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Spectrum of 2-body Coulomb system

Nonrelativistic Schrédinger equation provides
usual Balmer series:
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Relativistic Bethe-Salpeter equation reproduces
the Balmer series (with a relativistic correction)
and predicts another (abnormal) series
(Wick & Cutkosky, 1954):
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e Knergy spectrum
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The binding energies for normal and abnormal states.

Abnormal states have purely relativistic origin!
They disappear in the nonrelativistic limit.
They are pushed out of the spectrum.
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e Dependence «(c) vs. ¢
for normal and abnormal solutions

(* m=1, mu=0.15, B=0.1 *)
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Left panel: normal. Right panel: abnormal
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e Content of normal
and abnormal systems

J. Carbonell, V. A. Karmanov, H. Sazdjian,
Hybrid nature of the abnormal solutions of the Bethe-Salpeter equation
in the Wick-Cutkosky model,

Eur. Phys. J. C 81, 50 (2021)

The normal systems, almost for 100%,
consist of the two charged particles
+ small admixture (~ 1 =+ 0.1% or smaller) of massless
exchange particles.

On the contrary,
the abnormal systems, almost for 100%,
consist of the massless exchange particles
+ small admixture (~ 1 + 0.1% or smaller) of massive
charged particles.
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e Kxperimental detection

The theoretical predictions put the experimental detection
of the abnormal states on the agenda.

It would be ideal to deal with nucleus-antinucleus.
C=(Ze)=Za=1-2>>T = 7=11
(Natrium-Antinatrium) is enough. Unfortunately, heavy

antinuclei are not available, at the present.

We should deal with electron and heavy ion (Z > 107).
Therefore, the constituent masses are very different!

That's why this talk is devoted to the abnormal states with
different constituent masses.
Do they exist in this case or not?
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e BS equation with equal masses
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C =eieq = Ze* = Za.

C is the Coulomb constant: C = e1ey = Ze? = Za.
Integral representation (for the ground state n = 1):
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e Equation for g.,(2)
for the ground state n = 1

C Geq(2)

2 2 oy = 0.
11— ng,(1—27)] (1 —27)

Jog(2) +
Tr

—1 <2 <1, Boundary conditions: g.,(z = +1) = 0.

Principal quantum number n = 1 plays role of a parameter.

This is a homogeneous equation.
Normally, it has discrete spectrum.
It is indeed so for the Coulomb interaction.
The discrete levels and states are labeled by x.
x = 0 — normal states.
x=1,2,3,--- — abnormal states. And similarly for any n.
This is the mathematical origin of the abnormal states!
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e BS equation with unequal masses
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C is still the Coulomb constant: C = ejeq = Ze? = Za.

If the particle 1 is the heavy ion, the particle 2 is electron, then
r ~ 1800-10% ~ 2:10° > 1.
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e Integral representation
for the ground state n = 1

1
Dy (k,p) = —im%/ dz gun(z, A) X

~1
1

m3,(1—n2,)(1 4+ 22A + A2) — k2 — kp(z + A) — ie]®’
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¢ Equation for g,,,(z)
for the ground state n = 1

I C(l o A2) gun(zv A) _
gun(’z?A) + WQ(Z,A) (1 L 22) o 07

mi1 — M2

Q(z,A) = (14+22A+A%)(1—nl) +non(z+A), A=

9
mi + mo

—1 <z <1, Boundary conditions: g,,(z = £1,A) = 0.

Dependence of ¢,,(z, A) and spectrum 72 = n]‘f—f on A is
12
determined by this equation.
It can be found analytically.
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¢ Reducing the unequal-masses

problem to the equal-masses one
Cutkosky, 1954

14+ Az z+ A
= (5) (222)

Then the unequal mass equation for g,,,(z, A) is transformed to
the equal one for g.,(z) and

7712m, — A2 + (1 o AQ)ﬁ?q'

: : M? 2 M? 1
Reminder: qu — Am2° Nun = 4m%27 mio = §(m1 + mg).

To solve the unequal-masses problem, it is enough to solve the
equal-masses one.
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e Solutions
Normal states

Left panel: g.,(z), equal masses (r = 1).
Right panel: g..(z, A), non-equal masses (r = 10 — A
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e Solutions
Abnormal states, x = 2

Left panel: g.,(z), equal masses (r = 1).
Right panel: g,.(z, A), non-equal masses (r = 10 — A
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» Binding energy vs. the ratio r = %
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If B.,<m, then DB,, =28,

Effect of different masses is attractive!
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e Towards to finding balance:
constituents — exchanged particles

Bethe-Salpeter amplitude in the coordinate state:

(w1, x2,p) = (0T |p(x1)p(z2)]| P)

State vector:
D) = 2|2) + 3]3) + al4) + ...
Normalization:
pp)=1 — No+ N3+ Nyg+...=1

WhereNng\wgyz..., Nng‘?ﬁg’z...
Below we will calculate Ny = [ |ao]?. ..
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e Light-front wave function

Again BS amplitude in the coordinate state:

(x1,w2,p) = (0|T[p(z1)e(22)]| P)

p(x) =exp(tHt)p(t =0,7) exp(—iHt)
is (very complicated!) Heisenberg operator.
On the quantization plane t = 0, () becomes free.

Take the light-front quantization plane:
t+2=0—wzr=0,w=(wyd), w?=0.
Then ®(z,z9,p) at w-zr; = w-xo = 0 contains the free operators
only and is determined by 5:

v =22 [ (k+ B—W,p) s,

7 Neot J—oo WP
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e Two-body contribution /V;

In terms of g,,,(z, A):

(1—2 ) m129un(z A)

Wik, ) = 4/ Niot [k2 +m2,Q(z, A2

Q(z,A) = (14+22A + A%)(1 = np,) + mn (2 + A%, 2 =1 - 2u.

r(l —x)
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e Total normalization /V, ,

Normalization condition: (p|p) =1 < F.,,(0) =1
Ntot — Fem(o)

pJ i [ d%
Fem(0) = o3 = M2/ 2yt M )

X (i M? + 2pipk + k2 — mi)® (k,p) @ (k,p) .

This gives:
Niot(r — 00) = Fom(0)|,_,. = const .
Hence:
1
N2(7“ — OO) X — const

NtOt T—00
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e Numerical results

No.  r B/mso N>

1 0 1 0.99926 0.65
2 0 10 1.45983 0.65
3 0 oo 1.99852 0.65

4 2 1 3.51169-10"° 0.094
5 2 10 6.38114-10~3 0.102
6 2 oo 7.02338-1073 0.093

7 4 1 1.54091-10"° 6.19-103
8 4 10 2.80165-10"° 6.86-1073
9 4 oo 3.08182-10"° 6.67-1073
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e Conclusions

® The effect of unequal masses is "attractive” — the
binding energy increases when r = 7 increases.

At » — oo the binding energy increases up to the factor
two.

® The two-body constituent contribution N5 is changing
insignificantly and remains small.

® The abnormal states with unequal masses are still
dominated by the massless exchanges!
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¢ Remarks

1. The abnormal states appear due to strong Coulomb
forces. The spin effects change these forces:

# |ess stronger for the parallel spins
# more stronger for the antiparallel spins.

Therefore, they can exist in the realistic case — heavy
lons and electrons with spins.

2. To provide C = Za > 7, we need the ions with Z > 107.

On the other hand, Z < 137 (pointlike) — Z < 170 (finite
size of nuclei). Therefore 107 < Z < 170.

Transuranic nuclei with Z > 107 are created in
laboratory, not very long living, but enough for
experiments.

For example, Flerovium: 7 = 114, T} , ~ 2 sec.
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It would be interesting (but not easy!) to study this
problem in experiment! (To detect the abnormal states!)
Electron-ion collider is a tool for this search.

Thank you for your attention!
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