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• Spectrum of 2-body Coulomb system
Nonrelativistic Schrödinger equation provides

usual Balmer series:

En = −α2m

4n2

Relativistic Bethe-Salpeter equation reproduces
the Balmer series (with a relativistic correction)

and predicts another (abnormal) series
(Wick & Cutkosky, 1954):

Ek = −m exp



− 2πk
√

C

π − 1

4



 , C = Zα >
π

4
→ Z > 107
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• Energy spectrum
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The binding energies for normal and abnormal states.

Abnormal states have purely relativistic origin!
They disappear in the nonrelativistic limit.

They are pushed out of the spectrum.
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• Dependence α(c) vs. c
for normal and abnormal solutions
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Left panel: normal. Right panel: abnormal
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• Content of normal
and abnormal systems

J. Carbonell, V. A. Karmanov, H. Sazdjian,
Hybrid nature of the abnormal solutions of the Bethe-Salpeter equation

in the Wick-Cutkosky model,

Eur. Phys. J. C 81, 50 (2021)

The normal systems, almost for 100%,
consist of the two charged particles

+ small admixture (∼ 1÷ 0.1% or smaller) of massless
exchange particles.

On the contrary,
the abnormal systems, almost for 100%,

consist of the massless exchange particles
+ small admixture (∼ 1÷ 0.1% or smaller) of massive

charged particles.
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• Experimental detection

The theoretical predictions put the experimental detection
of the abnormal states on the agenda.

It would be ideal to deal with nucleus-antinucleus.
C = (Ze)2 = Z2α = 1

137
Z2 > π

4
→ Z = 11

(Natrium-Antinatrium) is enough. Unfortunately, heavy
antinuclei are not available, at the present.

We should deal with electron and heavy ion (Z > 107).
Therefore, the constituent masses are very different!

That’s why this talk is devoted to the abnormal states with
different constituent masses.

Do they exist in this case or not?
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• BS equation with equal masses
1

2
p+ k = k1,

1

2
p− k = k2

[

(

1

2
p+ k

)2

−m2

][

(

1

2
p− k

)2

−m2

]

Φeq(k, p)

=
iCm2

π3

∫

Φeq(k
′; p)d4k′

(k − k′)2 + iǫ
, C = e1e2 = Ze2 = Zα.

C is the Coulomb constant: C = e1e2 = Ze2 = Zα.

Integral representation (for the ground state n = 1):

Φeq(k, p) =

∫

1

−1

−im3geq(z)dz

[m2(1− η2eq)− k2 − p·k z − ıǫ]3
,

η2eq =
M2

4m2
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• Equation for geq(z)
for the ground state n = 1

g′′eq(z) +
C

π[1− η2eq(1− z2)]

geq(z)

(1− z2)
= 0.

−1 ≤ z ≤ 1, Boundary conditions: geq(z = ±1) = 0.

Principal quantum number n = 1 plays role of a parameter.

This is a homogeneous equation.

Normally, it has discrete spectrum.

It is indeed so for the Coulomb interaction.

The discrete levels and states are labeled by κ.

κ = 0 → normal states.

κ = 1, 2, 3, · · · → abnormal states. And similarly for any n.

This is the mathematical origin of the abnormal states!
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• BS equation with unequal masses
µ1,2 =

m1,2

m1 +m2

, µ1p+ k = k1, µ2p− k = k2

[(µ1p+ k)2 −m2

1][(µ2p− k)2 −m2

2]Φun(k, p)

=
iC(1−∆2)m2

12

π3

∫

Φun(k
′; p)d4k′

(k − k′)2 + iǫ
,

∆ =
m1 −m2

m1 +m2

=
r − 1

r + 1
, r =

m1

m2

, m12 =
1

2
(m1 +m2).

C is still the Coulomb constant: C = e1e2 = Ze2 = Zα.

If the particle 1 is the heavy ion, the particle 2 is electron, then

r ≈ 1800·102 ≈ 2·105 ≫ 1.
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• Integral representation
for the ground state n = 1

Φun(k, p) = −im3

12

∫

1

−1

dz gun(z,∆)×

1

[m2
12
(1− η2un)(1 + 2z∆+∆2)− k2 − kp(z +∆)− iǫ]3

,

where

∆ =
m1 −m2

m1 +m2

, m12 =
1

2
(m1 +m2), η2un =

M2

4m2
12

.
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• Equation for gun(z)
for the ground state n = 1

g′′un(z,∆) +
C(1−∆2)

πQ(z,∆)

gun(z,∆)

(1− z2)
= 0,

Q(z,∆) = (1+2z∆+∆2)(1−η2un)+η2un(z+∆)2, ∆ =
m1 −m2

m1 +m2

,

−1 ≤ z ≤ 1, Boundary conditions: gun(z = ±1,∆) = 0.

Dependence of gun(z,∆) and spectrum η2un = M2

m2

12

on ∆ is

determined by this equation.

It can be found analytically.
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• Reducing the unequal-masses
problem to the equal-masses one

Cutkosky, 1954

gun(z,∆) =

(

1 + ∆z

1−∆2

)

geq

(

z +∆

1 +∆z

)

Then the unequal mass equation for gun(z,∆) is transformed to

the equal one for geq(z) and

η2un = ∆2 + (1−∆2)η2eq.

Reminder: η2eq =
M2

4m2 , η2un = M2

4m2

12

, m12 =
1

2
(m1 +m2).

To solve the unequal-masses problem, it is enough to solve the

equal-masses one.
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• Solutions
Normal states
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Left panel: geq(z), equal masses (r = 1).

Right panel: gun(z,∆), non-equal masses (r = 10 → ∆ = 9

11
).
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• Solutions
Abnormal states, κ = 2
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Left panel: geq(z), equal masses (r = 1).

Right panel: gun(z,∆), non-equal masses (r = 10 → ∆ = 9

11
).
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• Binding energy vs. the ratio r = m1
m2

η2un = ∆2 + (1−∆2)η2eq, ∆ =
m1 −m2

m1 +m2

=
r − 1

r + 1

=⇒

Bun

m2

= (r + 1)−

√

(r − 1)2 + 4r

(

2m−Beq

2m

)2

,

r =⇒ ∞

Bun = 2

(

1− Beq

4m2

)

Beq,

=⇒

If Beq ≪ m, then Bun = 2Beq

Effect of different masses is attractive!
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• Towards to finding balance:
constituents – exchanged particles

Bethe-Salpeter amplitude in the coordinate state:

Φ(x1, x2, p) = 〈0 |T [ϕ(x1)ϕ(x2)]| p〉

State vector:

|p〉 = ψ2|2〉+ ψ3|3〉+ ψ4|4〉+ . . .

Normalization:

〈p|p〉 = 1 → N2 +N3 +N4 + . . . = 1

where N2 =
∫

|ψ2|2 . . . , N3 =
∫

|ψ3|2 . . .
Below we will calculate N2 =

∫

|ψ2|2 . . .
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• Light-front wave function

Again BS amplitude in the coordinate state:

Φ(x1, x2, p) = 〈0 |T [ϕ(x1)ϕ(x2)]| p〉

ϕ(x) = exp(iHt)ϕ(t = 0, ~x) exp(−iHt)
is (very complicated!) Heisenberg operator.

On the quantization plane t = 0, ϕ(x) becomes free.

Take the light-front quantization plane:

t+ z = 0 → ω·x = 0, ω = (ω0, ~ω), ω
2 = 0.

Then Φ(x1, x2, p) at ω·x1 = ω·x2 = 0 contains the free operators

only and is determined by ψ2:

ψ(~k⊥, x) =
x(1− x)

π
√
Ntot

∫

∞

−∞

Φ

(

k +
βω

ω·p, p
)

dβ,
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• Two-body contribution N2

In terms of gun(z,∆):

ψ(~k⊥, x) =
(1− z2)

4
√
Ntot

m3
12
gun(z,∆)

[~k2
⊥
+m2

12
Q(z,∆)]2

,

Q(z,∆) = (1 + 2z∆+∆2)(1− η2un) + η2un(z +∆)2, z = 1− 2x.

N2 =
1

(2π)3

∫

|ψ2(R⊥, x)|2
d2R⊥dx

2x(1− x)

=
1

3·27π2Ntot

∫

1

−1

(1− z2)g2un(z,∆)dz

Q3(z,∆)

=
r4

3·215π2Ntot

∫

1

−1

(1− z̄2)g2eq(z̄)dz̄

[1− (1− z̄2)η2eq]
3
∝ r4

Ntot
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• Total normalization Ntot

Normalization condition: 〈p|p〉 = 1 ↔ Fem(0) = 1

Ntot = Fem(0)

Fem(0) =
p·J
2M2

=
i

M2

∫

d4k

(2π)4
(µ2M

2 − pk)

× (µ21M
2 + 2µ1pk + k2 −m2

1)Φ̄ (k, p) Φ (k, p) .

This gives:

Ntot(r → ∞) = Fem(0)|r→∞
= const r4.

Hence:

N2(r → ∞) ∝ r4

Ntot

∣

∣

∣

∣

r→∞

→ const
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• Numerical results

No. κ r B/m2 N2

1 0 1 0.99926 0.65

2 0 10 1.45983 0.65

3 0 ∞ 1.99852 0.65

4 2 1 3.51169 · 10−3 0.094

5 2 10 6.38114 · 10−3 0.102

6 2 ∞ 7.02338 · 10−3 0.093

7 4 1 1.54091 · 10−5 6.19 · 10−3

8 4 10 2.80165 · 10−5 6.86 · 10−3

9 4 ∞ 3.08182 · 10−5 6.67 · 10−3
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• Conclusions

The effect of unequal masses is "attractive" – the
binding energy increases when r = m1

m2

increases.

At r → ∞ the binding energy increases up to the factor
two.

The two-body constituent contribution N2 is changing
insignificantly and remains small.

The abnormal states with unequal masses are still
dominated by the massless exchanges!
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• Remarks

1. The abnormal states appear due to strong Coulomb
forces. The spin effects change these forces:

less stronger for the parallel spins

more stronger for the antiparallel spins.

Therefore, they can exist in the realistic case – heavy
ions and electrons with spins.

2. To provide C = Zα > π
4
, we need the ions with Z > 107.

On the other hand, Z < 137 (pointlike) → Z < 170 (finite
size of nuclei). Therefore 107 < Z < 170.
Transuranic nuclei with Z > 107 are created in
laboratory, not very long living, but enough for
experiments.
For example, Flerovium: Z = 114, T1/2 ≈ 2 sec.
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It would be interesting (but not easy!) to study this
problem in experiment! (To detect the abnormal states!)

Electron-ion collider is a tool for this search.

Thank you for your attention!
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