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PRELUDE

Bethe Salpeter equation deals with a - pre-existing - QF T object (Gell-Mann Low)

O(xq, 19, P) =< 0| T{o(x1)p(22)} | P >

Its Fourier transform @(k,P)
dk

dpl dp2 —1Px _—ikx —1Px —ikx
(I)(xlax%P) — / (27’(’)4 (27T)4(I)(p17p2) € € = € (27r>4(1)<kap) €
e : : prt+p2 = P
satisfies a 4D equation. For bound states it reads : pL—py = 2k
d*k'
Pk, P) = S1(k P)Sa(k, P) [ g iRk, '3 P) @(K, P) )
7

P2=]\12 with M the total mass of the two-body system

SikP) = ———p
S; = free propagators (L +k)" —m?+ie

Sa(k, P) = :

1

(B — k)" — m?+ie
iK=Interaction kernel

- if K would contain all the IR graphs, solving (*) would be equivalent to solve the full QFT
- This is however a wishful thinking. In practice one uses a poor restriction: ladderwith simple kernels



PRELUDE

We will consider solutions of (*) with scalar massless exchange kernel (Wick-Cutkosky)

2 21

: g : 9
K(kE) = — -> Coulomb potential V(r) = ——— -

t (7 ) (k—/{/)2+i€ P () A r

and its natural extension to the massive case a=g%/4xn
2 _—ur
2 g- e

: g : V — _ 7

Kk k)= — -> Yukawa potential (r)

ik, k) (k — K% — pu? + ie P dm

The massless case has the peculiarity to accept solutions which have no counterpart

in the non relativistic limit (Schrodinger eq).... even if they involve very small energies.

Solved by G.C. Wick and R.E. Cutkosky in 54, our contribution to this field was presented
by V.A.K. in several Conferences, e.g. LCM 2018 (USA) and LCM 2019 (France)

AIM OF THIS CONTRIBUTION

|. Briefly summarize the main results of the massless case
Il. Present our (new) results for the massive exchanges



THE MASSLESS CASE (Wick-Cutkosky model)
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Since P?=M?, and ZK(ka k/) - (]C - k,)g 4 je

d*k’
BS equation &(k, P) = Si(k, P) S3(k, P) / 2n) iK (kK P) ®(K, P)
is an implicit e.v. equation : $,=92. O(M?) P,

For a given M2, there is a discret set of g2 a that « solve » the problem : M?(g?)
It is customary to introduce M=2m-B and a=g?/4m and present rather B(«)

In the non relativistic case : B,(a)=ma?/4n?2 n=1,2,3... (always E,=-B,,)
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W&C found that their model had indeed a familly of solution (®,,,B,,) that, for small values
of a, were « tangent » to the NR limit (logarithmic corrections)
2
mao 4
= 1+ —alna+ o(a? (1)
4n? T (@)

B, (a)

But for each n=1,2,3... they found an additional infinite series of ev labeled by a new
quantum number k=0,1,2,... (due to the SO4 symmetry of the problem)

E..(a) n=123,.. k=0,1,2,3,....
The subset k =0 correspond to the « Balmer series » (1)

And the rest ?7??
- It was shown (*) that the odd values k =1,3,..of do not contribute to S-matrix

- What about k=0,2,4.... ?

(*) M. Ciafaloni and P. Menotti, PR140 (1965), B929



Let us plot a(B) as before (rather A=a/m)
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Black states (k=0) have an « acumulation point » at (B=0, a=0) as in NR equations
All others go somewhere else, but « decoupled » from the NR solutions : « ABNORMAL »



A Log-Log zoom of the same picture... and comparison with the NR results (n=1)
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Abnormal states require a non zero value of a in the limit B—0 (as in massive exchange!)



A zoom of the zoom....with two remarkable horizontal values A=2 and A=1/4
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If normal states - all of them ! - exist for any value of «,
« building » an abnormal states requires large coupling contants ...even if it has B=0 !

For abnormal states, a/m — V4 (by above) with, for small B, the assymptotic relation

1 4r?(k — 1)?
a(B)~ — + — )\E—zerW(H )

4 In* £ In® &

T 4m(k — 1) Q

N

Result independent of n: all abnormal states tend to the same point (B=0,a/r=1/4) !
But very slowly...(for k=2 one still misses a factor 2 at B=10-)
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This is the relevance of the a/m=1/4 horizontal line in previous figures



The value a/m=2 has another meaning....

The ground state of WC model (n=1,k=0) has M=0 (B=2) for a=2r (A=a/mt=2)
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SPECTRUM OF p=0

If one does not take care about the tachyonic states :
- Normal solutions exist for any value of

- Abnormal solutions only for a>m/2 (A>1/4)

If one restrict to non—tachyonic solutions

Q
- Normal solutions limited to 0<a<2r — 0< A= -

s 1
- Abnormal states limited to the range 7 <@ < 2r < 1= A <2

Their energy is always very small B<0.009 !!!

NB: The existence of a minimal coupling constant for a bound state is
typical from a massive exchange (Yukawa like).
Abnormal states behaves like if a « massive photon » with m/M=0.4

How to « characterize » the abnormal solutions ?
(apart from their behaviour at small B)

< 2



How to « characterize » the abnormal solutions ?

This was the main result of our recent work

The state vector |P> apprearing in the definition of BS amplitude ® is a QFT state involve
many body components (Fock expansion)

| Py = W, (ki ks, ...k) | ) |n) =a} al ,..a bl bl |0)
n>2
Its total norm results from the norms of
<P’|P>:1:/\If§ — /\If§ -~ /\Ifi + ...=Na+ N3+ Ny+...

The two-body contribution N, to the total norm can be obtained through the Light-Front
projection of the BS amplitude

Uy (o oy, Poo) = ;TIZB%')’@) /OO d(k + Bw, P)dp

— o0

according to 1 2k d
N2 = /\Ijg(kj_,m) L
(2m)3 2¢(1 — x)

We found striking differences in the two-body contents of the WC solutions



« Normal states » are essentially two-body « Abnormal states », are genuine
with N->1 when B->0 many-body sates with N»->0 when B->0
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Eur. Phys. J. C (2021) 81:50

Details of this and further calculations https://doi.org/10.1140/epjc/s10052-021-08850-1
concerning « wave functions » and EM Hybrid nature of the abnormal solutions of the Bethe-Salpeter
form factors can be found in our recent equation in the Wick—Cutkosky model
publication J. Carbonell?, V. A. Karmanov?*, H. Sazdjian'*

and will be extended to unequal mass in the next talk by V.A. Karmanov

DO THE ABNORMAL STATES SURVIVE IN THE MASSIVE CASE ?



THE MASSIVE EXCHANGE CASE

When p>0, the SO4 symmetry is broken and the k quantum number disappears
The (partial wave) of the 4d BS equation is bidimensional (instead of 1d for u=0)
Eigenstates are only labelled by E,,

However the parity ¢,(k,k4) is not destroyed by n ! :

Normal and abnormal states are even on k,
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Where are hidden the
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Start from what we know in the u=0 case
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Maximum energy of the Ground abnormal state (GAS)
(blue state k=2,n=1) is B=0.00903




For B=0.009, GAS corresponds
to the 11th state of the spectrum

But for smaller B, GAS corresponds
to higher excitations :
B=0.003 n>15

If B—0, n — !

Level crossings: not fixed n !!!!
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Our « fishing strategy » was

1. ldentify the GAS at p=0
2. follow its evolution as a function of (B, o, )
3. determine « the parameter domain of its existence » ... if at all !!!

Exemple for B=0.1, just for illustrative purposes (tachyonic!)
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For B=0.007 : the maximum value of u for which a/m<2 p,,.4(B)=0.0034
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The GAS starts at 12th excitation, has one level crossing and becomes the 11th above p=0.0030

First evidence that (non tachyonic) abnormal states survive for p>0



For B=0.005 : the maximum value of u for which a/m<2 p,,,.4(B)=0.0050
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On can determine in this way the n,,,..(B) dependence of the model
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One can find non tachionic abnormal states in the energy range 0<B<0.0093
Iax(B) decreases with B and has as maximim value p,,.,(0)=0/0088



By
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collecting all previous results (accessible up to B=10-°)
have finally determined the (o,t,B) « parameter window »
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CONCLUSION

We have studied the normal and abnormal solutions of Bethe-Salpeter equation for a model
consisting of two equal-mass (m=1) scalar particles interacting by a scalar exchange (n)

2

: / g
iK (kK = — =W — 12 +ic a=g?%/4n

For n=0 (Wick-Cutkosky model) the abnormal states exist for A=a/m >1/4,
as for a “fictitious massive photon” of n /M=0.4

If one restricts to “non tachyonic” ground state, the coupling constant is limited to

o
—<a<?2 S <A< ?2
g = 4

and binding energies smaller than B/m=0.0093
They have a genuine many-body character with a two-body norm N, that vanishes

in the limit B—0

For n>0 the abnormal solutions remain but are limited to W/m=0.0088 and B/m<0.0093

Work is in progress to study their N,(B) dependence as well as their existence in the
case of different constituent masses



