Gluon saturation: toward precision using light front and covariant approaches

Jamal Jalilian-Marian Baruch College, City University of New York

> Light-Cone 2023 Centro Brasileiro de pesquisas Fisicas (CBPF) Rio de Janeiro, Brazil September 18-22, 2023

Deep Inelastic Scattering (DIS) probing hadron structure

Kinematic Invariants

QCD in proton-proton collisions

collinear factorization: separation of soft (long distance) and hard (short distance)

pQCD: the standard paradigm

bulk of QCD phenomena happens at low p_t (small x)

Nucleus-Nucleus (AA) Collisions: Quark-Gluon Plasma

$$\begin{split} \sqrt{S} &\sim 200 \, \text{GeV} & \sqrt{S} \sim 5 \, \text{TeV} \\ \text{RHIC} : \frac{dN_{ch}}{d\eta} &\sim 700 & \text{LHC} : \frac{dN_{ch}}{d\eta} \sim 1600 \\ & \mathbf{X} \sim \frac{\text{Pt}}{\sqrt{S}} \, e^{-\mathbf{y}} \to \mathbf{0} \end{split}$$

High Energy Cosmic Rays

Energies and rates of the cosmic-ray particles

 $\mathbf{p} \mathbf{A}
ightarrow \mathbf{X}$ $\sqrt{
m S} \sim 10^{2-3} {
m TeV}$

most particles/energy are in the forward rapidity region and have low p_t

Ultra-High Energy Neutrinos

What drives the growth of parton distributions?

Splitting functions at leading order $O(\alpha_s^0)$ $(x \neq 1)$

At small x, only P_{gq} and P_{gg} are relevant.

\rightarrow Gluon dominant at small x!

The double log approximation (DLA) of DGLAP is easily solved.

-- increase of gluon distribution at small x

 $\mathbf{xg}(\mathbf{x}, \mathbf{Q^2}) \sim \mathbf{e}^{\sqrt{lpha_{\mathbf{s}} \left(\mathbf{log1/x}\right) \left(\mathbf{logQ^2}\right)}}$

Resolving the nucleus/hadron: Regge-Gribov limit 1

radiated gluons have the same size $(1/Q^2)$ - the number of partons increase due to the increased longitudinal phase space

<u>Saturation: hadron/nucleus becomes a dense system of gluons</u> Feynman's concept of a quasi-free parton is not useful

one can reach the same dense state in a <u>nucleus at not so small x</u>

Low x QCD: many-body dynamics of universal gluonic matter (CGC)

How does this happen ?

How do correlation functions of these evolve ?

Are there scaling laws?

Can CGC explain aspects of HIC ?

Initial conditions for hydro? Thermalization ? Long range rapidity correlations ? Azimuthal angular correlations ? Nuclear modification factor ?

F_L at HERA

arXiv:1710.05935

CGC at RHIC

Single and double inclusive hadron production in dA collisions

Dumitru, Hayashigaki, JJM, NPA770 (2006) 57

Albacete, Marquet, PRL105 (2010) 162301

Back to back hadron production in pA collisions: forward rapidity

STAR collaboration(2021) arXiv:2111.10396

dense target (proton/nucleus) as a background color field

sheet of color charge moving along x^+ and sitting at $x^- = 0$

$$\mathbf{J}^{\mu}_{\mathbf{a}}(\mathbf{x}) \equiv \delta^{\mu +} \,\delta(\mathbf{x}^{-}) \,\rho_{\mathbf{a}}(\mathbf{x}_{\mathbf{t}})$$

color current color charge

$$\mathbf{A}_{\mathbf{a}}^{+}(\mathbf{z}^{-},\mathbf{z}_{\mathbf{t}}) = \delta(\mathbf{z}^{-}) \,\alpha_{\mathbf{a}}(\mathbf{z}_{\mathbf{t}})$$

 $\begin{array}{lll} \mbox{recall eikonal} & \bar{u}(q)\gamma^{\mu}u(p) & \rightarrow & \bar{u}(p)\gamma^{\mu}u(p) \sim p^{\mu} \\ & approximation & \\ & \bar{u}(q) \not A u(p) & \rightarrow & p \cdot A \sim p^{-} A^{+} \end{array}$

Probing saturation in high energy collisions

nucleus-nucleus: "dense-dense" proton-nucleus: "dilute-dense"

DIS (inclusive/diffractive) structure functions *particle production* angular correlations

$$\mathbf{Q_s^2}(x, b_t, A) \sim A^{1/3}\, (\frac{1}{x})^{0.3}$$

$$Q_s^2(x = 3 \times 10^{-4}) \sim 1 \, GeV^2$$

for a proton target (quarks)

signatures in production spectra: multiple scattering encoded in Wilson lines evolution with x (energy) via JIMWLK p_t broadening suppression of spectra/away side peaks

$$\frac{d}{dy} < \mathbf{O} >_{\mathbf{y}} = \mathcal{H}_{\mathbf{JIMWLK}} < \mathbf{O} >_{\mathbf{y}}$$

much less modeling

Toward precision CGC at small x: inclusive DIS

NLO BK/JIMWLK evolution equations: Balitsky, Chirilli (2007) Kovner, Lublinsky, Mulian (2013)

NLO corrections to DIS structure functions: Beuf (2017)

Beuf, Lappi, Paatelainen (2022)

•••••

NLO corrections to single inclusive hadron production in DIS: Bergabo, JJM (2023)

NLO corrections to <u>inclusive dihadron</u>/dijet production in DIS: Bergabo, JJM (2022, 2023) Taels, Altinoluk, Beuf, Marquet (2022) Caucal, Salazar, Schenke, Venugopalan (2022) Caucal, Salazar, Venugopalan (2021)

DIS: sub-eikonal corrections at small x Altinoluk, Armesto, Beuf (2023) Altinoluk, Beuf, Czajka, Tymowska (2021, 2022)

•••••

Toward precision CGC: diffractive/exclusive DIS

NLO corrections to diffractive structure functions: Beuf, Hanninen, Lappi, Mulian, Mantysaari (2022)

NLO corrections to diffractive dijet (+) production: Boussarie, Grabovsky, Szymanowski, Wallon (2016) Iancu, Mueller, Triantafyllopoulos (2021, 2022)

NLO corrections to exclusive light/heavy vector meson production: Boussarie, Grabovsky, Ivanov, Szymanowski, Wallon (2016) Mantysaari, Penttala (2021, 2022)

•••••

.

Inclusive dihadron production in forward rapidity: NLO

Based on <u>F. Bergabo</u> and JJM:

PRD 107 (2023) 5, 054036 NPA 1018 (2022) 122358 PRD 106 (2022) 5, 054035

And work in progress (JJM)

NLO corrections - real diagrams (3-jet production)

3-parton production: Ayala, Hentschinski, JJM, Tejeda-Yeomans PLB 761 (2016) 229 and NPB 920 (2017) 232

NLO corrections – virtual diagrams

<u>F. Bergabo</u> and JJM, dihadrons, 2207.03606, 2301.03117

- P. Taels et al., dijets, 2204.11650
- P. Caucal et al., dijets, 2108.06347,.....

$$\begin{array}{rcl} \frac{\sigma_{1-1}^{\mathrm{real},L}}{d^2\mathbf{p}\,d^2\mathbf{q}\,dy_1\,dy_2} &=& \frac{2e^2g^2Q^2N_c^2z_1^2(1-z_2)^2(z_1^2+(1-z_2)^2)}{(2\pi)^{10}z_1}\int \frac{z}{z}\int d^{10}\mathbf{x}\,K_0(|\mathbf{x}_{12}|Q_2)K_0(|\mathbf{x}_{12'}|Q_2)\Delta_{011'}^{(3)} \\ &=& [S_{122'1'}-S_{12}-S_{12'}-1]\,e^{\mathbf{p}\cdot(\mathbf{x}_1'-\mathbf{x}_1)}e^{i\mathbf{q}\cdot(\mathbf{x}_2'-\mathbf{x}_2)}e^{i\frac{z}{z_1}+\mathbf{p}\cdot(\mathbf{x}_1'-\mathbf{x}_1)}\delta(1-z_1-z_2-z), \\ &=& \frac{\sigma_{1-2}^2}{d^2\mathbf{p}\,d^2\mathbf{q}\,dy_1\,dy_2} &=& \frac{2e^2g^2Q^2N_c^2z_1^2(1-z_1)^2(z_2^2+(1-z_1)^2)}{(2\pi)^{10}z_2}\int \frac{z}{z}\int d^{10}\mathbf{x}\,K_0(|\mathbf{x}_{12}|Q_1)K_0(|\mathbf{x}_{12'}|Q_1)\Delta_{22'}^{(3)} \\ &=& \frac{2e^2g^2Q^2N_c^2z_1^2(1-z_1)(1-z_2)(z_1(1-z_1)+z_2(1-z_2))}{(2\pi)^{10}}\int \frac{z}{z}\int d^{10}\mathbf{x}\,K_0(|\mathbf{x}_{12}|Q_2)K_0(|\mathbf{x}_{12'}|Q_1)\Delta_{22'}^{(3)} \\ &=& \frac{2e^2g^2Q^2N_c^2z_1z_2(1-z_1)(1-z_2)(z_1(1-z_1)+z_2(1-z_2))}{(2\pi)^{10}}\int \frac{z}{z}\int d^{10}\mathbf{x}\,K_0(|\mathbf{x}_{12}|Q_2)K_0(|\mathbf{x}_{12'}|Q_1)K_0(|\mathbf{x}_{12'}|Q_1)\\ &=& \frac{2e^2g^2Q^2N_c^2z_1z_2^2(z_1^2+(1-z_2)^2)}{(2\pi)^{10}}\int \frac{z}{z}\int d^{10}\mathbf{x}\,K_0(QX)\,K_0(QX')\Delta_{11'}^{(3)} \\ &=& \frac{2e^2g^2Q^2N_c^2z_1z_2^2(z_1^2+(1-z_2)^2)}{(2\pi)^{10}}\int \frac{z}{z}\int d^{10}\mathbf{x}\,K_0(QX)\,K_0(QX')\Delta_{12'}^{(3)} \\ &=& \frac{2e^2g^2Q^2N_c^2z_1z_2^2(z_2^2+(1-z_1)^2)}{(2\pi)^{10}}\int \frac{z}{z}\int d^{10}\mathbf{x}\,K_0(QX)\,K_0(QX')\Delta_{12'}^{(3)} \\ &=& \frac{2e^2g^2Q^2N_c^2z_1^2z_2(z_2^2+(1-z_1)^2)}{(2\pi)^{10}}\int \frac{z}{z}\int d^{10}\mathbf{x}\,K_0(QX)\,K_0(QX')\Delta_{12'}^{(3)} \\ &=& \frac{2e^2g^2Q^2N_c^2z_1^2z_2(z_1(1-z_1)+z_2(1-z_2))}{(2\pi)^{10}}\int \frac{z}{z}\int d^{10}\mathbf{x}\,K_0(QX)\,K_0(QX')\Delta_{12'}^{(3)} \\ &=& \frac{2e^2g^2Q^2N_c^2z_1^2z_2(z_1(1-z_1)+z_2(1-z_2))}{(2\pi)^{10}}\int \frac{z}{z}\int d^{10}\mathbf{x}\,K_0(|\mathbf{x}_{12}|Q_2)K_0(QX')\Delta_{12'}^{(3)} \\ &=& \frac{2e^2g^2Q^2N_c^2z_1^2z_2(z_1(1-z_1)+z_2(1-z_2))}{(2\pi)^{10}}\int \frac{z}{z}\int d^{10}\mathbf{x}\,K_0(|\mathbf{x}_{12}|Q_2)K_0(QX')\Delta_{12'}^{(3)} \\ &=& \frac{2e^2g^2Q^2N_c^2z_1^2z_2(z_1(1-z_2))(z_1^2+(1-z_2)^2)}{(2\pi)^{10}}\int \frac{z}{z}\int d^{10}\mathbf{x}\,K_0(|\mathbf{x}_{12}|Q_2)K_0(QX')\Delta_{12'}^{(3)} \\ &=& \frac{2e^2g^2Q^2N_c^2z_1^2z_2(z_1(1-z_2))(z_1^2+(1-z_2)^2)}{(2\pi)^{10}}\int \frac{z}{z}\int d^{10}\mathbf{x}\,K_0(|\mathbf{x}_{12}|Q_1)K_0(QX')\Delta_{12'}^{(3)} \\ &=& \frac{2e^2g^2Q^2N_c^2z_1^2z_2(z_1(1-z_2))(z_1^2+(1-z_2)^2)}{(2\pi)^{10}}\int \frac{z}{z}\int d^{10}\mathbf{x}\,K_0(|\mathbf{x}_{12}|Q_$$

• Ultraviolet:

Real corrections are UV finite

UV divergences cancel among virtual corrections

$$\mathbf{k}
ightarrow \infty$$
 or $\mathbf{x_3}
ightarrow \mathbf{x_i}$

 $(d\sigma_5 + d\sigma_{11})_{UV} = 0$ $(d\sigma_6 + d\sigma_{12})_{UV} = 0$ $(d\sigma_9 + d\sigma_{10} + d\sigma_{14(1)} + d\sigma_{14(2)})_{UV} = 0$

• Soft:

 \sim

$\mathbf{k}^{\mu} ightarrow \mathbf{0} \ (\mathbf{x_3} ightarrow \infty \ \mathbf{AND} \ \mathbf{z} ightarrow \mathbf{0})$

Soft divergences cancel between real and virtual corrections

$$\begin{pmatrix} d\sigma_{1-1} + d\sigma_{9} \end{pmatrix}_{soft} = 0, \\ \left(d\sigma_{1-2} + d\sigma_{13}^{(1)} + d\sigma_{13}^{(2)} \right)_{soft} = 0 \\ \left(d\sigma_{3-3} + d\sigma_{4-4} + d\sigma_{3-4} \right)_{soft} = 0 \\ \left(d\sigma_{1-3} + d\sigma_{1-4} \right)_{soft} = 0 \\ \left(d\sigma_{2-3} + d\sigma_{2-4} \right)_{soft} = 0 \\ \left(d\sigma_{5} + d\sigma_{7} \right)_{soft} = 0 \\ \left(d\sigma_{11} + d\sigma_{14}^{(1)} \right)_{soft} = 0 \\ 2 \\ \end{pmatrix}$$

• Rapidity: $\mathbf{z} ightarrow \mathbf{0}$, but finite k_t

$$\int_{0}^{1} \frac{dz}{z} = \int_{0}^{z_{f}} \frac{dz}{z} + \int_{z_{f}}^{1} \frac{dz}{z}$$

rapidity divergences are absorbed into JIMWLK evolution of dipoles and quadrupoles

$$\begin{split} \frac{d\sigma_{\rm NLO}^{L}}{d^{2}\mathbf{p}\,d^{2}\mathbf{q}\,dy_{1}\,y_{2}} &= \frac{2e^{2}g^{2}Q^{2}N_{c}^{2}(z_{1}z_{2})^{3}}{(2\pi)^{10}}\,\delta(1-z_{1}-z_{2})\int_{0}^{z_{f}}\frac{dz}{z}\int d^{10}\mathbf{x}\,K_{0}(|\mathbf{x}_{12}|Q_{1})K_{0}(|\mathbf{x}_{1'2'}|Q_{1})\\ e^{i\mathbf{p}\cdot\mathbf{x}_{1'1}}e^{i\mathbf{q}\cdot\mathbf{x}_{2'2}} \Bigg\{ \left(\tilde{\Delta}_{12}+\tilde{\Delta}_{22'}-\tilde{\Delta}_{12'}\right)S_{132'1'}S_{23} + \left(\tilde{\Delta}_{1'2'}+\tilde{\Delta}_{22'}-\tilde{\Delta}_{21'}\right)S_{1'321}S_{2'3} \\ &+ \left(\tilde{\Delta}_{12}+\tilde{\Delta}_{11'}-\tilde{\Delta}_{21'}\right)S_{322'1'}S_{13} + \left(\tilde{\Delta}_{1'2'}+\tilde{\Delta}_{11'}-\tilde{\Delta}_{12'}\right)S_{32'21}S_{1'3} \\ &- \left(\tilde{\Delta}_{11'}+\tilde{\Delta}_{22'}+\tilde{\Delta}_{12}+\tilde{\Delta}_{1'2'}\right)S_{122'1'} - \left(\tilde{\Delta}_{12}+\tilde{\Delta}_{1'2'}-\tilde{\Delta}_{12'}-\tilde{\Delta}_{21'}\right)S_{12}S_{1'2'} \\ &- \left(\tilde{\Delta}_{11'}+\tilde{\Delta}_{22'}-\tilde{\Delta}_{12'}-\tilde{\Delta}_{21'}\right)S_{11'}S_{22'} - 2\tilde{\Delta}_{12}\left(S_{13}S_{23}-S_{12}\right) - 2\tilde{\Delta}_{1'2'}\left(S_{1'3}S_{2'3}-S_{1'2'}\right) \Bigg\} \end{split}$$

JIMWLK evolution of quadrupoles JIMWLK evolution of dipoles

$$\tilde{\Delta}_{12} \equiv \frac{(\mathbf{x_1} - \mathbf{x_2})^2}{(\mathbf{x_1} - \mathbf{x_3})^2(\mathbf{x_2} - \mathbf{x_3})^2}$$

• Collinear:

$$\frac{1}{(p+k)^2} = \frac{1}{|\overrightarrow{p}||\overrightarrow{k}|(1-\cos\theta)} \longrightarrow \infty \quad as \quad \theta \to 0$$

Collinear divergences are absorbed into evolution of parton-hadron fragmentation functions

collinear divergences

real corrections

$$\frac{d\sigma_{LO+1-1}^{\gamma^*A \to h_1h_2X}}{d^2 \mathbf{p}_h d^2 \mathbf{q}_h dy_1 dy_2} = \int_0^1 dz_{h_1} \int_0^1 dz_{h_2} \frac{4e^2 Q^2 N_c(z_1 z_2)^3}{(2\pi)^7 (z_{h_1} z_{h_2})^2} H\left(\mathbf{p}, \mathbf{q}, z_2\right) D_{h_1/q}^0(z_{h_1}) D_{h_2/\bar{q}}^0(z_{h_2}) \\ \int \frac{d\xi_1}{\xi_1^3} \delta(1 - z_2 - z_1/\xi_1) \left[\delta(1 - \xi_1) + 2\alpha_s P_{qq}(\xi_1) \int d^2 \mathbf{k} \frac{e^{i\mathbf{k} \cdot (\mathbf{x}_1' - \mathbf{x}_1)}}{(\xi_1 \mathbf{k} - (1 - \xi_1)\mathbf{p})^2} \right] \\ \mathbf{with} \qquad P_{qq}(\xi_1) = C_F \frac{(1 + \xi_1^2)}{(1 - \xi_1)} \left[\frac{1}{2} \left(\frac{1 + \xi_1^2}{1 - \xi_1} \right) \right] \right]$$

virtual corrections

$$\frac{d\sigma_9^{\gamma^* A \to h_1 h_2 X}}{d^2 \mathbf{p}_h \, d^2 \mathbf{q}_h \, dy_1 \, dy_2} = -\int_0^1 dz_{h_1} \int_0^1 dz_{h_2} \frac{4e^2 Q^2 (z_1 z_2)^3 N_c}{(2\pi)^7 (z_{h_1} z_{h_2})^2} H(\mathbf{p}, \mathbf{q}, z_2) D_{h_1/q}^0(z_{h_1}) D_{h_2/\bar{q}}^0(z_{h_2}) \times \alpha_s \int_0^1 d\xi \, P_{qq}(\xi) \int d^2 \mathbf{k} \frac{1}{(\mathbf{k} - (1 - \xi)\mathbf{p})^2} \delta(1 - z_1 - z_2)$$

these are combined into DGLAP evolution of fragmentation functions

$$D_{h_1/q}(z_{h1},\mu^2) = \int_{z_{h1}}^1 \frac{d\xi}{\xi} D_{h_1/q}^0\left(\frac{z_{h1}}{\xi}\right) \left[\delta(1-\xi) + \frac{\alpha_s}{2\pi} P_{qq}(\xi) \log\left(\frac{\mu^2}{\Lambda^2}\right)\right]$$

•Ultraviolet

Real corrections are UV finite UV divergences cancel among virtual corrections

•Soft

Soft divergences cancel between real and virtual corrections

•Collinear

Collinear divergences are absorbed into hadron fragmentation functions

•Rapidity

rapidity divergences are absorbed into JIMWLK evolution of dipoles, quadrupoles

 $\sigma^{\gamma^* A \to h_1 h_2 X} = \sigma_{LO} \otimes \text{JIMWLK} + \sigma_{LO} \otimes D_{h_1/q}(z_1, \mu^2) D_{h_2/\bar{q}}(z_2, \mu^2) + \sigma_{NLO}^{\text{finite}}$

phenomenology: EIC, UPC at the LHC,...

One-loop corrections: BK-JIMWLK eq. at large N_c $3 \otimes \overline{3} = 8 \oplus 1 \simeq 8$ (1000) ~

$$\frac{d}{dy}T(x_t, y_t) = \frac{N_c \alpha_s}{2\pi^2} \int d^2 z_t \frac{(x_t - y_t)^2}{(x_t - z_t)^2 (y_t - z_t)^2} \left[T(x_t, z_t) + T(z_t, y_t) - T(x_t, y_t) - T(x_t, z_t)T(z_t, y_t)\right]$$
$$T \equiv 1 - S$$

$$\tilde{T}(p_t) \sim \frac{1}{p_t^2} \begin{bmatrix} Q_s^2 \\ \overline{p}_t^2 \end{bmatrix} \qquad Q_s^2 \ll p_t^2$$
$$\tilde{T}(p_t) \sim \log \begin{bmatrix} Q_s^2 \\ \overline{p}_t^2 \end{bmatrix} \qquad Q_s^2 \gg p_t^2$$
$$\tilde{T}(p_t) \sim \frac{1}{p_t^2} \begin{bmatrix} Q_s^2 \\ \overline{p}_t^2 \end{bmatrix}^{\gamma} \qquad Q_s^2 < p_t^2$$

nuclear modification factor

$$R_{pA} \equiv \frac{\frac{d\sigma^{pA}}{d^2 p_t dy}}{A^{1/3} \frac{d\sigma^{pp}}{d^2 p_t dy}}$$

nuclear shadowing

.

suppression of \boldsymbol{p}_t spectra

disappearance of back to back peaks

QCD kinematic phase space

SUMMARY

QCD at high p_t

dilute hadron: partons - collinear factorization breaks down at small x/low p_t

QCD at high energy

dense hadron: gluon saturation, strong color fields - CGC strong hints from RHIC, LHC,... to be probed precisely at EIC toward precision: NLO, sub-eikonal corrections, ... CGC is limited to small x (low p_t)