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1. Introduction
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Quantum Chromodynamics (QCD): The theory of strong interactions

Quarks are Dirac spinors 𝝍𝒇 

Gluons are non-Abelian gauge fields 𝑨𝝁 = 𝑨𝝁
𝒂𝑻𝒂 

QCD is invariant under the local 𝑺𝑼 𝟑  colour symmetry

Quarks and gluons are the elementary particles of the standard model

𝑳𝑸𝑪𝑫 = ഥ𝝍𝒇  𝒊 𝜸𝝁𝑫𝝁 − 𝒎𝒇 𝝍𝒇 −
𝟏

𝟐
𝐓𝐫 𝐅𝝁𝝂𝐅𝝁𝝂   

𝑫𝝁 = 𝝏𝝁 − 𝒊𝒈𝑨𝝁  ,   𝑭𝝁𝝂 = 𝝏𝝁𝑨𝝂 − 𝝏𝝂𝑨𝝁 − 𝒊𝒈 𝑨𝝁, 𝑨𝝂



Asymptotic freedom and confinement

4

The QCD beta function

1- loop result

𝑵𝒇 = 𝟔 e  𝑵𝑪 = 𝟑 → 𝜷𝒈 < 𝟎

Asymptotic freedom in the UV and confinement in the IR

𝜷𝒈 ≡
𝒅𝒈

𝒅 𝐋𝐨𝐠 𝝁
= −

𝒈𝟑

𝟒𝝅 𝟐

𝟏𝟏

𝟑
𝑵𝒄 −

𝟐

𝟑
𝑵𝒇

Bethke hep-ex/0606035
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- Lattice QCD:                                                                                                  Wilson 1974

- Dyson-Schwinger equations:

                                                                                                                             Dyson 1949, 

                                                                                                                      Schwinger 1951

- Other approaches:  Chiral lagrangians, Nambu-Jona-Lasinio model, Light Front QCD, 
QCD sum rules, RG flow, … 

(
𝜹𝑺 𝝓

𝜹𝝓
ቚ
𝝓=

𝜹
𝜹𝑱

− 𝐉 )𝐙 𝐉 = 𝟎

Non-perturbative approaches to QCD
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The spectrum of baryons and mesons organize approximately

into Regge trajectories

                                                                  Chew & Frautschi 1962

𝑱 : spin ,     𝑴 : mass        𝜶′ : Regge slope

 

This can be obtained from 1d objects (strings)

                                      Nambu, Nielsen & Susskind 1969-1970

Problem: massless spin 2 particle                   string theory is a theory of gravity

Hadrons and string theory

𝑱 = 𝑱𝟎 + 𝜶′𝑴𝟐
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Yang-Mills/string duality

 Feynman diagrams of 𝑆𝑈(𝑁𝑐) gauge theories in the large 𝑁𝑐 limit can be thought in terms of 
string theory  

                                        ‘t Hooft 1974    

‘t Hooft constant: 𝝀 = 𝒈𝟐𝑵𝑪                                                                                                           

 

This simple amplitude satisfies the s—t duality and has the asymptotic behaviour 𝒔 𝑱 𝒕

in the Regge limit , expected for hadronic scattering. 

This amplitude is obtained from scattering of strings Veneziano & many others 1968-1970

Veneziano scattering amplitude
𝑨 𝒔, 𝒕 =

𝚪 −𝜶 𝒔 𝚪 −𝜶 𝒕

𝚪(−𝜶 𝒔 − 𝜶 𝒕 )



8

The AdS/CFT correspondence

D-branes relate the physics of open strings  with the physics of 
closed strings Polchinski 1995

AdS/CFT is a concrete realization of the Yang-Mills/string duality

Maldacena 1997

𝑺𝑼(𝑵𝒄) theory in the large 𝑵𝒄 limit with
conformal symmetry in d dimensions

string theory in Anti-de-Sitter
 space in d+1 dimensions

Gauge/gravity duality

In the regime 𝝀 ≫ 𝟏 string theory becomes a classical gravitational theory

E.g:  4-d   𝑵 = 𝟒  super Yang-Mills                        supergravity IIB in 𝑨𝒅𝑺𝟓 × 𝑺𝟓
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Conformal symmetry group 𝑺𝑶(𝟐, 𝟒) becomes the  𝑨𝒅𝑺𝟓  isometry group

𝑨𝒅𝑺𝟓 in Poincaré coordinates         

Scale transformation 𝒙𝝁→ 𝝀 𝒙𝝁 , 𝒛 → 𝒛 𝝀

Fields 𝝓… in 𝑨𝒅𝑺𝟓 couple on the  boundary with operators 𝑶… of the 𝑪𝑭𝑻𝟒

𝑪𝑭𝑻𝟒 partition function ↔ gravitational path integral in  𝑨𝒅𝑺𝟓                

                                                                                                                 Gubser-Klebanov-Polyakov 1998,

                                                                                                                             Witten 1998     

                                                                             
                                                                                                 

                                                                                                     

The AdS/CFT dictionary

𝒁𝑪𝑭𝑻 𝝓…
𝟎 , 𝒈𝝁𝝂

𝟎 = 𝒁𝑨𝒅𝑺[𝝓…, 𝒈𝝁𝝂]

𝒅𝒔𝟐 =
𝑹𝟐

𝒛𝟐 [𝒅𝒛𝟐 − 𝒅𝒕𝟐 + 𝒅 ഥ𝒙𝟐]
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Top-down approach

E.g. Klebanov-Witten (1998), Klebanov-Strassler (2000), Maldacena-Nunez (2000), 

Sakai-Sugimoto (2004), Kuperstein-Sonnenschein (2004)

Bottom-up approach

 E.g. Polchinski-Strassler (2000), Erlich-Katz-Son-Stephanov (2005), Karch-Katz-Son-Stephanov (2006), 

Gursoy-Kiritsis-Nitti (2007), Gubser-Nellore (2008)

𝑵 = 𝟒  super Yang-Mills in 4d                      IIB string theory in 𝑨𝒅𝑺𝟓 × 𝑺𝟓   

           QCD-like theories                                 deformed string theories

CFT in 4d                                         Einstein gravity in 𝑨𝒅𝑺𝟓 
                
 QCD as a deformed CFT                                Gravity in a deformed 𝐀𝒅𝑺𝟓 space

Holographic QCD
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Confinement in Einstein-dilaton holographic QCD

Einstein-dilaton gravity in 5d:

𝑺 = 𝝈 ∫ 𝒅𝟓𝒙 −𝒈 𝑹 −
𝟒

𝟑
𝝏𝒎𝚽 𝟐 + 𝐕 𝚽

5d ansatz in holographic QCD:

𝒅𝒔𝟐 =
𝟏

𝜻 𝒛 𝟐 −𝒅𝒕𝟐 + 𝒅𝒙𝟐 + 𝒅𝒛𝟐  , 𝚽 = 𝚽 𝒛

Independent field equations:

𝜻′′ −
𝟒

𝟗
𝜻𝚽′𝟐  = 𝟎 

𝑽 − 𝜻𝟓 𝜻−𝟑 ′′
= 𝟎

Warp factor in the Einstein frame

𝑨 𝒛 = −𝒍𝒏 𝜻
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Linear confinement is guaranteed by a quadratic dilaton asymptotic behaviour 

𝚽 𝐳 → ∞ = 𝒌𝒛𝟐

Karch-Katz-Son-Stephanov 2006, Gursoy-Kiritsis-Nitti 2007 

In this work we consider the following analytical solutions:

𝚽𝑰 = 𝒌𝒛𝟐 , 𝜻𝑰 𝒛 = 𝚪
𝟓

𝟒

𝟑

𝐤

𝟏/𝟒

𝒛 𝑰𝟏
𝟒

𝟐

𝟑
𝒌𝒛𝟐 (model I)

𝚽𝑰𝑰 =
𝟏

𝟐
𝒌 𝐳 𝟗 + 𝟒𝒌𝒛𝟐 +

𝟗

𝟒
𝐬𝐢𝐧𝐡−𝟏

𝟐

𝟑
𝒌𝒛  , 𝜻𝑰𝑰 𝒛 = 𝒛 𝒆𝒙𝒑

𝟐

𝟑
𝒌𝒛𝟐 (model II)

Both models leads to a quadratic dilaton at large z and AdS asymptotics at small z 

Warp factor in the string frame:
𝑨𝒔 𝒛 = −𝒍𝒏 𝜻 +

𝟐

𝟑
𝚽
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Confinement criterion 

The function 𝒇 𝒛 = 𝒈𝒕𝒕𝒈𝒙𝒙  defined in the string frame should have a minimum 𝒇 𝒛∗ > 𝟎

𝒇 𝒛 = 𝒆𝒙𝒑(𝟐𝑨𝒔)In terms of the warp factor we have 

As shown in the figure, both models satisfy the confinement criterion

Kinar, Schreiber and Sonnenschein 1998
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2. Vector mesons in confining holographic QCD

Pioneer works in the bottom-up approach:

These currents are responsible for the creation of vector mesons 

< 𝑱𝝁,𝒄 > = < ഥ𝒒 𝒙 𝜸𝝁𝑻𝒄𝒒 𝒙 > =< 𝑱𝑹
𝝁,𝒄

>+< 𝑱𝑳
𝝁,𝒄

>

In holographic QCD the 𝑆𝑈 2 𝐿 × 𝑆𝑈 2 𝑅 chiral symmetry is described by the Yang-Mills action

𝑺 = −
𝟏

𝟒𝒈𝟓
𝟐 ∫ 𝒅𝟒𝒙 𝒅𝒛 −𝒈𝒆−𝚽𝐓𝐫 𝑭𝒎𝒏

𝑹 𝟐
+ 𝑭𝒎𝒏

𝑳 𝟐

Expanding this action at second order in the perturbations, we find in the vectorial sector 

𝑺𝑽 = −
𝟏

𝟒𝒈𝟓
𝟐

∫ 𝒅𝟒𝒙 𝒅𝒛 −𝒈𝒆−𝚽𝒗𝒎𝒏
𝒄 𝟐 = −

𝟏

𝟒𝒈𝟓
𝟐

∫ 𝒅𝟒𝒙 𝒅𝒛 𝒆𝑨𝒔−𝚽𝒗 ෝ𝒎ෝ𝒏
𝒄 𝟐

where 𝑣 ෝ𝑚 ො𝑛
𝑐 = 𝜕 ෝ𝑚𝑉ො𝑛

𝑐 − 𝜕 ො𝑛𝑉ෝ𝑚
𝑐  and the indices ෝ𝑚, ො𝑛 are contracted with a 5d Minkowski metric

Consider the vectorial currents associated with 𝑺𝑼(𝟐) isospin symmetry

Erlich-Katz-Son-Stephanov 2005, Grigoryan-Radyushkin 2007 
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The 5d gauge coupling is fixed as
𝒈𝟓

𝟐 =
𝟏𝟐𝝅𝟐

𝑵𝒄

to reproduce the large N QCD perturbative result for the current correlator at large energies 

Varying the action one finds the field equation

𝝏𝒎 𝒆𝑨𝒔−𝚽𝒗𝒄
ෝ𝒎ෝ𝒏 = 𝟎

as well as the surface term

𝜹𝑺𝑽 = −
𝟏

𝒈𝟓
𝟐 ∫ 𝒅𝟒𝒙 𝒅𝒛 𝝏 ෝ𝒎(𝒆𝑨𝒔−𝚽𝒗𝒄

ෝ𝒎ෝ𝒏 𝜹𝑽ෝ𝒏
𝒄 )

The 5d vectorial field can be decomposed as

𝑽 ෝ𝒎
𝒄 = 𝑽ො𝒛

𝒄, 𝑽ෝ𝝁
𝒄  ,  𝑽ෝ𝝁,𝒄 = 𝑽ෝ𝝁,𝒄

⊥ + 𝝏ෝ𝝁𝝃𝒄 

We can use the gauge symmetry to fix 𝑽𝒛
𝒄 = 𝟎  and it turns out that 𝝃𝒄 = 𝟎 is the only consistent

 solution for the longitudinal part 
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[ 𝝏𝒛 + 𝑨𝒔
′ − 𝚽′ 𝝏𝒛 − 𝒒𝟐]𝑽⊥

ෝ𝝁 ,𝒄
= 𝟎

The equation for the transverse sector takes the form (in momentum space)

Taking the ansatz

𝑽⊥
ෝ𝝁 ,𝒄

(𝒒, 𝒛) = 𝒆−𝑩𝑽 𝒛 𝜼ෝ𝝁𝝍𝑽(𝒒, 𝒛) ,  𝑩𝑽 =
𝟏

𝟐
(𝑨𝒔 − 𝚽)

the equation takes the Schrödinger form
𝝏𝒛

𝟐 − 𝒒𝟐 − 𝑽𝑽 𝝍𝑽 = 𝟎

with the potential given by
𝑽𝑽 = 𝑩𝑽

′′ + 𝑩𝑽
′𝟐

The VEV of the current operator can be obtained from the surface term in the action variation

< 𝑱ෝ𝝁,𝒄 𝒙 > =
𝜹𝑺𝑽

𝜹𝑽ෝ𝝁,𝒄
⊥,𝟎 𝒙

=
𝟏

𝒈𝟓
𝟐 𝒆𝑨𝒔−𝚽𝝏𝒛𝑽⊥

ෝ𝝁,𝒄

𝒛=𝝐

and we have introduced a UV regulator 𝑧 = 𝜖  for the AdS boundary
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The bulk to boundary propagator and the current correlator

𝑽ෝ𝝁,𝒄
⊥ (𝒛, 𝒙) = ∫ 𝒅𝟒𝒚 𝑲ෝ𝝁ෝ𝝂

𝒄𝒅 𝒛, 𝒙; 𝒚 𝑽⊥,𝟎
ෝ𝝂,𝒅 (𝒚)

The vectorial field in 5 dimensions can be mapped to the 4d source using the bulk to boundary
 propagator 

The on-shell action takes the form

𝑺𝑽
𝒐−𝒔 =

𝟏

𝟐𝒈𝟓
𝟐 ∫ 𝒅𝟒𝒙∫ 𝒅𝟒𝒚 𝑽⊥,𝟎

ෝ𝝁,𝒄
(𝒙) 𝒆𝑨𝒔−𝚽𝝏𝒛 𝑲ෝ𝝁ෝ𝝂

𝒄𝒅 𝒛, 𝒙; 𝒚 𝑽⊥,𝟎
ෝ𝝂,𝒅 (𝒚)

Using the AdS/CFT dictionary we obtain the current correlator

𝑮ෝ𝝁ෝ𝝂
𝒄𝒅 𝒙 − 𝒚 =< 𝑱ෝ𝝁,𝒄 𝒙 𝑱ෝ𝝂,𝒅 𝒚 > 

=
𝜹𝑺𝑽

𝒐−𝒔

𝜹𝑽⊥,𝟎
ෝ𝝁,𝒄

𝒙 𝜹𝑽⊥,𝟎
ෝ𝝂,𝒅 (𝒚)

=
𝟏

𝒈𝟓
𝟐 𝒆𝑨𝒔−𝚽𝝏𝒛 𝑲ෝ𝝁ෝ𝝂

𝒄𝒅 𝒛, 𝒙; 𝒚

The VEV and current correlator are related by < 𝑱ෝ𝝁,𝒄 𝒙 > = ∫ 𝒅𝟒𝒚 𝑮ෝ𝝁ෝ𝝂
𝒄𝒅 𝒙 − 𝒚 𝑽⊥,𝟎

𝝂,𝒅 (𝒚)
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The Sturm-Liouville equation and the spectral decomposition

The bulk to boundary propagator can be written in momentum space as

𝑲ෝ𝝁ෝ𝝂
𝒄𝒅 𝒛, 𝒒 = 𝜼ෝ𝝁ෝ𝝂 −

𝒒ෝ𝝁𝒒ෝ𝝂

𝒒𝟐 𝜹𝒄𝒅𝑽(𝒛, 𝒒)

The field 𝑉(𝑧, 𝑞) satisfy the differential equation

𝝏𝒛 + 𝑨𝒔
′ − 𝚽′ 𝝏𝒛 − 𝒒𝟐 𝑽 𝒛, 𝒒 = 𝟎

which can be written in the Sturm-Liouville form

𝝏𝒛 𝒑 𝒛 𝝏𝒛 − 𝒔 𝒛 + 𝝀 𝒓(𝒛) 𝑽 𝒛, 𝒒 = 𝟎

where
𝒑 𝒛 = 𝒓 𝒛 = 𝒆𝑨𝒔−𝚽 ,  𝒔 𝒛 = 𝟎 , 𝝀 = −𝒒𝟐

Then we can define the Green’s function by 

𝝏𝒛 𝒑 𝒛 𝝏𝒛 − 𝒔 𝒛 + 𝝀 𝒓(𝒛) 𝑮 𝒛; 𝒛′ = 𝜹(𝒛 − 𝒛′)
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Following Sturm-Liouville theory we obtain the spectral decomposition

𝑮 𝒛; 𝒛′ = − ෍

𝒏

𝒗𝒏 𝒛 𝒗𝒏 𝒛′

𝒒𝟐 + 𝒎𝒗𝒏
𝟐

where the Sturm-Liouville modes satisfy 𝝏𝒛 + 𝑨𝒔
′ − 𝚽′ 𝝏𝒛 + 𝒎𝒗𝒏

𝟐 𝒗𝒏(𝒛) = 𝟎

and are normalised as ∫ 𝒅𝒛 𝒆𝑨𝒔−𝚽𝒗𝒎 𝒛 𝒗𝒏 𝒛 = 𝜹𝒎𝒏

The field 𝑉 𝑞, 𝑧  can be obtained from the Green’s function as

𝑽 𝒛′, 𝒒 = − 𝒆𝑨𝒔−𝚽𝝏𝒛𝑮 𝒛; 𝒛′
𝒛=𝝐 

= − ෍

𝒏

𝒆𝑨𝒔−𝚽𝝏𝒛 𝒗𝒏 𝒛
𝒛=𝝐

𝒗𝒏 𝒛′

𝒒𝟐 + 𝒎𝒗_𝒏
𝟐

and the current correlator takes the form

𝑮𝝁𝝂
𝒄𝒅 𝒒 = 𝜼𝝁𝝂 −

𝒒𝝁𝒒𝝂

𝒒𝟐 𝜹𝒄𝒅 ෍

𝒏

𝑭𝒗𝒏
𝟐

𝒒𝟐 + 𝒎𝒗𝒏
𝟐

 , 𝑭𝒗𝒏 =
𝟏

𝒈𝟓
𝒆𝑨𝒔−𝚽𝝏𝒛𝒗𝒏 𝒛

𝐳=𝝐

The coefficients 𝑭𝒗𝒏  are the vector meson decay constants consistent with large 𝑁𝑐 QCD
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3. Nucleons in confining holographic QCD

Nucleons are usually described by interpolating fields. For a proton we use the Ioffe operator

< 𝑶 𝒙 > =< 𝝐𝒂𝒃𝒄 𝒖𝒂
𝑻 𝒙 𝑪𝜸𝝁𝒖𝒃 𝒙 𝜸𝟓𝜸𝝁𝒅𝒄 𝒙 > Ioffe 1981

In holographic QCD we map this fermionic operator to a 5d Dirac spinor described by the action

𝑺𝑭 = 𝑵 ∫ 𝒅𝟒𝒙 𝒅𝒛 −𝒈𝒔𝒆−𝚽
𝒊

𝟐
ഥ𝝍 𝚪𝒏𝑫𝒏𝝍 + 𝒄. 𝒄. −𝒊 ෥𝒎 ഥ𝝍𝝍

where 𝚪𝒏 = 𝒆ෝ𝒂
𝒏𝚪ෝ𝒂 ,  𝑫𝒏 = 𝝏𝒏 +

𝟏

𝟖
𝝎𝒏

ෝ𝒂෡𝒃[𝚪ෝ𝒂, 𝚪෡𝒃]

Redefining the Dirac field as 𝝍 → 𝒆𝚽/𝟐𝝍

the Dirac action becomes 𝑺𝑭 = 𝑵 ∫ 𝒅𝟒𝒙 𝒅𝒛 −𝒈𝒔

𝒊

𝟐
ഥ𝝍 𝚪𝒏𝑫𝒏𝝍 + 𝒄. 𝒄. −𝒊 ෥𝒎 ഥ𝝍𝝍

Pioneer works in the bottom-up approach:

Brodsky-Teramond 2005, Hong-Inami-Yee 2006, Abidin-Carlson 2009 
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𝒆ෝ𝒂
𝒏 = 𝒆−𝑨𝒔𝜹ෝ𝒂

𝒏

and the non-vanishing components of the spin connection are 𝝎ෝ𝝁
ො𝒛ෝ𝝂 = −𝝎ෝ𝝁

ෝ𝝂ො𝒛 = −𝑨𝒔
′  𝜹ෝ𝝁

ෝ𝝂

In holographic QCD the vielbein takes the form

so that 𝚪𝒏𝑫𝒏𝝍 = 𝒆−𝑨𝒔 𝚪ෝ𝒂𝝏ෝ𝒂 + 𝟐𝑨𝒔
′ 𝚪ො𝒛 𝝍

with  ො𝑎 = ( Ƹ𝑧, ො𝜇)

The Dirac action becomes

𝑺𝑭 = 𝑵 ∫ 𝒅𝟒𝒙 𝒅𝒛 𝒆𝟒𝑨𝒔
𝒊

𝟐
ഥ𝝍 𝚪ෝ𝒂𝝏ෝ𝒂𝝍 −

𝒊

𝟐
𝝏ෝ𝒂

ഥ𝝍 𝚪ෝ𝒂𝝍. −𝒊 𝒆𝑨𝒔 ෥𝒎 ഥ𝝍𝝍

Varying this action we obtain the field equations
𝚪ෝ𝒂𝝏ෝ𝒂 + 𝟐𝑨𝒔

′ 𝚪ො𝒛 − 𝒆𝑨𝒔 ෥𝒎 𝝍 = 𝟎

ഥ𝝍 𝝏ෝ𝒂𝚪ෝ𝒂 + 𝟐𝑨𝒔
′ 𝚪ො𝒛 + 𝒆𝑨𝒔 ෥𝒎 = 𝟎

and the surface term

𝜹𝑺𝑭 = 𝑵 ∫ 𝒅𝟒𝒙
𝒊

𝟐
𝒆𝟒𝑨𝒔𝜹ഥ𝝍 𝚪ො𝒛𝝍

𝒛=𝝐

+ 𝒄. 𝒄.
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Left and right decomposition: 𝝍 = 𝝍𝑹 + 𝝍𝑳

where 𝝍𝑹/𝑳 = 𝑷𝑹/𝑳𝝍 ഥ𝝍𝑹/𝑳 = 𝑷𝑳/𝑹
ഥ𝝍 𝑷𝑹/𝑳 =

𝟏

𝟐
(𝟏 ± 𝚪ො𝒛)

The Dirac equation decomposes in two equations

𝚪ෝ𝝁𝝏ෝ𝝁𝝍𝑹/𝑳 = ± 𝝏𝒛 + 𝟐𝑨𝒔
′ ± 𝒆𝑨𝒔 ෥𝒎 𝝍𝑳/𝑹

and the surface term becomes

𝜹𝑺𝑭 = 𝑵 ∫ 𝒅𝟒𝒙
𝒊

𝟐
𝒆𝟒𝑨𝒔𝜹ഥ𝝍𝑳 𝝍𝑹 −

𝒊

𝟐
𝒆𝟒𝑨𝒔𝜹ഥ𝝍𝑹 𝝍𝑳

𝒛=𝝐

+ 𝒄. 𝒄.

Since 𝜓𝑅 and 𝜓𝐿 are not independent we need to correct the Dirac action as

𝑺𝑭
′ = 𝑺𝑭 + 𝑵∫ 𝒅𝟒𝒙 −𝜸

𝒊

𝟐
ഥ𝝍𝝍

𝒛=𝝐

= 𝑺𝑭 + 𝑵 ∫ 𝒅𝟒𝒙
𝒊

𝟐
𝒆𝟒𝑨𝒔 ഥ𝝍𝑳𝝍𝑹 + ഥ𝝍𝑹𝝍𝑳

𝒛=𝝐

so that
𝜹𝑺𝑭

′ = 𝑵∫ 𝒅𝟒𝒙
𝒊

𝟐
𝒆𝟒𝑨𝒔𝜹ഥ𝝍𝑳𝝍𝑹

𝒛=𝝐

+ 𝒄. 𝒄.
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At small z (near the boundary) the left and right spinor fields have the asymptotic behaviour

𝝍𝑳 𝒙, 𝒛 = 𝜶𝑳 𝒙 𝒛𝟐−𝒎 + ⋯ + 𝜷𝑳 𝒙 𝒛𝟑+𝒎 +  …

𝝍𝑹 𝒙, 𝒛 = 𝜶𝑹 𝒙 𝒛𝟑−𝒎 + ⋯ + 𝜷𝑹 𝒙 𝒛𝟐+𝒎 +  …

In our framework the independent source is 𝛼𝐿(𝑥) that couples to the operator 𝑂𝑅 so that

< 𝑶𝑹 > =
𝜹𝑺𝑭

′

𝜹ഥ𝜶𝑳
= 𝒊𝑵 𝒛𝟐−𝒎𝒆𝟒𝑨𝒔𝝍𝑹 𝒛=𝝐

= 𝒊𝑵
𝚪ෝ𝝁𝝏ෝ𝝁

𝝏𝟐
𝒛𝟐−𝒎𝒆𝟒𝑨𝒔 𝝏𝒛 + 𝟐𝑨𝒔

′ + 𝒆𝑨𝒔 ෥𝒎 𝝍𝑳 𝒛=𝝐

We finally note that combining the left and right coupled spinor equations we obtain

𝝏𝒛 + 𝟐𝑨𝒔
′ ± 𝒆𝑨𝒔 ෥𝒎 𝝏𝒛 + 𝟐𝑨𝒔

′ ∓ 𝒆𝑨𝒔 ෥𝒎 + 𝝏𝟐 𝝍𝑹/𝑳 = 𝟎

Using a plane-wave ansatz for the 𝑥 directions we have

𝝍𝑹/𝑳 𝒙, 𝒛 = ∫ 𝒅𝟒𝒒 𝒆𝒊𝒒⋅𝒙𝑭𝑹/𝑳 𝒒, 𝒛 𝜶𝑹/𝑳(𝒒)

and we obtain

𝝏𝒛 + 𝟐𝑨𝒔
′ ± 𝒆𝑨𝒔 ෥𝒎 𝝏𝒛 + 𝟐𝑨𝒔

′ ∓ 𝒆𝑨𝒔 ෥𝒎 + 𝑸𝟐 𝑭𝑹/𝑳 = 𝟎

with 𝑄 = −𝑞2 
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The Schrödinger equation

Using a Bogoliubov transformation 𝑭𝑹/𝑳 𝒒, 𝒛 = 𝒆−𝟐𝑨𝒔(𝒛)𝝃𝑹/𝑳(𝒒, 𝒛)

we obtain the Schrödinger equations 𝝏𝒛
𝟐 + 𝑸𝟐 − 𝑽𝑹/𝑳 𝝃𝑹/𝑳 = 𝟎

with the potentials given by
𝑽𝑹/𝑳 = ±𝝏𝒛 𝒆𝑨𝒔 ෥𝒎 + 𝒆𝑨𝒔 ෥𝒎

𝟐

Inspired by the soft wall model we propose the following ansatz for the mass term:

෥𝒎 = 𝒆−𝑨𝒔 −𝒎𝑨𝒔
′ +

𝟏

𝟐
𝚽′

The bulk to boundary propagator and the nucleon correlator

𝝍𝑳 𝒛, 𝒙 = ∫ 𝒅𝟒𝒚 𝑭𝑳 𝒛, 𝒙; 𝒚 𝜶𝑳(𝒚)

The on-shell action takes the form

𝑺𝑭
′𝒐−𝒔 = 𝑵 ∫ 𝒅𝟒𝒙 ∫ 𝒅𝟒𝒚

𝚪ෝ𝝁𝝏ෝ𝝁

𝝏𝟐

𝒊

𝟐
ഥ𝜶𝑳 𝒙 𝒛𝟐−𝒎𝒆𝟒𝑨𝒔 𝝏𝒛 + 𝟐 𝑨𝒔

′ + 𝒆𝑨𝒔 ෥𝒎 𝑭𝑳 𝒛, 𝐱; 𝐲
𝐳=𝝐

𝜶𝑳 𝒚 + 𝒄. 𝒄. 

where 𝜕ෝ𝜇 = 𝜕/𝜕 𝑥 − 𝑦 ෝ𝜇
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The 2-point nucleon correlator takes the form

𝚪𝑹 𝒙 − 𝒚 =< 𝑶𝑹 𝒙 ഥ𝑶𝑹 𝒚 ≻= 𝑷𝑹

𝜹 < ഥ𝑶𝑹 𝒚 >

𝜹ഥ𝜶𝑳 𝒙

  = 𝒊𝑷𝑹
𝚪ෝ𝝁𝝏ෝ𝝁

𝝏𝟐 𝒛𝟐−𝒎𝒆𝟒𝑨𝒔 𝝏𝒛 + 𝟐 𝑨𝒔
′ + 𝒆𝑨𝒔 ෥𝒎 𝑭𝑳 𝒛, 𝐱; 𝐲

𝐳=𝝐

The bulk to boundary propagator, in momentum space, satisfies the differential equation

𝝏𝒛 + 𝟒𝑨𝒔
′ 𝝏𝒛 + 𝚯𝐋 + 𝑸𝟐 𝑭𝑳 𝒛, 𝒒 = 𝟎

where
𝜽𝑳(𝒛) = 𝟐𝑨𝒔

′′ + 𝟒𝑨𝒔
′𝟐 + 𝝏𝒁 𝒆𝑨𝒔 ෥𝒎 − 𝒆𝟐𝑨𝒔 ෥𝒎𝟐

This equation can be written in the Sturm-Liouville form

𝝏𝒛 𝒑 𝒛 𝝏𝒛 − 𝒔 𝒛 + 𝝀 𝒓(𝒛) 𝑭𝑳 𝒛, 𝒒 = 𝟎

𝒑 𝒛 = 𝒓 𝒛 = 𝒆𝟒𝑨𝒔 ,  𝒔 𝒛 = −𝒆𝟒𝑨𝒔𝚯𝑳 , 𝝀 = 𝑸𝟐where

Following Sturm-Liouville theory we obtain the spectral decomposition

𝑮 𝒛; 𝒛′ = − ෍

𝒏

𝒇𝑳,𝒏 𝒛 𝒇𝑳,𝒏 𝒛′

𝒒𝟐 + 𝒎𝒏
𝟐
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where the Sturm-Liouville modes satisfy

and are normalised as 
∫ 𝒅𝒛 𝒆𝟒𝑨𝒔  𝒇𝑳,𝒎 𝒛 𝒇𝑳,𝒏 𝒛 = 𝜹𝒎𝒏

We obtain the following spectral decomposition for the nucleon correlator

𝚪𝑹 𝒒 = −𝑷𝑹𝚪𝝁𝒒𝝁

𝟏

𝑸𝟐 ෍

𝒏

𝒇𝒏
𝟐 + ෍

𝒏

𝒇𝒏
𝟐

𝒒𝟐 + 𝒎𝒏
𝟐

 , 𝒇𝒏 =
𝟏

𝒈𝟓
𝒛−𝟐−𝒎𝒇𝑹,𝒏 𝒛

𝐳=𝝐

𝝏𝒛 + 𝟒𝑨𝒔
′ 𝝏𝒛 + 𝜣𝑳 + 𝒎𝒏

𝟐 𝒇𝑳,𝒏 𝒛 = 𝟎

The coefficients 𝑓𝑛 are the nucleon “decay constants” consistent with large 𝑁𝑐 QCD

We bulk to boundary propagator takes the form

𝑭𝑳 𝒒, 𝒛′ = − 𝒆𝟒𝑨𝒔 𝑭𝑳 𝒛 𝝏𝒛𝑮𝑳 𝒛; 𝒛′ − 𝑮𝑳 𝒛; 𝒛′ 𝝏𝒛𝑭𝑳 𝒛
𝒛=𝝐

 

= ෍

𝒏

𝒇𝒏𝒎𝒏𝒇𝑳,𝒏 𝒛′

𝒒𝟐 + 𝒎𝒏
𝟐

The first term is a UV divergence that can be subtracted using holographic renormalisation
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Spectrum of vector mesons

4. Results

We solve the Schrödinger equation for the normalisable modes

In the figure we compare the Schrödinger potentials for model 
I (blue), model II (red) and the soft wall model (black dashed)

The mass of the first vector meson (the 𝜌 meson) can be used to fix
 the infrared parameter 𝒌 , which is the only parameter in the model

The mass ratios presented below are independent of the choice of 𝒌

For vector mesons the conformal dimension Δ = 3 is protected (conserved current)
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Spectrum of nucleons

For nucleons the conformal dimension can vary with the energy scale (anomalous dimension)

We consider two cases: 𝚫 = 𝟕/𝟐 and 𝚫 = 𝟗/𝟐

Δ = 7/2

Δ = 9/2

We solve the Schrödinger equation for the normalisable modes

The mass ratios presented below are independent of the choice of 𝒌
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Decay constants

Δ = 7/2

Δ = 9/2

Vector meson decay constants:

Nucleon “decay constants”:
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5. Spontaneous chiral symmetry breaking in confining holographic QCD
B-B, Frederico, Mamani and de Paula 2023

𝑺 = −∫ 𝒅𝟓𝒙 −𝒈 𝒆−𝚽{𝐓𝐫 [ 𝑫𝒎𝑿 𝟐 + 𝒇(𝚽)𝑽 𝑿 ] +
𝟏

𝟒𝒈𝟓
𝟐

𝐓𝐫[𝑭𝒎𝒏
𝑳 𝟐

+ 𝑭𝒎𝒏
𝑹 𝟐

]}

𝑽 𝑿 = 𝒎𝑿
𝟐  𝑿𝟐 + 𝝀 𝑿𝟒and

where
𝑭𝒎𝒏

(𝑳/𝑹)
= 𝝏𝒎𝑨𝒏

(𝑳/𝑹)
− 𝝏𝒏𝑨𝒎

(𝑳/𝑹)
− 𝒊[𝑨𝒎

(𝑳/𝑹)
, 𝑨𝒏

(𝑳/𝑹)
] ,

𝑫𝒎𝑿 = 𝝏𝒎𝑿 − 𝒊𝑨𝒎
𝑳

𝑿 + 𝒊 𝑿 𝑨𝒎
(𝑹)

Spontaneous chiral symmetry breaking described by a 5d Yang-Mills-Higgs action

The tachyonic field 𝑿 maps to the quark mass operator < ഥ𝒒 𝒒 >

Fixing the conformal dimension to 𝚫 = 𝟑 we obtain  𝒎𝑿
𝟐 = −𝟑

Assuming isospin symmetry we take the ansatz 𝑿 𝒛 =
𝟏

𝟐
𝒗 𝒛 𝑰𝟐×𝟐

and obtain the non-linear differential equation

𝝏𝒛
𝟐 + 𝟑𝑨𝒔

′ − 𝚽′ 𝝏𝒛 𝒗 − 𝒆𝟐𝑨𝒔𝒇 𝚽 𝒎𝑿
𝟐 𝒗 −

𝝀

𝟐
𝒗𝟑 = 𝟎
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We introduce the non-minimal dilaton coupling 
𝒇 𝚽 =

𝟏

𝟏 + 𝒃𝟎𝚽 + 𝒂𝟎𝚽𝟐

The role of this coupling is to turn off the tachyon potential in the region where confinement should
 be dominant. 

The tachyonic field behaves at small z as 𝒗 𝒛 = 𝒄𝟏𝒛 + 𝒄𝟑𝒛𝟑 + 𝒅𝟑𝒛𝟑𝐥𝐧 𝒛 + ⋯

From the UV coefficient we obtain the chiral condensate  𝚺 =< ഥ𝒒 𝒒 >

In the figure we display the chiral condensate as a function
 of the quark mass for 
i) 𝑎0 = 1 and 𝑏0 = 0 (blue dashed) 
ii) 𝑎0 = 0.02, 𝑏0 = 1.7 (red solid)

We obtain the masses and decay constants of scalar, 
 pseudo-scalar, vector and axial-vector mesons and find 
 good agreement with experimental data.  

For more details see arXiv 2308.07503 



- We have built a minimal holographic QCD model that describes vector mesons and nucleons 
in a single fashion

- The model contains only one parameter associated with hadron mass generation and 
confinement. In this way the model improves previous bottom-up approaches

- The comparison between our results for the spectrum of vector mesons and nucleons and 
experimental data is better for the higher excited states than the first states 

- Incorporating effects of spontaneous chiral symmetry breaking on vector mesons and 
nucleons should improve the results for the first states

Next steps

- Calculate couplings between vector mesons and nucleons 

- Obtain the electromagnetic and gravitational form factors of vector mesons and nucleons

- Transition to the regime of heavy quarks

- Turn on the temperature and investigate the transition to deconfinement, chiral symmetry 
restoration and hadron melting
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Conclusions
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