A confining holographic QCD model for vector mesons and nucleons
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1. Introduction

Quantum Chromodynamics (QCD): The theory of strong interactions
— . 1
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Asymptotic freedom and confinement

The QCD beta function
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Non-perturbative approaches to QCD

- Lattice QCD: Wilson 1974
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- Dyson-Schwinger equations:
Dyson 1949,

3S|¢] Schwinger 1951
— —J)Z|J| =0

- Other approaches: Chiral lagrangians, Nambu-Jona-Lasinio model, Light Front QCD,
QCD sum rules, RG flow, ...



Hadrons and string theory

The spectrum of baryons and mesons organize approximately ]

into Regge trajectories

J=Jo +a'M?

Y

Chew & Frautschi 1962

J :spin, M : mass a’ : Regge slope

This can be obtained from 1d objects (strings)
Nambu, Nielsen & Susskind 1969-1970

Problem: massless spin 2 particle ===  string theory is a theory of gravity



[(—a(s))r(-a())
I'(—a(s) — a(t))

This simple amplitude satisfies the s—t duality and has the asymptotic behaviour sJ®
in the Regge limit , expected for hadronic scattering.

Veneziano scattering amplitude

A(s, t) =

This amplitude is obtained from scattering of strings Veneziano & many others 1968-1970

Yang-Mills/string duality

Feynman diagrams of SU(N,) gauge theories in the large N, limit can be thought in terms of
string theory

g\,_ :&i ‘t Hooft 1974

‘t Hooft constant: A = g*N



The AdS/CFT correspondence

D-branes relate the physics of open strings with the physics of
closed strings Polchinski 1995

AdS/CFT is a concrete realization of the Yang-Mills/string duality

Maldacena 1997
SU(N.) theory in the large N limit with string theory in Anti-de-Sitter
conformal symmetry in d dimensions space in d+1 dimensions

Gauge/gravity duality

In the regime A > 1 string theory becomes a classical gravitational theory

E.g: 4-d N = 4 super Yang-Mills = supergravity 1B in AdSc X S°



The AdS/CFT dictionary

Conformal symmetry group SO(2,4) becomes the AdSz isometry group
RZ

AdSs in Poincaré coordinates ds? = = [dz? — dt* + d X?]

Scale transformation xH—- Axt,z—>z 2

Fields ¢ in AdSs couple on the boundary with operators O of the CFT,

CFT, partition function < gravitational path integral in AdS+

7 0 g% 1=2 ’ Gubser-Klebanov-Polyakov 1998,
CFT[¢... guv] AdS[¢... guv] Witten 1998



Holographic QCD

Top-down approach

N = 4 super Yang-Mills in 4d ¢==== ||B string theory in AdSs X s>

QCD-like theories &= deformed string theories

E.qg. Klebanov-Witten (1998), Klebanov-Strassler (2000), Maldacena-Nunez (2000),
Sakai-Sugimoto (2004), Kuperstein-Sonnenschein (2004)

Bottom-up approach

CFT inI4d ==  Einstein gravi’iy in AdSs
QCD as a deformed CFT = Gravity in a deformed AdS5 space

E.g. Polchinski-Strassler (2000), Erlich-Katz-Son-Stephanov (2005), Karch-Katz-Son-Stephanov (2006),
Gursoy-Kiritsis-Nitti (2007), Gubser-Nellore (2008)
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Confinement in Einstein-dilaton holographic QCD

Einstein-dilaton gravity in 5d:

S=0/d’x\—g [R —g(amd))z + V(CD)]

5d ansatz in holographic QCD:

dSZ —

1
- {(2)?

Independent field equations:

|—dt?* + dx?> + dz?| , & =®d(2)

1 4 (DIZ _ O
( _6( //_
V-(@3) =0

Warp factor in the Einstein frame
A(z) = —-In(



Linear confinement is guaranteed by a quadratic dilaton asymptotic behaviour
®(z > o) = kz>
Karch-Katz-Son-Stephanov 2006, Gursoy-Kiritsis-Nitti 2007

In this work we consider the following analytical solutions:

5\ /3\"* 2
— 1,2 S e Y et Z k72 model |
&, =kz*?, (2 r(4) (k) \/EI% (3 kz ) ( )
1 9 2 2
D, = > k z\/9 + 4kz? + Zsinh‘1 (§ \/Ez) , (11(z) =zexp (§ kzz) (model Il)

Both models leads to a quadratic dilaton at large z and AdS asymptotics at small z

Warp factor in the string frame: 2
A (z) = —ln(+§<1>



Confinement criterion

The function f(z) = \/g;:Gxr defined in the string frame should have a minimum f(z*) > 0
Kinar, Schreiber and Sonnenschein 1998

In terms of the warp factor we have  f(z) = exp(2A4;)

As shown in the figure, both models satisfy the confinement criterion
40
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2. Vector mesons in confining holographic QCD

Pioneer works in the bottom-up approach:
Erlich-Katz-Son-Stephanov 2005, Grigoryan-Radyushkin 2007

Consider the vectorial currents associated with SU(2) isospin symmetry
— ,C ,C
<JHC > =< gx)yrTq(x) > =< Jg° >+<J7° >
These currents are responsible for the creation of vector mesons

In holographic QCD the SU(2); X SU(2)r chiral symmetry is described by the Yang-Mills action

1 2 2

S=———=/[d*xdz—ge ®Tr (Fﬁm + FL )
195

Expanding this action at second order in the perturbations, we find in the vectorial sector

Sy :——fd“xdz\/ ge Pve :——fd4xdze (D”%zﬁz

95

= 6mVA 0;Vs and the indices 7, fi are contracted with a 5d Minkowski metric

n

S

C
where vz



The 5d gauge coupling is fixed as 12772

N

gs =

to reproduce the large N QCD perturbative result for the current correlator at large energies

Varying the action one finds the field equation
0 (e~ PpMi) = 0

as well as the surface term

oSy = ——f d*x dz 9, (ets®v " V)
.95
The 5d vectorial field can be decomposed as
= (V5 vs) | = Vi + 058

We can use the gauge symmetry to fix VS = 0 and it turns out that &€ = 0 is the only consistent
solution for the longitudinal part



The equation for the transverse sector takes the form (in momentum space)
(3, + A, — ®)d, — ¢*V*° =0
Taking the ansatz
e By () 1
VL (q,z)=e v n lI)V(q'z) ) BV:E(AS_(D)
the equation takes the Schrodinger form

|02 —q*> —Vy|py =0

with the potential given by
Vy = By + By

The VEV of the current operator can be obtained from the surface term in the action variation

5Sy 1 ) oo g
SV0(x) g Canti
pcX) Is

< JPC(x) > =

Z=€

and we have introduced a UV regulator z = € for the AdS boundary



The bulk to boundary propagator and the current correlator

The vectorial field in 5 dimensions can be mapped to the 4d source using the bulk to boundary
propagator

Vi (z%) = [ d*y K&(z, %)V ()

The on-shell action takes the form

1 -~ ~
Sy ° = z—ng d*x[ d*y Vo (x) et %0, K55(z, x; y)]V'i’,‘(i)(y)
5

Using the AdS/CFT dictionary we obtain the current correlator

G%%(x —y) =<JapcX)]5a(y) >

_ 653_5 _ i [eAS—dJa ch (Z x: y)]

_ 1, v, -2 z yiy\4, Ay
Vo (08V5(y) 95 g

The VEV and current correlator are related by « Jac(x) > = [ d*y G%%(x _ y)V‘i'f,(y)



The Sturm-Liouville equation and the spectral decomposition

The bulk to boundary propagator can be written in momentum space as

quqv
K%%(Z, q) = ("ﬁ? — ;zv

The field V (z, q) satisfy the differential equation

) 5V (z,q)

[(az + A.; o (I),)az o qz]V(Z; Q) =0
which can be written in the Sturm-Liouville form

[0.(p(2)d,) —s(2) + Ar(2)|V(z,9) = 0

where
p(z)=r(2)=et"?, s(z)=0, 1=-¢q*

Then we can define the Green’s function by

[az(p(z)az) —s(z)+ 2 T(Z)]G(Z; Z,) =0(z — Z,)



Following Sturm-Liouville theory we obtain the spectral decomposition

G(z;z') = — Z yH(z)vitz)

2
qZ + mvn

n

where the Sturm-Liouville modes satisfy [(6 + A, — ®)d, + m2 ]v”(z) —0
z S z (2% —
and are normalised as [ dz eAs—®v™(2)v"(z) = 6™

The field V(q, z) can be obtained from the Green’s function as

leds=®a, v" (z)]zzevn(z’)

V(z,q) = —|ets %d,6(z; Z,)]z=e = —z

2 2
n q + mv_n
and the current correlator takes the form
9.9 F7 1.,
Gﬁﬁl,(q) = (nuv — %) 64 2 q - ) Fon=— [eAS “’azv"(z)]zze
n

2+m127n‘\'g5

The coefficients F,n are the vector meson decay constants consistent with large N, QCD



3. Nucleons in confining holographic QCD

Pioneer works in the bottom-up approach:
Brodsky-Teramond 2005, Hong-Inami-Yee 2006, Abidin-Carlson 2009

Nucleons are usually described by interpolating fields. For a proton we use the loffe operator

< 0(x) > =< €y, (ug(x)Cyﬂub(x)) ysy*d.(x) >  loffe 1981
In holographic QCD we map this fermionic operator to a 5d Dirac spinor described by the action

i — _
Sr=N[d*xdz—g,e® <El[) "D,y + c. c.—iﬁlt/n[))

~

1 -
where ["=egl® ,  Dyp=0yn+gwi’[ly T

Redefining the Dirac field as Y - e"’/ztp

the Dirac action becomes Sr=N [d*xdz—g, (%17} "D, Y+ c.c.—im 17”/’)



In holographic QCD the vielbein takes the form er = e 46

and the non-vanishing components of the spin connection are wf{’ = —wl? = —A 6}
50 that "D, = e 4s(I'%d; + 24,T% )

with a = (Z, Qi)

The Dirac action becomes

i_ i _
Sr =N [ d*x dz e*4s (EII) 2o,y — > ()T Y. —i edsii qnp)

Varying this action we obtain the field equations (raa £ 24017 — eAsii) = 0
a S —er =

(05T + 24,17 + esiit) = 0
and the surface term

i .
0Sp = N [ d*x (E etds 5y I‘th> +c.c.

Z=€



Left and right decomposition: Y =YPr + Yy

_ — 1 A

The Dirac equation decomposes in two equations
Mo, pg,, = (0, + 245 + edsin ) g

and the surface term becomes

[ _ i _
0Sp = N [ d*x (E e*ds5; Pp — Ee“ASSt/)R ¢L> +c.c.
Z=€

Since Y and Y, are not independent we need to correct the Dirac action as
, [ _ i _ _
Sy =Sp+NJ[d*x (\/ —)’EIIJIIJ) =Sp+ N [ d*x (E e*ds (P g + ¢R¢L)>
Z=€ Z=¢€
so that [ _
Sy = N[ d*x (Ee‘*AS&/JLt/JR) + c.c.

Z=€



At small z (near the boundary) the left and right spinor fields have the asymptotic behaviour

Yr(x,2) =a (x)z> ™ + -+ B ()T + ..
Yr(x,2) = ag(x)z>™™ + - + Br(x)z**™ + ...

In our framework the independent source is a; (x) that couples to the operator Oy so that

!/

SF
sa;

<0R>=

réo.
= N (et (0, + 24+ ehomly),_,

— iN (Zz_meMS‘/JR)Z:E

We finally note that combining the left and right coupled spinor equations we obtain
[(9, + 245 + e?sii)(9, + 245 F eAsii) + 8% |, = 0
Using a plane-wave ansatz for the x directions we have

Yr/1(x,2) = J d*q e 1 Fp,1(q,2)ag/(q)
and we obtain

[(9, + 245 + e?sin)(9, + 24% F esiir) + Q*|Fg/, = 0

with Q = \/—q?



The Schrodinger equation

Using a Bogoliubov transformation Fri1(q,2) = e‘ZAs(Z)ER/L(q, Z)
we obtain the Schrédinger equations [ag + Q% — VR/L]fR/L =0

with the potentials given by Vo =49 (eASﬁl) n (eASﬁl)Z
R/L — 1Yz

Inspired by the soft wall model we propose the following ansatz for the mass term:

~ —-A / 1 /
m=e “s —mAS+E<l>

The bulk to boundary propagator and the nucleon correlator

II)L(Z,.X') — fd4y FL(ZJx; y)aL(y)
The on-shell action takes the form
o,
92

where d; = 9/9(x — y)H

SPS =N [d*x [ d*y

(i &y (%) (ZZ—me4As(az + 2 A + est)Fy(z,x; y))z

> eaL(y) + c. c.)



The 2-point nucleon correlator takes the form
8§ < 0gx(y) >

ooy (x)
(zz_me‘ms (0, + 2 A; + esn)Fy(z,x; y))

[R(x —y) =< Or(x)Or(y) >= Pp
rta;
62

— iPR
7Z=€

The bulk to boundary propagator, in momentum space, satisfies the differential equation

[0, + 445)0, + O + Q*|F(z,q9) = 0

where
0.(z) = 247 + 4A72 + 35(esh) — e*Asii?

This equation can be written in the Sturm-Liouville form
[0,(p(2)d,) — s(2) + Ar(2)]F . (z,9) = 0
VN pz) =1(2) = e, s(2) = —e*h0,, A= Q?

Following Sturm-Liouville theory we obtain the spectral decomposition

fL,n (Z)fL,n (Z’)

q* + m;

G(z;z') = —



where the Sturm-Liouville modes satisfy
[(az +445)0, + 0 + mwzz]fL,n(Z) =0

and are normalised as 44 mn
f dz e*"s fL,m(Z)fL,n(Z) =0

We bulk to boundary propagator takes the form

Fi(q.2') = —|e*s(F(2)0,6.(z;2') — G (z; Z’)azFL(Z))]Zze
_ fam,f L,n(Z’)

q* + m;

n
We obtain the following spectral decomposition for the nucleon correlator

fa

— q* + m;

1 1
[r(q) = —Pgrl'*q, (@z fa+ . (272 ™ fra(2)] _,

The coefficients f,, are the nucleon “decay constants” consistent with large N, QCD

The first term is a UV divergence that can be subtracted using holographic renormalisation



4. Results

Spectrum of vector mesons

For vector mesons the conformal dimension A = 3 is protected (conserved current)

60}

We solve the Schrodinger equation for the normalisable modes

o0t
In the figure we compare the Schrodinger potentials for model sl

| (blue), model Il (red) and the soft wall model (black dashed)

V 30}

The mass of the first vector meson (the p meson) can be used to fix 20f
the infrared parameter k , which is the only parameter in the model 1|

The mass ratios presented below are independent of the choice of k

)3

1 2 3
Ratio Einstein-dilaton I | Einstein-dilaton II | Soft wall | Hard wall | Experimental
My, /My, 1.591 1.34 1.414 2.295 1.652 4 0.048
My, [ M, 2.015 1.611 1.732 3.598 1.888 £ 0.032
My, /My, 2.365 1.843 2 4.903 2.216 £ 0.026
My, /M, 2.67 2.049 2.236 6.209 2.46 + 0.039
M s [ Mg 2.944 2.236 2.45 7.514 2.769 4= 0.022

27




Spectrum of nucleons

For nucleons the conformal dimension can vary with the energy scale (anomalous dimension)
We consider two cases: A =7/2and A =9/2

We solve the Schrodinger equation for the normalisable modes

The mass ratios presented below are independent of the choice of k

Ratio Einstein-dilaton I | Einstein-dilaton II | Soft wall | Hard wall | Experimental
MmN, /M, 0.987 0.988 1.414 1.593 1.209 = 0.002
mpy, /M, 1.623 1.339 1.732 2.917 1.856 £ 0.039
N, [T, 2.053 1.613 2 4.23 2.204 £ 0.039 A=17/2
MmN, /My, 2.403 1.847 2.236 5.54 2.423 + 0.065
my, /M, 2.707 2.054 2.449 6.849 2.706 £ 0.065
Ratio Einstein-dilaton I | Einstein-dilaton II | Soft wall | Hard wall | Experimental
N, /My 0.896 0.952 1.732 2.136 1.209 £ 0.002
muy, /M, 1.593 1.314 2 3.5 1.856 +0.039
M, [T 2.04 1.595 2.236 1.832 | 2.204 +0.039 A=9/2
MmN, /My, 2.399 1.833 2.449 6.153 2.423 + 0.065
my, /My, 2.708 2.043 2.646 7.468 2.706 £ 0.065

28



Decay constants

Vector meson decay constants:

Ratio Einstein-dilaton I | Einstein-dilaton II | Soft wall | Hard wall | Experimental

Vo /M 0.3719 0.283 0.3355 0.4246 | 0.446 = 0.0019

\/F_m/mpﬂ 0.4704 0.3407 0.3989 0.7946 | 0.5588 4+ 0.017

 Fps /M, 0.5298 0.3798 0.4415 1.114 -

 Fps /M, 0.5741 0.41 0.4744 1.405 -

Fp. /M, 0.61 0.4351 0.5017 1.677 -
Nucleon “decay constants”:

Ratio Einstein-dilaton I | Einstein-dilaton II | Soft wall | Hard wall | Experimental

INo /Mg 1.248 1.532 0.707 2.797 -

In, /Mg, 1.466 1.803 1 6.874 -

INe /Mg, 1.71 1.999 1.225 11.98 -

Ing /My, 1.923 2.162 1.414 17.94 -

TNy /Mg, 2.114 2.303 1.581 24.65 -

Ratio Einstein-dilaton I | Einstein-dilaton II | Soft wall | Hard wall | Experimental

INg /M, 1.916 5.495 0.5 5.708 -

I /g, 2.18 6.626 0.866 19.19 -

Iy /g, 2.656 7.552 1.225 42.7 -

N /M, 3.124 8.376 1.581 77.92 -

Iy /M, 3.283 9.136 1.937 126.3 -

A=7/2

A=9/2

29



5. Spontaneous chiral symmetry breaking in confining holographic QCD
B-B, Frederico, Mamani and de Paula 2023

Spontaneous chiral symmetry breaking described by a 5d Yang-Mills-Higgs action

1
S = —[ d°x y=g e~ ®(Tr [ |D,.X|? + f(@)V(IX])] + rngr[F,Sf,i 2+ FIR2)
5

where L/R L/R L/R) .. .(L/R L/R
U = 0,81 0,44 — (A%, 4L/,
DX =0,X—iAPXx+ixAaP®
and

V(X)) = m% X? + 21 Xx*
The tachyonic field X maps to the quark mass operator < q q >
Fixing the conformal dimension to A = 3 we obtain m% = —3

.. : 1
Assuming isospin symmetry we take the ansatz X(z) = Ev(z)lz><2

and obtain the non-linear differential equation

A
|02 + (34; — @")a,|v — e?4sf(D) (m,z(v — Ev3> =0



We introduce the non-minimal dilaton coupling F(®) = 1
1+ boq) + aOCDZ

The role of this coupling is to turn off the tachyon potential in the region where confinement should
be dominant.

The tachyonic field behaves at small z as v(z) = ¢z + c32z3 +d3z’lnz + -

From the UV coefficient we obtain the chiral condensate £ =< q q >

10_"'|"'|"‘|"'|‘"\"‘|"'

In the figure we display the chiral condensate as a function

of the quark mass for
i)ap = 1and by = 0 (blue dashed)

8

6

ii)ag = 0.02, by = 1.7 (red solid) J,;‘ )

We obtain the masses and decay constants of scalar, 0} N

pseudo-scalar, vector and axial-vector mesons and find : ]
good agreement with experimental data. B S S S e

For more details see arXiv 2308.07503 A mg



Conclusions

- We have built a minimal holographic QCD model that describes vector mesons and nucleons
in a single fashion

- The model contains only one parameter associated with hadron mass generation and
confinement. In this way the model improves previous bottom-up approaches

- The comparison between our results for the spectrum of vector mesons and nucleons and
experimental data is better for the higher excited states than the first states

- Incorporating effects of spontaneous chiral symmetry breaking on vector mesons and
nucleons should improve the results for the first states

Next steps

- Calculate couplings between vector mesons and nucleons
- Obtain the electromagnetic and gravitational form factors of vector mesons and nucleons
- Transition to the regime of heavy quarks

- Turn on the temperature and investigate the transition to deconfinement, chiral symmetry
restoration and hadron melting
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