop-
erty of these states and we propose it as an alternative
characteristic to the traditional explanation in terms of
temporal degrees of freedom excitations. Whereas the
normal solutions are dominated by the two-body Fock
sector made of the two massive constituents, the ab-
normal ones are dominated by the Fock sectors made of
the two massive constituents and several or many mass-
less exchange particles. This feature is also manifested
through the fast decrease of the electromagnetic form
factors of the abnormal states, signalling their many-
body compositeness. Therefore, the abnormal states do
not appear as pathological solutions of the BS equation,
but rather as solutions having specifically a relativistic
origin, through the dominance, in their internal struc-
ture, of the massless exchange particles.

Another particular feature of the abnormal solutions
is the relatively large value of the coupling constant
needed for their existence (↵ > ⇡/4). While the sta-
bility condition of the W-C model also requires that
↵ be bounded by the upper value 2⇡, the correspond-



CONCLUSION

We have studied the normal and abnormal solutions of Bethe-Salpeter equation for a model
consisting of two equal-mass (m=1) scalar particles interacting by a scalar exchange (!) 

"=g2/4#

For !=0 (Wick-Cutkosky model) the abnormal states exist for λ="/# >1/4,
as for a “fictitious massive photon” of ! /M=0.4
If one restricts to “non tachyonic” ground state, the coupling constant is limited to 

and binding energies smaller than B/m=0.0093
They have a genuine many-body character with a two-body norm N2 that vanishes
in the limit B→0

For !>0 the abnormal solutions remain but are limited to !/m=0.0088 and B/m<0.0093

Work is in progress to study their N2(B) dependence as well as their existence in the
case of different constituent masses 
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3.6 Results for ↵pBq
• Ground state (n “ 1, “ 0) exists for
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The maximal value B “ 2 (or M “ 0) is reached for ↵ “ 2⇡. This fixes the range of validity of the theory
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For ↵ ° 2⇡ there exist solutions with M2 † 0 (tachyonic solutions) and which are all regular as possible !
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• All normal excited states (n ° 1, “ 0) exist for all values of ↵ P r0, 2⇡s and are below the curve Bp↵q or
above the Mp↵q. This follows from the fact that normal states tend to the NR ones in the B Ñ 0 limit

Bn “ B1

n2

Once is proved in this limit is true everywhere

• Abnormal states exists only for
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