

Preparation and characterization of actinide targets at JRC Geel, Belgium

G. Sibbens, A. Moens, D. Vanleeuw, J. Karpinska, D. Lewis EC Joint Research Centre, Geel, Belgium

> Workshop Ion Sources and Targets, GANIL 6-8 Sept. 2023

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

This presentation

- Introduction
- Radiochemistry
- Preparation of actinide targets
- Preparation of substrates for actinide targets
- Characterization of actinide targets
- Ongoing R&D
- Resources and skills
- Summary

JRC sites

Headquarters in **Brussels** and research facilities located in **5 EU Countries**:

- Belgium (Geel)
- Germany (Karlsruhe)
- Italy (Ispra)
- The Netherlands (Petten)
- Spain (Seville)

Introduction Nuclear laboratories at JRC - Geel

GELINA

neutron time-of-flight facility for high-resolution neutron measurements

MONNET tandem accelerator based fast neutron source

TARGET nuclear target preparation laboratories

METRO nuclear reference material and measurement facility

HADES low-level gamma-spectrometry laboratory

RADMET laboratories for standardisation of radionuclide activity

European Commission

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

What kind of targets are produced at JRC?

- Targets for neutron data measurements
- Commercially not available
- Not produced by other laboratories within EU
- Highly enriched in the isotope of interest
- Tailor made
- High quality (mechanically and chemically stable, homogeneous as far as possible)
- Well characterized (number of atoms per unit area or areal density of the nuclide under investigation, impurities, homogeneity)

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

 ^{241}Am deposit Ø 60mm on 25 µm Al foil on 2 mm thick Al-ring Ø_{out} 110 mm, Ø_{in} 100 mm

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Target preparation techniques

Thin layers

- by molecular plating (U, Pu, Np, Am, Th) on thin substrates
- by physical vapour deposition (²³⁵U, ²³⁸U, ⁶LiF, ¹⁰B, C₅₇H₁₁₀O₆, metal. Li) on thin substrates

Samples with a wide range of thicknesses

- by rolling and punching metal discs
- by pressing powders
- by dissolving and diluting solutions

Thin substrates

- by polymerization (polyimide foils)
- by gluing thin Al foils on metal rings

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Target characterization techniques

- U, Pu, Np, Am, Th material: weighing, mass spectrometry
- U, Pu, Np, Am, Th deposits: low-geometry alpha-particle counting, alpha and gamma scanning
- ⁶LiF, ¹⁰B, C₅₇H₁₁₀O₆, metallic Li deposits: weighing and diameter determination
- Metal discs: weighing, thickness and area determination
- Compact powders: weighing, diameter and thickness determination
- Thin polyimide foils: spectrophotometry

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

This presentation

- Introduction
- Radiochemistry
- Preparation of actinide targets
- Preparation of substrates for actinide targets
- Characterization of actinide targets
- Ongoing R&D
- Resources and skills
- Summary

Radiochemistry

- Purification
 - by ion exchange
 - by extraction chromatography

Conditioning of Pu by a REDOX cycle $Pu(VI) \rightarrow Pu(III)$ by adding 1.25 M FeCl₂ $Pu(III) \rightarrow Pu(IV)$ by adding 1 M NaNO₂ in HNO₃ (molarity depending on purification)

- Preparation of electrolyte for molecular plating
- Preparation of UF₄ for physical vapour deposition
 - Conversion of U_3O_8 into UF₄ via wet chemical precipitation method

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

This presentation

- Introduction
- Radiochemistry
- Preparation of actinide targets
- Preparation of substrates for actinide targets
- Characterization of actinide targets
- Ongoing R&D
- Resources and skills
- Summary

Targets - Ions Sources **GANIL**. France 6-8 Sept. 2023

Molecular plating based on the cathodic deposition of the actinide material in an isopropanol solution onto a substrate (aluminium)

POM Stainless Steel

Molecular plating cell

Material: 99.934% 235U Mass ²³⁵U : 3.5 mg Areal density ²³⁵U: 279 µg cm⁻² Deposit diameter: 40 mm Backing: 0.25 mm Al Ø 60 mm

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Molecular plating

Measurement of the ²³⁰Th(n,f) reaction cross-section at EAR-1 and EAR-2 of the CERN n_TOF facility

Material: 91.575% ²³⁰Th Activity ²³⁰Th: 1.7 MBq Mass ²³⁰Th: 2.25 mg Areal density ²³⁰Th: 45 µg/cm² Deposit Ø: 80 mm

Backing: Al foil 0.025 mm thick glued on 1 mm thick Al-ring $Ø_{out}$ 110 mm, $Ø_{in}$ 100 mm

V. Michalopoulou et al., Measurement of the neutron-induced fission cross section of ²³⁰Th at the CERN n_TOF facility, PHYSICAL REVIEW C 108, 014616 (2023)

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Physical vapour deposition, based on the condensation of a vaporized substance onto a backing

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Physical vapour deposition

$^{238}\text{UF}_4$ evaporator

Resistance heating in Ta crucible Sublimation of UF_4 at 1500°C

²³⁵UF₄ evaporator

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Physical vapour deposition

material: ^{238}U deposit Ø:30 mmmass ^{238}U :0.3 mgareal density ^{238}U :48 µg cm⁻²substrate:0.25 mm thick, Ø 50 mm

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

²³³U disc prepared by punching

n inelastic scattering cross-section of ²³³U for new generation cycles like the thorium cycle, important to test and improve predictive power of theoretical codes

²³³U disc Ø 30 mm 0.64 mm thick

Prepared by punching in a glove box Characterized for mass and thickness in argon glove box Mounted in a measurement holder with 50 µm Al foil

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Uniaxial pressing

- 1. Die filling
- 2. Compaction
- 3. Ejection

Hydraulic press in a glove box

5 mm Ø pellet of 0.1 g $^{238}\text{U}_3\text{O}_8$ hydraulic pressing at 10 kN

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Uniaxial pressing ²³⁹PuO₂ pellets

²³⁹PuO₂ Batch 716 99.97% ²³⁹Pu

Analysed for impurities: C, CO_2 and Cl

²³⁹PuO₂Batch 1756 99.90% ²³⁹Pu

²³⁹PuO₂**Purified** Batch 1756(p) 99.90% ²³⁹Pu

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

This presentation

- Introduction
- Radiochemistry
- Preparation of actinide targets
- Preparation of substrates for actinide targets
- Characterization of actinide targets
- Ongoing R&D
- Resources and skills
- Summary

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Thin polyimide foil

- Prepared by polymerisation
- Ø 10-80 mm
- Areal density: 20-200 µg/cm2
- Mechanically strong
- Excellent resistance to
 - irradiation with charged particles
 - temperature
 - chemicals
- Not commercially available at thickness of interest

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Process to produce thin polyimide foils

Preparation of Amide-Acid (polycondensate) solution in dry atmosphere 1,2,4,5 - benzenetetracarboxylicdianhydrid + 4,4' – diaminodiphenylether in N,N' – dimethylformamide

Cleaning of glass plates in oxygen plasma

Coating glass plates with polycondensate solution in Argon box

Polymerization 12 min at 350°C

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Process to produce thin polyimide foils

Release of polyimide foil from glass plate

Transfer of polyimide foil onto ring

Polyimide foil on ring

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Mounting of AI foil with thickness of 10-30 µm on AI ring

 $^{241}\mbox{Am}$ deposit on 25 $\mu\mbox{m}$ Al foil

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Cleaning process

for AI substrates to improve adhesion of the deposited layer

Al discs

- Chemically etching
- In a mixture of 80% $H_3PO_4 4\% HNO_3 16\% H_2O$

Thin Al foils glued on a ring

- Plasma cleaning/soft etching
- In argon-nitrogen

for glass plates to increase hydrophilicity

- Plasma cleaning/soft etching
- In oxygen

Low-pressure plasma cleaner

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

This presentation

- Introduction
- Radiochemistry
- Preparation of actinide targets
- Preparation of substrates for actinide targets
- Characterization of actinide targets
- Ongoing R&D
- Resources and skills
- Summary

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Thickness measurement of polyimide foils by photo spectrometry

reflection mode

transmission mode

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Low-geometry alpha-particle counting: activity, homogeneity, impurity

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Activity measurement by low-geometry alpha-particle counting

Measurement runs of 10000 s Solid angle: 0.24 % of 4π sr

Measurement runs of 20000 s Solid angle: 0.0007 % of 4π sr

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Gamma spectrometry: impurity, homogeneity

In-house made X-Y scanning system

Ge detector GR4520 cooled with an electrically refrigerated cryostat Cryo-Pulse 5 Plus

Gamma spectrometry: homogeneity

Gamma-scan collimator 8 mm

Autoradiograph

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Mass spectrometry: Atomic abundances

TRITON Thermal Ionization Mass Spectrometer

loading of the samples and the standards on the Re filament

positioning of the filaments in the magazine

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Molecular plating versus physical vapour deposition

Molecular plating in C_3H_8O of U_3O_8 in 0.75 M HNO₃ 268 µg cm^{-2 238}U on Al Deposit Ø: 30 mm Backing: 0.25 mm Al Ø 50 mm

Chemical form

U oxide? layer containing C₃H₈O Oxidation state U(VI) Physical vapour deposition of UF₄ 264 μ g cm⁻² ²³⁸U on polished Al Deposit Ø: 30 mm Backing: 0.25 mm Al Ø 50 mm

UF₄ layer Oxidation state U(IV)

Targets - Ions Sources **GANIL**. France 6-8 Sept. 2023

Molecular plating versus physical vapour deposition **Morphology**

Molecular plating 268 µg cm^{-2 238}U on Al

- Maze-like layer
- U(VI)
- Major elements: U, C, O
- Contains isopropanol C₃H₈O •

SEM Magnification 1.25kx 100 um

Physical vapour deposition 264 µg cm^{-2 238}U on AI

- Smooth layer, follows roughness profile of substrate •
- U(IV) •
- Major elements : U, F
- UF₄ deposit

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Molecular plating versus physical vapour deposition Homogeneity

TP2017-006-210 degrees 12000 ²³⁰Th 10000 Counts in ROI 8000 Deposit Ø: 80 mm Areal density: 92 µg/cm² 6000 4000 2000 20 40 60 80 100 120 140 Scan TP2020-002-09 coll 8mm 16000 14000 ²⁴³Am 1200 Counts in ROI Deposit Ø: 60 mm 10000 Areal density: 3.3 µg/cm² 800 6000 4000 2000 10 20 30 40 50 60 70 80 90 mm

Molecular plating

Physical vapour deposition Distance sublimation source to backing: 19.5 cm

235U

Deposit Ø: 70 mm Areal density: 450 to 600 µg/cm²

Alpha scan

About 5% difference in areal density between the centre and the edge of the deposit

Gamma scan (statistical uncertainty 1%) About 8% difference in areal density between the centre and the edge of the deposit

Molecular plating versus physical vapour deposition GANIL, France Comparison

Process	Molecular plating	Physical vapour deposition
Yield	75-95%	< 5%
Time	3 hours	1 day (deposition 1 hour)
Chemistry	Preparation of electrolyte (0.5 day)	Conversion of U_3O_8 into UF ₄ (1 week)
Equipment	30 kEuro (+ 30 kEuro glove box)	150 kEuro (evaporator integrated in glovebox)

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

This presentation

- Introduction
- Radiochemistry
- Preparation of actinide targets
- Preparation of substrates for actinide targets
- Characterization of actinide targets
- Ongoing R&D
- Resources and skills
- Summary

Preparation of ²³⁵U deposits by e-beam evaporation

New ²³⁵U evaporator integrated in a glove box

- Resistance heating
- E-beam
- In situ RF plasma cleaning
- Movable sample stage (flexibility in yield vs homogeneity)
- Protection tube to prevent cross contamination for use of other elements

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Preparation of ²³⁵U deposits by e-beam evaporation

New ²³⁵U evaporator integrated in a glove box

Advantage e-beam:

- Original U₃O₈ material can be used instead of UF₄
- No time consuming wet chemical precipitation method

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Molecular plating on thin conductive polyimide foils

- Purpose: spectroscopic targets to perform fission cross-section and fragment yield measurements with a geometrical efficiency close to 2π.
- Preparation of conductive PI foils
 - Carbon fillers
 - Minimum thickness
 - Conductivity
 - Energy loss of alpha particles
 - Mechanical strength
- Re-design of molecular plating cell
- Molecular plating

Molecular plating on thin conductive polyimide foils

Transfer of conductive polyimide foil onto ring

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

C filler Type	Areal density (µg/cm²)
PI/CNT (Carbon Nano Tubes)	420 - 645
PI/GNnP (Graphene NanoPlatelets)	868 - 970
PI/SLG (Single Layer Graphene)	195 - 790
PI/E-GN (Customised graphene suspension in DMF)	70 - 230

CNT

SLG

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Molecular plating on thin conductive polyimide foils

New Design of Molecular Plating Cell

- Even pressure distribution seal
- No solvent weight on thin backing
- POM base (one piece) also a spill tray
- Ti/Pt coated anode (same size/shape as deposit)
- Can be extended for various sizes of backings

Design based on molecular plating cell described in paper:

M.N. Torrico, R.A. Boll, M. Matos, Electrodeposition of actinide compounds from an aqueous ammonium acetate matrix: Experimental development and optimization., NIM A 790 (2015) 64–69

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

This presentation

- Introduction
- Radiochemistry
- Preparation of actinide targets
- Preparation of substrates for actinide targets
- Characterization of actinide targets
- Ongoing R&D
- Resources and skills
- Summary

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Key resources for production of actinide targets

- Actinide material:
 - Supplier of enriched actinide material!
 - Public procurement procedure
 - Price material: depends on radioisotope, purity, analysis
 - Dispensing/packing costs if applicable
 - Transport: price depends on type and amount of radioactive material

²⁴³Am as oxide powder from ORNL, transport UN2915 to JRC Geel

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Key resources for production of actinide targets

- Basic laboratory tools (glass ware, pipettes, purification columns etc.)/ solvents, chemicals
- Substrate/vial/container
- Cleaning equipment (e.g. Plasma system)
- Fume hood
- Glovebox in under-pressure
- Molecular plating set-up
- Physical vapour deposition set-up
- Mechanical transformation equipment (rolling, punching, pressing)
- Transport container

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Key resources for characterization of actinide targets

- Alpha counter (incl. scanning)
- Gamma spectrometer (incl. scanning)
- Microbalance
- Micro-meter/calliper
- Mass spectrometer
- Scanning electron microscope with energy dispersive X-ray spectroscopy

Skills

Scientific and technical competences in

- Basic laboratory work
- Mass metrology
- Nuclear chemistry
- Nuclear physics
- General and nuclear engineering
- Working in a fume hood
- Working in a glove box
- Dexterity

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Skills

- Concerned with nuclear safety
 - Radioprotection
 - ALARA (as low as reasonably achievable), justified
 - Radioactive waste
 - Radioactive transport
- Concerned with nuclear safeguards
 - Accountancy of fissile material
- Concerned with nuclear security
 - Clearance
- Concerned with legal/finance
 - Procurement

Summary

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Simplified diagram of a target production planning

Technical specs				
Risk assessment				
Equipment/material				
Radiochemistry				
Test				
Target production				
Characterization				
Transport				
Delivery				
Accountancy				
Waste				

Summary

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

- G. Sibbens, K. Luyckx, A. Stolarz, M. Jaskóła, A. Korman, A. Moens, R. Eykens, D. Sapundjiev, Y. Aregbe, **Quality of polyimide foils for nuclear** applications in relation to a new preparation procedure, Nuclear Instruments and Methods in Physics Research A 655 (2011) 47–52
- G. Sibbens, A. Moens, R. Eykens, D. Vanleeuw, F. Kehoe, H. Kühn, R. Jakopic, S. Richter, A. Plompen, Y. Aregbe, Preparation of ²⁴⁰Pu and ²⁴²Pu targets to improve cross section measurements for advanced reactors and fuel cycles, J Radioanal Nucl Chem (2014) 299:1093–1098
- D. Vanleeuw, D. Sapundjiev, G. Sibbens, S. Oberstedt, P. S. Castiñeira, Physical vapour deposition of metallic lithium, J Radioanal Nucl Chem (2014) 299:1113–1120
- J. Heyse, M. Anastasiou, R. Eykens, A. Moens, A. Plompen, P. Schillebeeckx, G. Sibbens, D. Vanleeuw, R. Wynants, Characterization of ²³⁵U targets for the development of a secondary neutron fluence standard, J Radioanal Nucl Chem (2014) 299:1055–1059
- L. Benedik, G. Sibbens, A. Moens, R. Eykens, M. Nečemer, S. D. Skapin, P. Kump, Preparation of thick uranium layers on aluminium and stainless steel backings, Applied Radiation and Isotopes (2014) 87:238-241
- G. Sibbens, A. Moens, D. Vanleeuw, R. Eykens, S. Oberstedt, Multi-layer ²³⁵UF₄-⁶LiF-Au targets for high-resolution fission fragment measurements, Applied Radiation and Isotopes (2014) 87:229-232
- G. Sibbens, A. Moens, R. Eykens, Preparation and sublimation of uranium tetrafluoride for the production of thin ²³⁵UF₄ targets, J Radioanal Nucl Chem (2015) 305:723-726
- G. Sibbens, A. Moens, D. Vanleeuw, D. Lewis, Y. Aregbe, Nuclear targets produced within the project of solving CHAllenges in Nuclear Data, EPJ Web of Conferences 146, 04062 (2017), ND2016,
- G. Sibbens, M. Ernstberger, T. Gouder, M. Marouli, A. Moens, A. Seibert, D. Vanleeuw, M. Vargas Zúñiga, T. Wiss, M. Zampella, E. Zuleger, Morphological and compositional study of ²³⁸U thin film targets for nuclear experiments, AIP Conference Proceedings 1962, 030007 (2018)
- D. Vanleeuw, D. Lewis, A. Moens, G. Sibbens, T. Wiss, Implementation of new integrated evaporation equipment for the preparation of ²³⁸U targets and improvement of the deposition process, AIP Conference Proceedings 1962, 030008 (2018)
- G. Sibbens, A. Göök, D. Lewis, A. Moens, S. Oberstedt, D. Vanleeuw, R. Wynants, M. Zampella, **Target preparation for neutron-induced reaction** experiments, EPJ Web of Conferences 229, 04003 (2020)
- A. Moens, P.A. Celdran, H. Hein, G. Sibbens, D. Vanleeuw, S. Van Winckel, Production of powder targets for neutron-induced cross section measurements, EPJ Web of Conferences 285, 04002 (2023)

J. Karpinska et al., Preparation of thin conductive polyimide foils for nuclear chemistry, in preparation

European Commission

Thank you and keep in touch

Goedele Sibbens EC-JRC Geel, Belgium goedele.sibbens@ec.europa.eu

© European Union 2023

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

f

EU Science Hub joint-research-centre.ec.europa.eu

Y	@EU_	Scien	<mark>ce</mark> Hub
---	------	-------	---------------------

- EU Science Hub Joint Research Centre
- in) EU Science, Research and Innovation
- D EU Science Hub
- (@) @eu_science

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Extra slides with detailed information

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Radiochemistry

Purification

Purification e.g. for Am, for Pu

- Dissolution of the actinide oxide powder in concentrated HNO₃ and if needed small amount of 1% HF at about 100 °C
- Evaporation near dryness at about 100 °C
- Conditioning of Pu by a REDOX cycle Pu(VI) → Pu(III) by adding 1.25 M FeCl₂ Pu(III) → Pu(IV) by adding 1 M NaNO₂ in HNO₃ (molarity depending on purification)

Radiochemistry

Purification of Pu for Am by ion exchange

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Loading Pu in 8 M HNO₃

Stripping by adding 8 M HNO₃

Eluting Pu by adding 0.35 M HNO₃

anion exchange resin: Dowex 1-X8 particle size: 0.09 - 0.25 mm

Radiochemistry

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Purification of Am for Pu by extraction chromatography

DGA resin, normal, 12 mg/mL, 100-150 μm particle size Great affinity for americium

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Radiochemistry

Electrolyte for molecular plating

Electrolyte for molecular plating: isopropanol + actinide dissolved in 0.75 M $\ensuremath{\mathsf{HNO}_3}$

- Dissolution of the actinide oxide powder in concentrated HNO₃ and if needed small amount of 1% HF at about 100 °C
- Evaporation near dryness at about 100 °C
- Dissolution in 0.75 M HNO₃

Radiochemistry

UF₄ for physical vapour deposition

Sublimation in vacuum of

- U_3O_8 requires T >2500°C which is not possible via resistance heating
- UF₄ possible at around 1500°C

Conversion of U₃O₈ into UF₄ via wet chemical precipitation method

Starting material U₃O₈

Resulting material UF₄

$$\begin{split} & \bigcup_{3} O_8 + 6 \text{HCI} \rightarrow 3 \text{UO}_2 \text{CI}_2 + 2 \text{H}_2 \text{O} + \text{H}_2 \uparrow \\ & \text{U}(\text{VI}) O_2 \text{CI}_2 \cdot \text{xH}_2 \text{O} + \text{SnCI}_2 \rightarrow \text{U}(\text{IV}) \text{CI}_4 + \text{Sn}(\text{OH})_2 \cdot \text{yH}_2 \text{O} \\ & \text{UCI}_4 + 4 \text{HF} \rightarrow \text{UF}_4 \downarrow + 4 \text{HCI} \end{split}$$

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Molecular plating cell

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Molecular plating

Material: 99.8921 % 240Pu

Activity ²⁴⁰Pu : 4.1 MBq Mass ²⁴⁰Pu: 487.8 µg Areal density ²⁴⁰Pu : 57.04 µg/cm²

Deposit Ø: 33 mm Backing: 18 μ m Aluminium stretched and glued on 0.3 mm thick stainless steel frame $ø_{out}$ 74 mm $ø_{in}$ 64 mm

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Physical vapour deposition

 $\label{eq:mass_select} \begin{array}{l} \underline{Material}: 99.998\% \ ^{238} U \\ \underline{Mass} \ ^{238} U: 1.84 \ \text{mg} \\ \underline{Areal \ density} \ ^{238} U: 377 \ \mu g \cdot \text{cm}^{-2} \\ \underline{Deposit \ diameter}: 20 \ \text{mm} \\ \underline{Backing}: \ 34 \ \mu g / \text{cm}^2 \ \text{polyimide foil} \\ \text{on 1 mm thick Al ring } \ \varnothing_{\text{out}} \ 90 \ \text{mm} \ \varnothing_{\text{in}} \ 70 \ \text{mm} \end{array}$

For the development of innovative techniques and instrumentation for fission cross section measurements

Preparation of actinide targets Uniaxial pressing

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

- 5 mm Ø pellet of 0.1 g $^{238}U_3O_8$
- low ²³⁶U/²³⁸U ratio of 7.10⁻¹²
- Produced by hydraulic pressing at 10 kN in glove box
- Characterized for mass by weighing in glove box

Pellet is used in a campaign to measure the ${}^{235}U(n,\gamma)$ cross-section deduced by quantify the number of ${}^{236}U$ nuclei produced after neutron irradiation

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Process to produce thin polyimide foils

<u>Material</u>: 99.998% ²³⁸U <u>Mass</u> 238 U : 1.84 mg <u>Areal density</u> 238 U: 377 µg·cm⁻² <u>Deposit diameter</u>: 20 mm <u>Backing</u>: 34 µg/cm² polyimide foil on 1 mm thick Al ring \emptyset_{out} 90 mm \emptyset_{in} 70 mm

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Molecular plating on thin conductive polyimide foils

Carbon Fillers (PI/C) used as conductive fillers

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Molecular plating on thin conductive polyimide foils

Conductivity of foils

- Easy to use
- Wide Current Range
- Non- Destructive
- Rapid Material Characterization

	Areal	
ld	density	Conductivity
	µg/cm2	Siemens/m
Au/PI	-	2.384
C (GSI)	121.43	782.9
CNT/PI	423.95	44.44
GNnP/PI	868.12	26.67
	148.25	0.6453
	309.95	0.5864
SLG/FI	590.55	0.142
	647.73	0.4066
	58.07	1.624
	100.56	0.7351
E-GIN/PI	171.32	0.3504
	213.01	0.1939

Targets - Ions Sources GANIL, France 6-8 Sept. 2023

Molecular plating on thin conductive polyimide foils

