

6-8 sept. 2023 GANIL

Iulian STEFAN IJCLab –Orsay Laboratoire de Physique des 2 Infinis Irène Joliot-Curie

Reaching for the infinities : Nuclear Physics - MNT with NEWGAIN injector

1. NEWGAIN project

- Implantation
- Existing program
- Opportunities (MNT)
- 2. MNT reactions
 - S3 and MNT
 - Gas target for MNT
 - Nier-Bernas Ion Source for MNT

1. **NEWGAIN** project

Workshop Targets - Ion Source

GANIL 6-8 sept. 2023

I. Stefan

Estimated in 2021

Existing

A/Q=3 (existant): E<=14.5 MeV/A A/Q=7 : E<=7 MeV/A

Estimated in 2021

Important: RFQ dimensioned for 15 puA ⁴⁸Ca and 10 puA for ²³⁸U

A/Q=3 (existant): E<=14.5 MeV/A A/Q=7 : E<=7 MeV/A

Estimated in 2021

Important: RFQ dimensioned for 15 puA ⁴⁸Ca and 10 puA for ²³⁸U

Existing NEWGAIN

> A/Q=3 (existant): E<=14.5 MeV/A A/Q=7 : E<=7 MeV/A

Estimated in 2021

Comparison between different installations relevant to SHE studies

Beam intensities puA 100%	LINAG A/q≤3	SPIRAL2 GANIL, Caen 3 NEWGAIN* NEWGAIN*		SHE factory FLNR, Dubna** DC-280	RIK Nishina Ce (Tok RILAC	EN nter Wako tyo) RRC	GSI Darmstadt UNILAC***
enriched	Phoenix v3	A/q≤7 Phoenix v3	A/q≤7 SC source			(RILAC(2) as injector)	
¹⁸ O	80	>64	300	16	10	-	1
⁴⁰ Ar	16	38	38	10	10	1	8
³⁶ S	23	30	30	****	-	-	-
⁴⁰ Ca	2.9	16	16	***	-	-	-
⁴⁸ Ca	1.2	8	16	10	3	0.3	4
⁵⁸ Ni	1.1	3.2	6.4	****	****	****	2.2
⁸⁶ Kr	0.1	8	16	****	10	***	0.2
¹³⁶ Xe	0.001	5.6	>10	16	10	0.3	1
²³⁸ U	<<0.001	0.06	4.8	0.008	0.2	0.5	0.06 ⁱ

80% total transmission assumed

** http://flerovlab.jinr.ru/index.php/2017/03/23/she-factory/

*** for the cw-linac project with the assumption of a 50% total transmission, priv. comm. W. Barth et al., GSI

**** beams not delivered

VARIS ion source, 80% Alvarez-transmission, mode: 2 Hz/0.1 ms, priv. com. W. Barth et al., GSI

- intensities not provided

Highest intensity

Estimated in 2021

Important:

Existing S3 Target:

S3 - 10 puA ⁷⁰Zn @ 5 MeV/A. (18 puA for ⁴⁸Ca and 2.7 puA pour ²³⁸U)

Important: RFQ dimensioned for 15 puA ⁴⁸Ca and 10 puA for ²³⁸U

lons	Intensity (pµA) Phoenix V3 RFQ A/Q≤3		Intensity (pµA) Phoenix V3 RFQ A/Q≤7		Intensity (pµA) Source ASTERICS RFQ A/Q≤7	
¹⁸ O	80		×	k	375	
¹⁹ F	¹⁹ F >15		>40		>40	
³⁶ Ar	³⁶ Ar 16		70		45	
⁴⁰ Ar	⁴⁰ Ar 3.6		70		45	
³⁶ S	³⁶ S 2.3		*		*	
⁴⁰ Ca	⁴⁰ Ca 2.9		10		20	
⁴⁸ Ca	⁴⁸ Ca 1.2		10		20	
⁵⁸ Ni	1.1		4		8	
⁸⁴ Kr	0.1		10		20	
¹³⁹ Xe	0.001		7		>10	
²³⁸ U	<<0.001		0.1		6	
M	Measured Estir			* -> no estimation		

A/Q=3 (existant): E<=14.5 MeV/A A/Q=7 : E<=7 MeV/A

Estimated in 2021

203

GANIL 6-8 sept. 2023

Important: RFQ dimensioned for 15 puA ⁴⁸Ca and 10 puA for ²³⁸U

NEWGAIN	lons	Intensity (pµA) Phoenix V3 RFQ A/Q≤3	Intensity (pµA) Phoenix V3 RFQ A/Q≤7	Intensity (pµA) SC Ion Source RFQ A/Q≤7	
	¹⁸ O	80	*	375	
Consolidation and reinforcement of the S3: SIRIUS, LEB	¹⁹ F	>15	>40	>40	
& DESIR physics program.	³⁶ Ar	16	70	45	
Relevant beams:	⁴⁰ Ar	3.6	70	45	
^{12,13,14} C, ^{16,17,18} O, ^{20,21,22} Ne, ²³ Na, ^{24,25,26} Mg, ²⁷ Al, ^{28,29,30} Si, ^{32,34} S,	³⁶ S	2.3	*	*	
^{35,37} Cl, ^{38,40} Ar, ^{38,39,40} K, ^{40,42,43,44,46,48} Ca, ^{46,47,48,49,50} Ti, ⁵¹ V,	⁴⁰ Ca	2.9	10	20	
^{50,52,53,54} Cr, ⁵⁵ Mn, ^{54,56,57,58} Fe, ⁵⁹ Co, ^{58,60,61,62,64} Ni, ^{63,65} Cu,	⁴⁸ Ca	1.2	10	20	
^{64,66,67,68,70} Zn, ^{74,76} Ge, ^{78,86} Kr, ^{84,86} Sr, ⁹⁰ Zr, ⁹² Mo	⁵⁸ Ni	1.1	4	8	
Important:	⁸⁴ Kr	0.1	10	20	
S3 Target crucial for this physics program:	¹³⁹ Xe	0.001	7	>10	
10 puA ⁷⁰ Zn @ 5 MeV/A. (18 puA for ⁴⁸ Ca and 2.7 puA pour ²³⁸ U)	²³⁸ U	<<0.001	0.1	6	
New opportunities . Not really compatible with existing installation	М	easured Estin	mated * -> no	estimation	
Heavy beams: ¹³⁶ Xe to ²³⁸ U			A/Q=3 (e A/Q=7	xistant): E<=14.5 : E<=7	5 MeV/A MeV/A
What is the best way to move forward? How ca	an we use the	neavy beam	s?		
What equipment, installa	ations?	,			_
					7 FRAI

MNT reactions

Energies from coulomb barrier up to 20 MeV/A

J. Wilczynski, Phys. Lett. B 47, 484 (1973).

MNT reactions & S3

- 1) Degrade the energy of the secondary reaction products bellow 2 MeV/A if QP
- 2) Look at the heavy fragment (QT). Problem: Charge state distribution ...

Example : ${}^{18}O@10 \text{ MeV/A} \rightarrow \text{QPs} ({}^{20}O @ 0^{\circ})\text{E}$ between 3.5 and 10 MeV/A

- \rightarrow Vc~46 MeV for ²⁰O+¹¹⁰Pd
- \rightarrow QPs (²²O (*a*) 0°) between 3.5 and 6.4 MeV/A
- \rightarrow QTs (¹¹⁰Pd @ 0°) 0.3 MeV/A <E < 0.7 MeV/A

C. Petrone @ December 2022

Other options??

December 2022 "Physics with SPIRAL2 Heavy Ion Beams" Took a look at the landscape of installation where MNT is used Call for new ideas

Workshop Targets - Ion Source

GANIL 6-8 sept. 2023

Physics with SPIRAL2 Heavy Ion Beams

December 12-16, 2022 - GANIL

December 2022 "Physics with SPIRAL2 Heavy Ion Beams" Took a look at the landscape of installation where MNT is used Call for new ideas

K. Peräjärvi et al., Nucl. Instr. Meth. P

GANIL 6-8 sept. 2023

FRANCE

Physics with SPIRAL2 Heavy Ion Beams

December 12-16, 2022 - GANIL

KISS2 project

Gas cell inside a Solenoid

Magnetic field reduce beam like elements 1 500 000 000 Yen for the project 10.223 million euros for a solenoid gas cell

	Primary beam	Total effic	iency	#nuclide	s / unit time	Total gain	
KISS	10 pnA	• <0.1%			1	1	
KISS-II	1 pµA	>1%		> 10		> 10 000	
	Primary separator	RF gas catcher		MRTOF			
	WR IUP-1	Rough mas				Mass mea	suren
Target Be	am opper		separator new-type I Single ma	SOL)	Decay spectro	oscopy	
Target Be sta Gas filled sole	am ppper anoid RF He gas c f Extraction c	ell of All	Single ma multiple n $\alpha\beta\gamma$ spe	SOL) SOL) ass or nasses cstroscor	Decay spectro	oscopy	2

Y. Watanabe December 2022

GANIL 6-8 sept. 2023

Nier-Bernas Ion Source for the NEWGAIN project

Nier-Bernas arc chamber

Proposed by D. Verney in December 2022 inspired by a 40 years old ISOSCELE target

Examples reactions @ Newgain:

 238 U on 238 U @7MeV/A : power in target 16.66 kW (10 pµA) 124 Sn on 238 U @7MeV/A : power in target 8.68 kW (10 pµA)

GANIL 6-8 sept. 2023

Nier-Bernas Ion Source for the NEWGAIN project

→Technical challenge: How to use the full beam power and dissipate the full beam intensity in the target in order to explore all reaction channels?

 \rightarrow ISOL technique: using Nier-Bernas ion sources with target hold inside the ionization volume.

→ ISOL branch successfully used at the ISOCELE ISOL facility @ Orsay
 ~40 years ago and at least 33 target - beams have been tested.

Fig 9 Yields of different elements from a molten Sn target: (a) proton beam, (b) 3 He beam

Nier-Bernas Ion Source for the NEWGAIN project

Maher CHEIKH-MHAMED - IJCLab

Fig 2 ISOCELE 2 ion-source	 Ion source efficiency and ion intensities (firstly, find the performance of the ISOCELE ion source) Target materials
project:	 Desorption processes Study the different beam & target combinations

Target goal of the project (timeline) \rightarrow to be in phase with the first NEWGAIN beams ~2030

Status: pre-project phase and identification of partners already started.

Project cost: scale of ANR projects.

Conclusions

NEWGAIN will deliver a large range of beams in the 10 puA intensity range Crucial for S3 : SIRIUS, LEB, DESIR

Full advantage of NEWGAIN beams and energies (7 MeV/A and 10 puA)?

MNT is crucial, but also fusion-evaporation in inverse kinematics and fusion-fission

Development need for a GANIL gas cell (today < 50 pnA @ RIKEN, GSI, JYFL)</p>

Who? proposed by WG3 for Spiro committee & in NEWGAIN WHITEBOOK C. Theisen

Development started for ISOCELE type target : Nier-Bernas Ion Source

new development, R&D required, pre-project phase

Maher CHEIKH-MHAMED (phase pre-projet) IJCLab – looking for partners

Important:

S3 Target is crucial for NEWGAIN success!

S3 - 10 puA ⁷⁰Zn @ 5 MeV/A. (18 puA for ⁴⁸Ca and 2.7 puA pour ²³⁸U)