

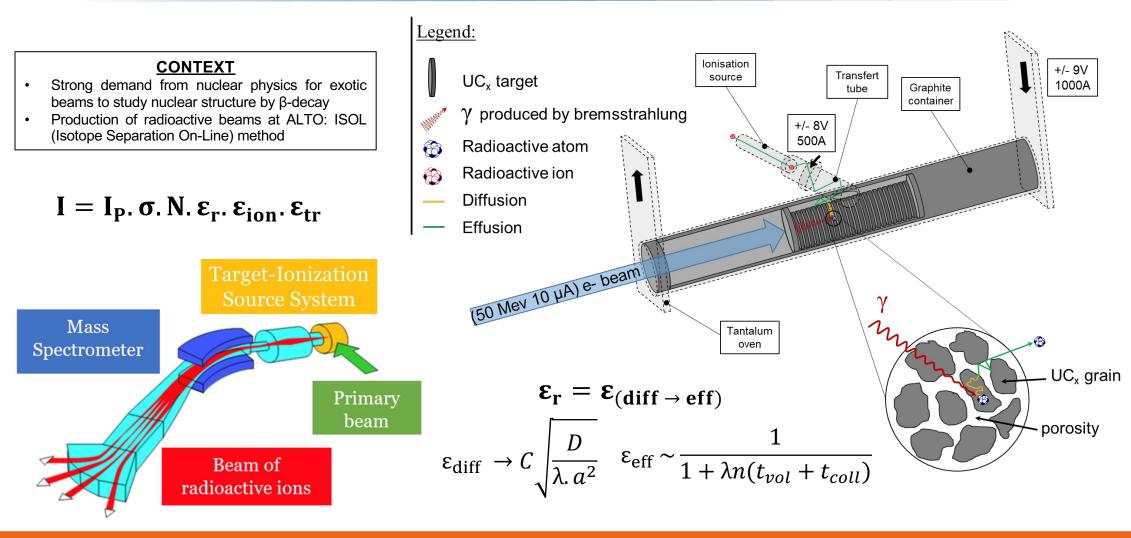
STUC Project : **ST**udies of **U**ranium **C**ompounds

Matthieu Lebois

Project member's list:

J. Guillot¹, B. Roussière¹, JF. Ledu¹, M. Lebois^{1,2}, I. Deloncle¹, S. Tusseau-Nenez³

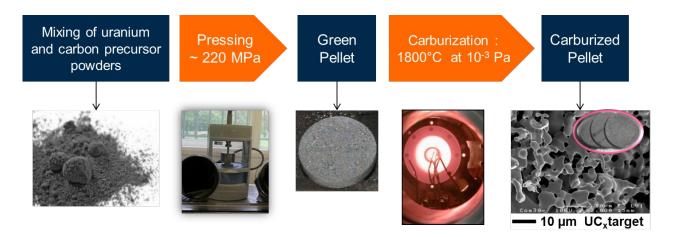
¹: Université Paris Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

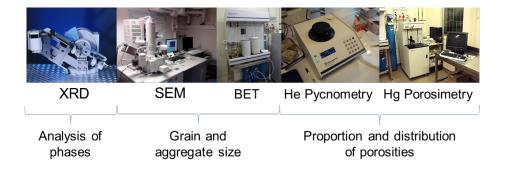

²: Institut Universitaire de France, 1 rue Descartes, 75005 Paris, France

³: Laboratoire de Physique de la Matière Condensée, CNRS, Ecole Polytechnique - IP Paris - Palaiseau Cedex

workshop Targets - Ion Sources

Context




How to build a target ? What caracterization?

• Synthesis of UC_x target: $UO_2 + 6C \rightarrow (1 - x)UC + xUC_2 + (3 - x)C + 2CO_{(g)}$

٠

Techniques used for the physico-chemical characterization of UC_x targets :

Equipment for measuring released fractions (off-line) and production (on-line) :

Study on the influence of the microstructure

N° sample	Sample name	
1	UO ₂ ground+CNT PM	
2	UO ₂ ground+CNT UM	
3	UO ₂ ground+graphene	
4	OXA+graphite PM	
5	OXA ground+CNT UM	
6	OXA+CNT UM	
7	PARRNe BP894	
8	PARRNe BP897 PM	
9	PARRNe BP897 PM 12d	
10	UO ₂ ground+CNT PM 12d	
11	UO ₂ ground+CNT UM 12d	
12	UO ₂ ground+graphene 12d	
13	UO ₂ ground+CNT-5mol UM	
14	UO2 ground+CNT-7mol UM	

Uranium precursor:

- Oxyde d'uranium
- Oxalate d'uranium

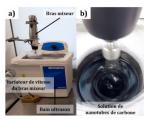
Carbone precursor:

- Graphite
- Graphene

• CNT

Molar ratio C/U 5 6 7

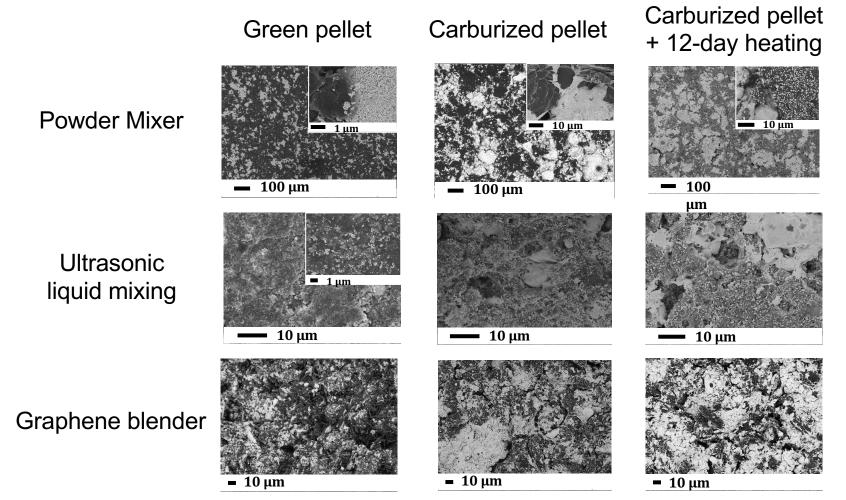
12-day heating after carburation :


● Yes ○ No

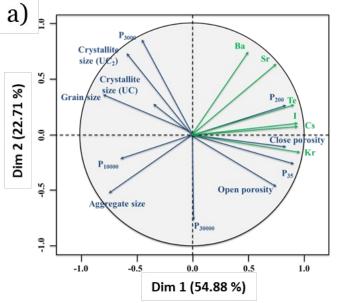
Precursor powder mixing:

■ Robin[™] Powder Mixer

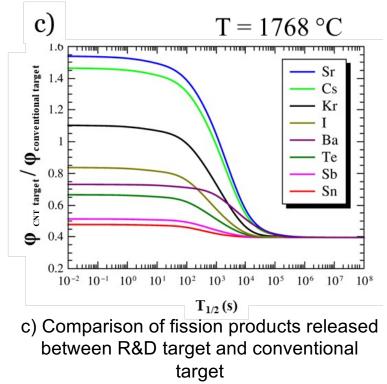
Ultrasonic liquid mixing



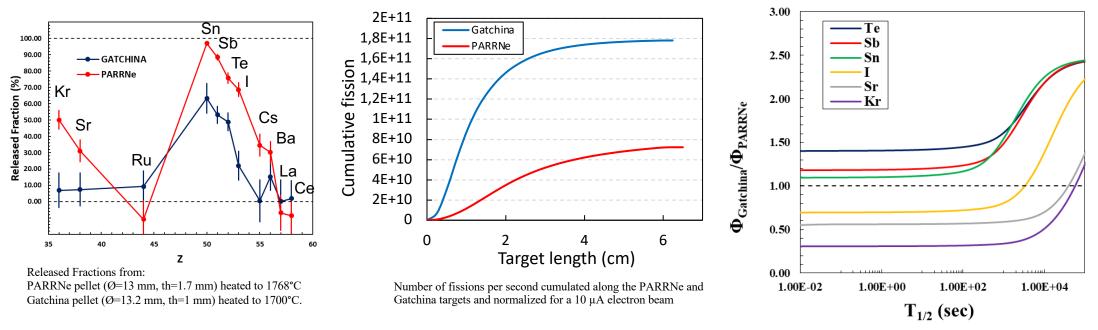
Graphene blender




Study on the influence of the microstructure



a) Correlations between release fractions (in green) and target properties (in blue)


b) Released fraction comparison between conventional target (mostly UC₂) and an R&D target made with CNT

Loss of production is compensated by improved release (Sr, Cs and Kr)

Study on the influence of the microstructure

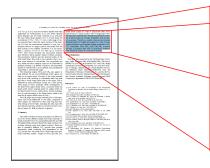
Estimation of the production ratio between a Gatchina target and a PARRNe target

The loss in releases is compensated by improved production (Sn, Te and Sb)

Physico-chemical characteristics obtained by XRD and Helium pycnometry

		Gatchina	PARRNe
	UO ₂	4.5	-
Quantity of phases (%)	UC	86.9	5
	UC ₂	8.6	87
	С	-	8
Apparent density (g/cm ³)		12.4	3.82
Porosity (%)	Open	5	51
	Close	2	5

STUC PROJET: STudy of Uranium Compounds

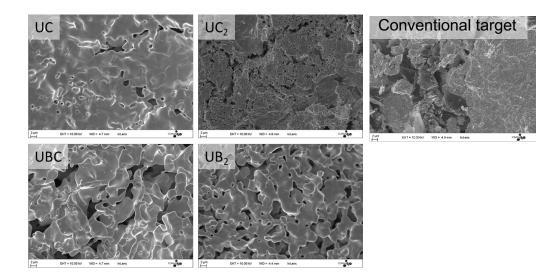

Elements	Release process	Target caracteristics
Sr	-	Low density
Cs	Diffusion ¹	Small grain
Kr	Diffusion ²	Open pores
I	Diffusion/Effusion ²	
Те	-	High density
Sb	-	Open pore (?)
Sn	Effusion ²	

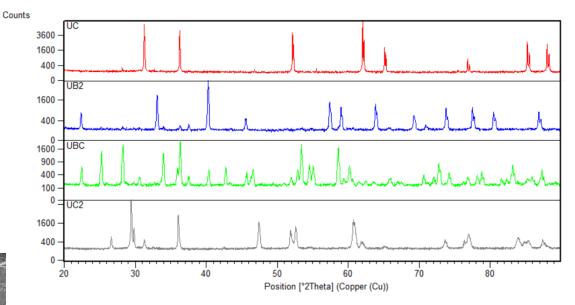
1: F. Hosni et al. NIM B 247 (2006) 205–209

2: B. Roussière et al. NIM B 246 (2006) 288-296

Table 1 List of the targets					
Target	UC2:C	UC2 particle size (µm)	Density (g/cm ³)	Thickness (cm)	Production method
ANL- oxide	1:2	-	2.61	0.15	$UO_2 + C$
ANL 200	1:8	<250	5.65	0.076	CERAC UC _x
ANL 325	1:3	<43	5.24	0.072	$U_{met} + C$
ANL 400	1:3	<37	5.49	0.077	$U_{met} + C$
ThO ₂	_	-	~7	_	Commercial
UB ₄	-	-	2.1	_	$UCl_4 + MgB_2$
Refrac	1:0.2	-	10.97	0.1138	Umet + C via UH

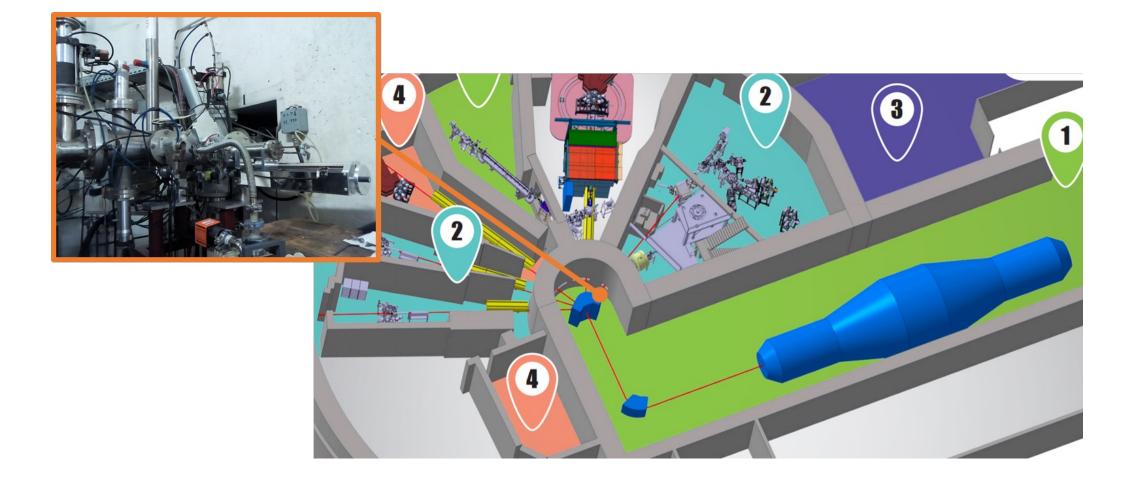
duced yields roughly an order of magnitude lower and a high-density UC₂ target another order of magnitude lower. The discussion indicates that the physical-chemical properties of these targets are strongly dependent upon production processes. Therefore, complete chemical and physical characterizations of targets are necessary in order to draw strong conclusions on the specific release properties of UC, UC₂, oxycarbides, ThO₂, ThC₂, UB₂, UB₄, UB₁₂ as well as the type of graphite used. This is particularly necessary when designing targets for production facilities.

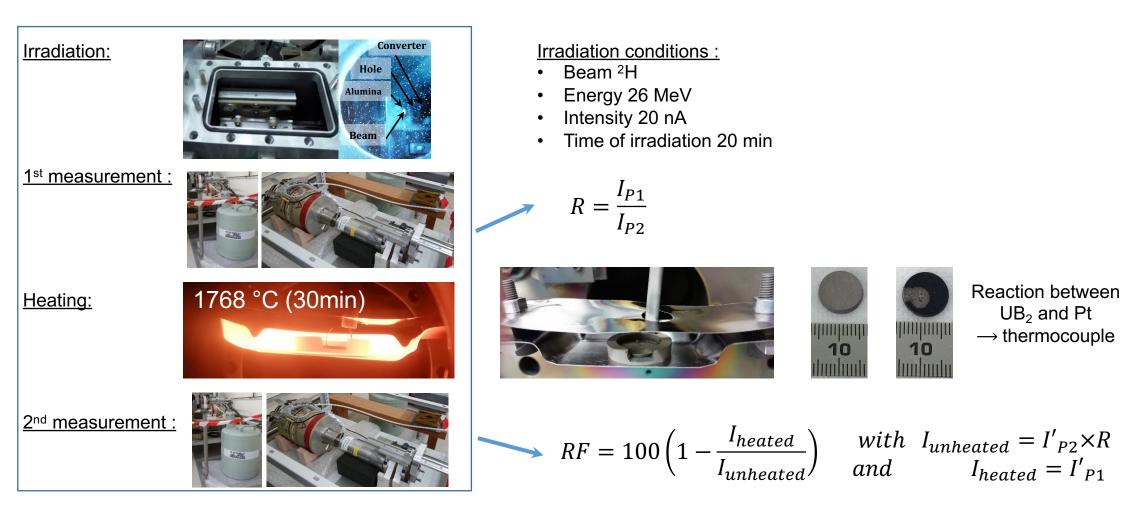

A. Kronenberg et al. Nucl. Instr. and Meth. in Phys. Res. B 266 (2008) 4267-4270


<u>Synthesis of various uranium compounds (UC, UBC, UB₂ and UC₂):</u> (Aim: To study the influence of uranium alloy density on the release of fission products.)

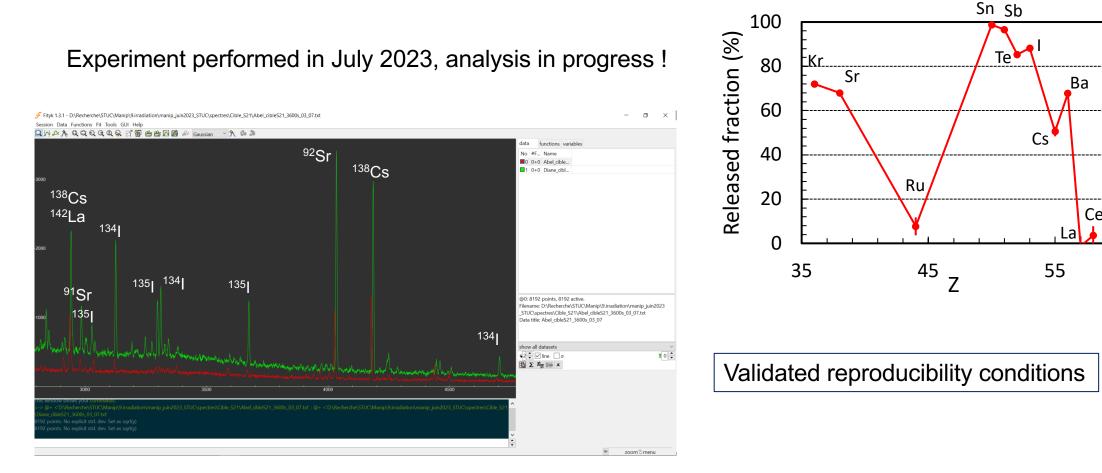
- If we add porosity to a very dense target, does this improve release ?
- Is there a difference in release if we use uranium compounds with theoretical densities for UC, UBC, UB₂ and UC₂? .
- Is there any influence of the chemical environment?

- $UO_{2(s)} + 4C_{(s)} \rightarrow UC_{2(s)} + 2CO_{(g)}$
- $UO_{2(s)} + 3C_{(s)} \rightarrow UC_{(s)} + 2CO_{(g)}$
- $UO_{2(s)} + 3C_{(s)} \rightarrow UC_{(s)} + 2CO_{(g)}$ $UC_{(s)} + BN_{(s)} \rightarrow UBC_{(s)} + N_{(g)}$
- $2UO_{2(s)} + 3C + B_4C_{(s)} \rightarrow 2UB_{2(s)} + 4CO_{(g)}$




Target	Apparent density	Porosity (%)		SSA	Open pore size distribution (%)	
	(g/cm ³)	open	close	(m²/g)	<10 µm	>150 µm
Conventional target $(UC_2 + 2C)$	4.5	44	1	0.4490	75	25
UC	8.16	39	1	0.0763	94	6
UB ₂	5.78	53	2	0.1032	80	20
UBC	6.93	42	1	0.0496	100	0
UC ₂	5.86	46	3	0.3965	88	12

STUC PROJET: STudy of Uranium Compounds



STUC PROJET: STudy of Uranium Compounds

Conclusion: there are no universal targets, but one target for each element.

The aim of this R&D project is to answer the following questions:

- If we add porosity to a very dense target, does this improve release ?
- Is there a difference in release if we use uranium compounds with theoretical densities for UC, UBC, UB₂ and UC₂?
- Is there any influence of the chemical environment ?

Conclusion: there are no universal targets, but one target for each element.

The aim of this R&D project is to answer the following questions:

- If we add porosity to a very dense target, does this improve release ?
- Is there a difference in release if we use uranium compounds with theoretical densities for UC, UBC, UB₂ and UC₂?
- Is there any influence of the chemical environment ?

Thank you for your attention