LC2023, Rio de Janeiro,

18 September 2023

Abnormal states with unequal constituent masses

V.A. Karmanov

Lebedev Physical Institute, Moscow, Russia

Spectrum of 2-body Coulomb system

Nonrelativistic Schrödinger equation provides usual Balmer series:

$$E_n = -\frac{\alpha^2 m}{4n^2}$$

Relativistic Bethe-Salpeter equation reproduces the Balmer series (with a relativistic correction) and predicts another (abnormal) series (Wick & Cutkosky, 1954):

$$E_k = -m \exp\left(-\frac{2\pi k}{\sqrt{\frac{\mathcal{C}}{\pi} - \frac{1}{4}}}\right), \ \mathcal{C} = Z\alpha > \frac{\pi}{4} \to Z > 107$$

• Energy spectrum

The binding energies for normal and abnormal states.

Abnormal states have purely relativistic origin! They disappear in the nonrelativistic limit. They are pushed out of the spectrum.

• Dependence $\alpha(c)$ vs. c for normal and abnormal solutions

• Content of normal and abnormal systems

J. Carbonell, V. A. Karmanov, H. Sazdjian, Hybrid nature of the abnormal solutions of the Bethe-Salpeter equation in the Wick-Cutkosky model, *Eur. Phys. J. C* 81, 50 (2021)

The normal systems, almost for 100%, consist of the two charged particles + small admixture ($\sim 1 \div 0.1\%$ or smaller) of massless exchange particles.

On the contrary, the abnormal systems, almost for 100%, consist of the massless exchange particles + small admixture ($\sim 1 \div 0.1\%$ or smaller) of massive charged particles.

• Experimental detection

The theoretical predictions put the experimental detection of the abnormal states on the agenda.

It would be ideal to deal with nucleus-antinucleus.

 $C = (Ze)^2 = Z^2 \alpha = \frac{1}{137} Z^2 > \frac{\pi}{4} \to Z = 11$

(Natrium-Antinatrium) is enough. Unfortunately, heavy antinuclei are not available, at the present.

We should deal with electron and heavy ion (Z > 107). Therefore, the constituent masses are very different!

That's why this talk is devoted to the abnormal states with different constituent masses. Do they exist in this case or not?

• BS equation with equal masses

$$\frac{1}{2}p + k = k_1, \qquad \frac{1}{2}p - k = k_2$$

$$\begin{bmatrix} \left(\frac{1}{2}p+k\right)^2 - m^2 \end{bmatrix} \begin{bmatrix} \left(\frac{1}{2}p-k\right)^2 - m^2 \end{bmatrix} \Phi_{eq}(k,p)$$

= $\frac{i\mathcal{C}m^2}{\pi^3} \int \frac{\Phi_{eq}(k';p)d^4k'}{(k-k')^2 + i\epsilon}, \quad \mathcal{C} = e_1e_2 = Ze^2 = Z\alpha.$

C is the Coulomb constant: $C = e_1 e_2 = Z e^2 = Z \alpha$. Integral representation (for the ground state n = 1):

$$\Phi_{eq}(k,p) = \int_{-1}^{1} \frac{-im^3 g_{eq}(z) dz}{[m^2(1-\eta_{eq}^2) - k^2 - p \cdot k \, z - i\epsilon]^3},$$
$$\eta_{eq}^2 = \frac{M^2}{4m^2}$$

• Equation for $g_{eq}(z)$ for the ground state n = 1

$$g_{eq}''(z) + \frac{\mathcal{C}}{\pi[1 - \eta_{eq}^2(1 - z^2)]} \frac{g_{eq}(z)}{(1 - z^2)} = 0.$$

 $-1 \le z \le 1$, Boundary conditions: $g_{eq}(z = \pm 1) = 0$.

Principal quantum number n = 1 plays role of a parameter.

This is a homogeneous equation. Normally, it has discrete spectrum. It is indeed so for the Coulomb interaction. The discrete levels and states are labeled by κ . $\kappa = 0 \rightarrow$ normal states.

 $\kappa = 1, 2, 3, \dots \rightarrow$ abnormal states. And similarly for any *n*. This is the mathematical origin of the abnormal states! • **BS** equation with unequal masses $\mu_{1,2} = \frac{m_{1,2}}{m_1 + m_2}, \quad \mu_1 p + k = k_1, \qquad \mu_2 p - k = k_2$ $[(\mu_1 p + k)^2 - m_1^2][(\mu_2 p - k)^2 - m_2^2]\Phi_{un}(k, p)$ $= \frac{i\mathcal{C}(1-\Delta^2)m_{12}^2}{\pi^3} \int \frac{\Phi_{un}(k';p)d^4k'}{(k-k')^2+i\epsilon},$ $\Delta = \frac{m_1 - m_2}{m_1 + m_2} = \frac{r - 1}{r + 1}, \quad r = \frac{m_1}{m_2}, \quad m_{12} = \frac{1}{2}(m_1 + m_2).$ \mathcal{C} is still the Coulomb constant: $\mathcal{C} = e_1 e_2 = Z e^2 = Z \alpha$.

If the particle 1 is the heavy ion, the particle 2 is electron, then $r \approx 1800 \cdot 10^2 \approx 2 \cdot 10^5 \gg 1.$

• Integral representation for the ground state n = 1

$$\begin{split} \Phi_{un}(k,p) &= -im_{12}^3 \int_{-1}^1 dz \; g_{un}(z,\Delta) \times \\ \frac{1}{[m_{12}^2(1-\eta_{un}^2)(1+2z\Delta+\Delta^2)-k^2-kp(z+\Delta)-i\epsilon]^3}, \\ & \text{where} \\ \Delta &= \frac{m_1-m_2}{m_1+m_2}, \quad m_{12} = \frac{1}{2}(m_1+m_2), \quad \eta_{un}^2 = \frac{M^2}{4m_{12}^2}. \end{split}$$

• Equation for $g_{un}(z)$ for the ground state n = 1

$$g_{un}''(z,\Delta) + \frac{\mathcal{C}(1-\Delta^2)}{\pi Q(z,\Delta)} \frac{g_{un}(z,\Delta)}{(1-z^2)} = 0,$$

 $Q(z,\Delta) = (1+2z\Delta+\Delta^2)(1-\eta_{un}^2) + \eta_{un}^2(z+\Delta)^2, \quad \Delta = \frac{m_1-m_2}{m_1+m_2},$

 $-1 \le z \le 1$, Boundary conditions: $g_{un}(z = \pm 1, \Delta) = 0$.

Dependence of $g_{un}(z, \Delta)$ and spectrum $\eta_{un}^2 = \frac{M^2}{m_{12}^2}$ on Δ is determined by this equation. It can be found analytically.

• Reducing the unequal-masses problem to the equal-masses one Cutkosky, 1954

$$g_{un}(z,\Delta) = \left(\frac{1+\Delta z}{1-\Delta^2}\right) g_{eq}\left(\frac{z+\Delta}{1+\Delta z}\right)$$

Then the unequal mass equation for $g_{un}(z, \Delta)$ is transformed to the equal one for $g_{eq}(z)$ and

$$\eta_{un}^2 = \Delta^2 + (1 - \Delta^2)\eta_{eq}^2.$$

Reminder: $\eta_{eq}^2 = \frac{M^2}{4m^2}$, $\eta_{un}^2 = \frac{M^2}{4m_{12}^2}$, $m_{12} = \frac{1}{2}(m_1 + m_2)$. To solve the unequal-masses problem, it is enough to solve the equal-masses one.

• Solutions Normal states

Left panel: $g_{eq}(z)$, equal masses (r = 1). Right panel: $g_{un}(z, \Delta)$, non-equal masses $(r = 10 \rightarrow \Delta = \frac{9}{11})$.

• Solutions Abnormal states, $\kappa = 2$

Left panel: $g_{eq}(z)$, equal masses (r = 1). Right panel: $g_{un}(z, \Delta)$, non-equal masses $(r = 10 \rightarrow \Delta = \frac{9}{11})$.

• Binding energy vs. the ratio $r = \frac{m_1}{m_2}$

$$\begin{split} \eta_{un}^2 &= \Delta^2 + (1 - \Delta^2) \eta_{eq}^2, \quad \Delta = \frac{m_1 - m_2}{m_1 + m_2} = \frac{r - 1}{r + 1} \\ &\implies \\ \frac{B_{un}}{m_2} &= (r + 1) - \sqrt{(r - 1)^2 + 4r \left(\frac{2m - B_{eq}}{2m}\right)^2}, \\ r &\implies \infty \\ B_{un} &= 2 \left(1 - \frac{B_{eq}}{4m_2}\right) B_{eq}, \\ &\implies \\ \end{split}$$
If $B_{eq} \ll m$, then $B_{un} = 2B_{eq}$

Effect of different masses is attractive!

• Towards to finding balance: constituents – exchanged particles

Bethe-Salpeter amplitude in the coordinate state:

 $\Phi(x_1, x_2, p) = \langle 0 | T[\varphi(x_1)\varphi(x_2)] | p \rangle$

State vector:

 $|p\rangle = \psi_2 |2\rangle + \psi_3 |3\rangle + \psi_4 |4\rangle + \dots$

Normalization:

 $\langle p|p\rangle = 1 \rightarrow N_2 + N_3 + N_4 + \ldots = 1$

where $N_2 = \int |\psi_2|^2 \dots$, $N_3 = \int |\psi_3|^2 \dots$ Below we will calculate $N_2 = \int |\psi_2|^2 \dots$

• Light-front wave function

Again BS amplitude in the coordinate state:

 $\Phi(x_1, x_2, p) = \langle 0 | T[\varphi(x_1)\varphi(x_2)] | p \rangle$

 $\varphi(x) = \exp(iHt)\varphi(t = 0, \vec{x})\exp(-iHt)$ is (very complicated!) Heisenberg operator. On the quantization plane t = 0, $\varphi(x)$ becomes free.

Take the light-front quantization plane:

 $t + z = 0 \rightarrow \omega \cdot x = 0, \omega = (\omega_0, \vec{\omega}), \ \omega^2 = 0.$

Then $\Phi(x_1, x_2, p)$ at $\omega \cdot x_1 = \omega \cdot x_2 = 0$ contains the free operators only and is determined by ψ_2 :

$$\psi(\vec{k}_{\perp}, x) = \frac{x(1-x)}{\pi\sqrt{N_{tot}}} \int_{-\infty}^{\infty} \Phi\left(k + \frac{\beta\omega}{\omega \cdot p}, p\right) d\beta,$$

• Two-body contribution N_2

In terms of $g_{un}(z, \Delta)$:

$$\psi(\vec{k}_{\perp}, x) = \frac{(1-z^2)}{4\sqrt{N_{tot}}} \frac{m_{12}^3 g_{un}(z, \Delta)}{[\vec{k}_{\perp}^2 + m_{12}^2 Q(z, \Delta)]^2},$$

 $Q(z,\Delta) = (1+2z\Delta+\Delta^2)(1-\eta_{un}^2) + \eta_{un}^2(z+\Delta)^2, \ z = 1-2x.$

$$N_{2} = \frac{1}{(2\pi)^{3}} \int |\psi^{2}(R_{\perp}, x)|^{2} \frac{d^{2}R_{\perp}dx}{2x(1-x)}$$

$$= \frac{1}{3 \cdot 2^{7}\pi^{2}N_{tot}} \int_{-1}^{1} \frac{(1-z^{2})g_{un}^{2}(z,\Delta)dz}{Q^{3}(z,\Delta)}$$

$$= \frac{r^{4}}{3 \cdot 2^{15}\pi^{2}N_{tot}} \int_{-1}^{1} \frac{(1-\bar{z}^{2})g_{eq}^{2}(\bar{z})d\bar{z}}{[1-(1-\bar{z}^{2})\eta_{eq}^{2}]^{3}} \propto \frac{r^{4}}{N_{tot}}$$

• Total normalization N_{tot}

Normalization condition: $\langle p | p \rangle = 1 \leftrightarrow F_{em}(0) = 1$ $N_{tot} = F_{em}(0)$

$$F_{em}(0) = \frac{p \cdot J}{2M^2} = \frac{i}{M^2} \int \frac{d^4k}{(2\pi)^4} (\mu_2 M^2 - pk) \\ \times (\mu_1^2 M^2 + 2\mu_1 pk + k^2 - m_1^2) \bar{\Phi}(k, p) \Phi(k, p) .$$

This gives:

 $N_{tot}(r \to \infty) = F_{em}(0)|_{r \to \infty} = const \ r^4.$

Hence:

$$N_2(r \to \infty) \propto \left. \frac{r^4}{N_{tot}} \right|_{r \to \infty} \to const$$

• Numerical results

No.	κ	r	B/m_2	N_2
1	0	1	0.99926	0.65
2	0	10	1.45983	0.65
3	0	∞	1.99852	0.65
4	2	1	$3.51169 \cdot 10^{-3}$	0.094
5	2	10	$6.38114 \cdot 10^{-3}$	0.102
6	2	∞	$7.02338 \cdot 10^{-3}$	0.093
7	4	1	$1.54091 \cdot 10^{-5}$	$6.19 \cdot 10^{-3}$
8	4	10	$2.80165 \cdot 10^{-5}$	$6.86\cdot10^{-3}$
9	4	∞	$3.08182 \cdot 10^{-5}$	$6.67 \cdot 10^{-3}$

• Conclusions

- The effect of unequal masses is "attractive" the binding energy increases when r = m₁/m₂ increases.
 At r → ∞ the binding energy increases up to the factor two.
- The two-body constituent contribution N_2 is changing insignificantly and remains small.
- The abnormal states with unequal masses are still dominated by the massless exchanges!

• Remarks

- 1. The abnormal states appear due to strong Coulomb forces. The spin effects change these forces:
 - less stronger for the parallel spins
 - more stronger for the antiparallel spins.

Therefore, they can exist in the realistic case – heavy ions and electrons with spins.

2. To provide $C = Z\alpha > \frac{\pi}{4}$, we need the ions with Z > 107. On the other hand, Z < 137 (pointlike) $\rightarrow Z < 170$ (finite size of nuclei). Therefore 107 < Z < 170. Transuranic nuclei with Z > 107 are created in laboratory, not very long living, but enough for experiments.

For example, Flerovium: Z = 114, $T_{1/2} \approx 2$ sec.

It would be interesting (but not easy!) to study this problem in experiment! (To detect the abnormal states!) Electron-ion collider is a tool for this search.

Thank you for your attention!