RIALTO, the laser ion source at ALTO

François Le Blanc

Enrique Minaya Ramirez

1

8/9/2023

Outline

- ❀ ALTO-LEB facility
- ❀ Laser resonance ionization
- ❀ Layout of RIALTO
- ℜ RIALTO upgraded system.
- ℜ Ag and Ga production
- ❀ Outlook: A laser ion source at Spiral1

8/9/2023

ALTO Facility (Accélérateur Linéaire et Tandem d'Orsay)

 10 μA Electron beam accelerated at 50 MeV on a target of 70g of UCx to produce neutron-rich radioactive nuclei by photofission.

Isotope Separation On Line technique

ALTO-LEB Hall

- Hyperfine interaction
 * POLAREX
- Manipulation of ions for mass measurements
 - * MLLTRAP
- * Radioactive decay
 - * COeCO
 - * TETRA
 - * BEDO

Ionization methods

Laser resonance ionization

8/9/2023

ALTO-LEB selection

RIALTO facility

2 high power Nd:YAG: 532 nm, 100W (top hat) and 35W (gaussien)

3 dye lasers (540 - 850 nm) with BBO doubling and tripling units (210 - 425 nm)

RIALTO layout

- * General sychronisation
- *
- *

*

Atomic Beam Unit (ABU)

- Allows determining optimal operational parameters for on-line production
- ℜ Qualitative validation of ionization schemes.

A sample of interest is placed in the graphite oven and heated to produce an atomic flux. The laser beams interact with this flux producing an ion beam.

Wavelength scan

To verify the frequency of the atomic transitions in the Ag ionization scheme First excitation step

Stabilization system

Distance from laser output to ion source 20m

8/9/2023

Ionization of two elements

Ga ionization

8/9/2023

Ga production

Laser ON-OFF effect. Gamma-ray spectrum recorded with HPGe detectors at the COeCO station for ⁸⁰Ga with surface ionization ion source (purple) and with the laser ionization (pink). Factor 8 enhancement with lasers.

8/9/2023

Ag ionization

Silver production

8/9/2023

Silver perspectives: looking for AIS

- Use the fundamental wavelength of Ga as third step.
- * Change dye (styryl 9M).

8/9/2023

Short term perspectives : use of the tripling unit

- 🛞 Neutron-rich Zn program
 - * BEDO + Monster

Neutron-rich Sb program

* Magnetic moments and hyperfine

field of Sb with POLAREX

Short term perspectives : New YAG with 2 output

Installation of a new high-power Nd:YAG laser with UV output: 17W@355nm and 55W@532nm

Reutron-rich Ge program Ge

Outlook: R&D for a laser ion source at Spiral1

Developing level scheme: Looking for AIS with GISELE and RIALTO

8/9/2023

Outlook: laser ion source at Spiral1

2 options :

- using GISELE as it is now and send the beam to SPIRAL1

And/or

- Build another laser room close to SPIRAL1, move the lasers of GISELE there and complete them with a set of dye laser to fully cover all the wavelengths

8/9/2023

Outlook: laser ion source at Spiral1

Using GISELE as it is

To be operational quickly: using GISELE and transport the laser beam with fibers Available for resonant transitions (< some watts) i.e. for element with AIS

Qualified manpower : available at GANIL

Delay: 6 months

To be tested with stable element ion source

8/9/2023

Outlook: laser ion source at Spiral1

In parallel, building another laser room close to SPIRAL1

- A 30 m2 equipped laser room at some 20m (or less) of the SPIRAL1 ion source
- ❀ A GISELE like ion source with 3 TiSa and one 70W long pulse YAG laser

Qualified manpower: available at GANIL and IJCLab

Delay : 2 years

8/9/2023

FTE SOLAIRE 2020-2025

Nom des personnes	Statut	2020	2021	2022	2023	2024	2025	Total (FTE)
IJCLab pour RIALTO		190%	170%	135%	75%	75%	75%	9,00
François Le Blanc	DR	60%	60%	60%	60%	60%	60%	
Vladimir Manéa	CR	40%	20%	15%	15%	15%	15%	
A. Segovia Miranda	PhD	90%	90%	60%	60%	90%	50%	
IJCLab pour GISELE		30%	20%	30%	30%	30%	20%	1,60
Vladimir Manéa	CR	20%	10%	10%	10%	10%	10%	
Serge Franchoo	CR	10%	10%	10%	10%	10%	10%	
Wenling Dong	PhD			10%	10%	10%		
TOTAL IJCLab (FTE)		2,20	1,90	1,65	1,05	1,05	0,95	10,60
GANIL pour GISELE		15%	35%	65%	45%	35%	35%	2,30
Anjali Ajayakumar	PhD		10%	10%	10%			
Alejandro Ortiz-Cortes	PhD		10%	30%				
Etudiant Master - PhD	M2-PhD				10%	10%	10%	
Nathalie Lecesne	IR	10%	10%	10%	10%	10%	10%	
Sarina Geldhof	IR			10%	10%	10%	10%	
Benoit Osmond	AI	5%	5%	5%	5%	5%	5%	
TOTAL GANIL (FTE)		0,15	0,35	0,65	0,45	0,35	0,35	2,30

Total GISELE : 3,9 FTE

Total RIALTO : 9 FTE (only IJCLab)

Thank you for your attention

