

F.Pérocheau, G.Frémont

- I. INTRODUCTION
- II. LABORATORY
- III. MECHANICAL PREPARATION
- IV. CARBON SUBTRATES PREPARATION
- V. MATERIAL DEPOSITION
- VI. MATERIALS
- VII. LABORATORY EVOLUTIONS

I. INTRODUCTION

In the years 2000, GANIL needed thin targets for FULIS experiment.

G. Frémont installed a laboratory here and started the production in 2004.

He benefited from the experience of a target laboratory near Strasbourg.

II. LABORATORY

Now, G.Frémont makes targets in a 50m2 room.

Target laboratory in GANIL

III. MECHANICAL PREPARATION

Rolling

Two rolling-mills

protection of foil by stainless-steel foils and/or by the atmosphere of the glove box

μm

Powder pressing

tablets are more easy to melt than powders

IV. CARBON SUBSTRATES PREPARATION

Carbon sublimation

V. MATERIALS DEPOSITION

Thin targets are mainly obtained here by evaporation

Depending on the material, we can choose particular configurations :

Small crucible for expensive material

Crucible heating by electron beam for high evaporation temperature

Target laboratory in GANIL

Direct heating of the material by electron beam for very high evaporation temperature

Target laboratory in GANIL

Evaporator for medium temperatures

Evaporator with electron beam (3 kW or 6 kW)

September 7th 2023

Evaporator for large surface

allows fabrication of detector parts

G.Frémont has experience of electro-deposition

Preparation of osmium targets with carbon backing Georges Fremont, Yvette Ngono-Ravache et al AIP Conf. Proc. 1962, 2018, 030002-1-030002-4

from OsCl₄ : Os on Cu foil -> Carbon deposition on Os -> Cu dissolution

VI. MATERIALS

G.F. knows how to fabricate targets using the following materials :

Al, Fe, Ni, Zn, Ge, Se, Ag, Sn, Au, Pb, PbS, Bi, Bi2O3 (in resistive crucible)

Mn, Mo (in cold crucible, heated by electron beam)

Mg, Ca, Ba, Gd, Yb (in small crucible heated by electron beam)

Os (by electro-deposition)

September 7th 2023

VII. LABORATORY EVOLUTIONS

The new experimental devices in GANIL (S3, NFS ...) demand :

- the increase of target production volume (50 to 500 a year)
- the implemention of other materials

We need :

- new machines able to treat several substrates in one batch.
 > 15/day
- new machines for implementing high vaporisation temperature materials (Ta, Re...)
 -> sputtering
- protections against toxic materials (Pb, Ur, Th...)
 -> glove box
- protections for targets against O2 and H2O for sensitive materials (Ca, Ur ...)

and :

- chemical analyser (X fluorescence)
- thickness analyser (balance, alpha energy loss)
- two other technicians (one started recently)
- new rooms for installing these new machines

Thank you for your attention