

GSI ECR Ion Sources and metallic lon beams **FABIO MAIMONE**

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Fabio Maimone

Outline

- Ion sources for metal Ion beam production at GSI
- ECRIS Developments
 - Metal ion beam production with Resistive Oven at GSI
 - Optical emission spectroscopy
 - ⁴⁸Ca ion beam
 - ⁵⁴Cr ion beam

GSI Accelerator Facility

3

TERMINAL SOUTH High Current Ion Sources

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Fabio Maimone

TERMINAL SOUTH High Current Ion Sources

PIG (Penning Ionization Gauge) Ion Source

- In operation since 1970's
- 5 Gaseous and 6 sputter ion sources
- Slit Extraction System
- Working Material: Gases and Metals
- Duty Cycle: up to 50Hz / 5ms
- Emission Current Density: up to 100 mA/cm²
- Charge State: 1+...10+
- Lifetime: 50 Hz-1 day; 10 Hz-3 days

Fabio Maimone

TERMINAL SOUTH High Current Ion Sources

PIG (Penning Ionization Gauge) Ion Source

lon species	Intensity (RFQ, emA)
¹⁹⁷ Au ⁸⁺	0.05
⁵⁰ Ti ²⁺	0.05
²⁰⁹ Bi ⁴⁺	0.15
6 Li 1+	0.1
⁵⁶ Fe ²⁺	0.1
¹³⁶ Xe ⁶⁺	0.17
⁵⁸ Ni ¹⁺	0.27

- In operation since 1970's
- 5 Gaseous and 6 sputter ion sources
- Slit Extraction System
- Working Material: Gases and Metals
- Duty Cycle: up to 50Hz / 5ms
- Emission Current Density: up to 100 mA/cm²
- Charge State: 1+...10+
- Lifetime: 50 Hz-1 day; 10 Hz-3 days

Fabio Maimone

PIG Ion Source Performance

TERMINAL SOUTH Beamtime 2022 ⁶Li¹⁺ Performance Duration lon Intensity **Duty cycle** species RFQ [emA] [days] 6| j¹⁺ 5 Hz / 1 ms 0.1 10 5 ⁴⁰Ar²⁺ 0.3 5 Hz / 1 ms 6 GUR5DT8 200 µA 124.7 µA ⁵⁶Fe²⁺ 5-10 Hz / 1 ms 0.1 8 Operation stability over 15 min 58Ni1+ 5 Hz / 1 ms 0.27 12 $^{136}Xe^{6+}$ 25 Hz / 3 ms 0.17 6 ¹⁹⁷Au⁶⁺ 5 Hz / 1 ms0.3 12 Service: 3 PIG sources ¹⁹⁷Au⁸⁺ 25 Hz / 3 ms 0.04 11 Life time: 70 - 80 hours ²⁰⁹Bi⁴⁺ 5 Hz / 1 ms 0.15 10 15 Min Х _ 325.7 µA GUR5DT8 1 mA ⁵⁸Ni¹⁺ Performance ⁵⁸Ni (68 %)

Service: 4 PIG sources Life time: 70 - 80 hours

5

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Fabio Maimone

TERMINAL NORTH High Current Ion Sources

	MUCIS NEW (MUlti Cusp Ion Source) 2010	MUCIS (MUlti Cusp Ion Source)	CHORDIS (Cold or HOt Reflex Discharge Ion Source)	VARIS (Vacuum ARc Ion Source)	MEVVA (MEtal Vapor Vacuum Arc Ion Source)			
	FILAME	NT DRIVEN ION S	OURCE	VACCUM ARC	ION SOURCE			
Plasma chamber	ø 250 x 255 mm	ø 205 x 215 mm	ø 90 x 80 mm	ø 65 x 80 mm	ø 40 x 110 mm			
Filaments	2 x Tungsten	2 x 3 Tantalum	6 x Tungsten					
Extraction system	Triode, Multi aperture: 13 x ø 3 mm, Aspect ratio: 0.5, Extraction voltage: up to 33 kV Post-acceleration: up to 150 kV							
Arc current	up to 400 A	up to 200 A	up to 400 A	up to 2000 A	up to 2000 A			
Emission current dens.		up to 180 mA/cm ²		up to 300 mA/cm ²	up to 170 mA/cm ²			
Duty cycle (typ.)		5 Hz, 1 ms (0.5%)		1 Hz, 0.5 ms (0.05%)	1 Hz, 1 ms (0.1%)			
Working gas/metal	H ₂ , D ₂ , He, CH ₄ ,	Ne, N ₂ , Ar, Kr, Xe	H ₂ , D ₂ , CH ₄ , N ₂ , O ₂ , Ne, Ar, Kr, Xe	O ₂ , Mg, Ca, Ti, Ni, Mo, Ag, Nd, Ta, Au, Pb, Bi, U	O ₂ , Mg, Ca, Ti, Ni, Mo, Ag, Nd, Ta			
In operation	since 2009	since 1987	since 1984	since 2004	since 1999			
Developer	GSI, R. Hollinger F. Heymach	GSI, H. Wituschek	GSI, R. Keller	GSI, R. Hollinger	LBNL (USA), I.G. Brown			

GSI Helmholtzzentrum für Schwerionenforschung GmbH

6

Fabio Maimone

TERMINAL NORTH Ion species provided

1	PERIODIC TABLE OF THE FLEMENTS										18						
1																	
1.01	2	13 14 15 16 17										4.00					
3	4	4 5 6 7 8 9										10					
	Ве											В	C	N	O		Ne
6.94	9.01	.01 10.81 12.01 14.01 16:00 19.00 24									20.18						
11	12	12 13 14 15 16 17									18						
Na	wg												51	1	2		Ar
22.99	24.31	3	4	5	6	7	8		10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	51.99	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.63	74.92	78.97	79.90	84.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
84.47	87.62	88.91	91.22	92.91	95.95	98.91	101.07	102.91	106.42	107.87	112.41	114.82	1118.71	121.76	127.6	126.90	131.25
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33		178.49	180.95	183.84	186.21	190.23	192.22	195.09	196.97	200.59	204.38	207.2	208.98	[208.98]	209.99	222.02
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo
223.02	226.03		[261]	[262]	[266]	[264]	[269]	[268]	[269]	[272]	[277]	unknown	[289]	unknown	[298]	unknown	unknown

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
138.91	140.12	140.91	144.24	144.91	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.06	174.97
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Gaseous ion sources:

9 elements

Metal ion sources:

7

21 elements

recently developed: 3 elements currently in development: 2 elements

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Fabio Maimone

High Current Metal Ion Sources

VARIS (Vacuum Arc Ion Source)

FEATURES

➤In operation:	since 2004
≻Typical duty cycle:	1 Hz / 0.5 ms
Ion charge states:	up to 4+
Extraction system:	triode, multi-aperture 13 x ø3 mm
Extraction voltage:	up to 32 kV
Ion beam currents:	up to 15 emA (@ RFQ)

KEY ELEMENTS

lon species	Intensity at RFQ
¹⁰⁷ Ag ²⁺	6 emA
¹⁹⁷ Au ⁴⁺	5 emA
²⁰⁸ Pb ⁴⁺	7 emA
²⁰⁹ Bi ⁴⁺	10 emA
238U4+	15 emA

GSI Helmholtzzentrum für Schwerionenforschung GmbH

8

High Current Metal Ion Sources Recent development

Fabio Maimone

- Cathodes out of composite materials for production of high current ion beams for Au, Pb and Bi
- Increasing of beam brilliance and repetition rate for intense U⁴⁺ ion beam
- Development of new projectiles in middle-heavy region: Sc, Sn, Pr, Gd, Er

GSI Helmholtzzentrum für Schwerionenforschung GmbH

High Charge States Injector (HLI)

Fabio Maimone

CAPRICE ECRIS MAIN PARAMETERS

Hexapole field	11,2 T
Solenoid field	0,81,5 T
µW-power	10800 W (CW mode)
µW-frequency	14.5 (12,416) GHz
Extraction Voltage [kV]	≤ 22
Ion Species	Gas + Metal
Mode	CW or Pulsed

Workshop Targets - Ion Sources, GANIL, 06-08 September 2023

10

High Charge States Injector (HLI)

CAPRICE ECRIS MAIN PARAMETERS

Hexapole field	11,2 T
Solenoid field	0,81,5 T
µW-power	10800 W (CW mode)
µW-frequency	14.5 (12,416) GHz
Extraction Voltage [kV]	≤ 22
Ion Species	Gas + Metal
Mode	CW or Pulsed

Evaporation technique for metal ion beam production at HLI

Standard Temperature Oven (STO)

LAYOUT

- Central current entry
- · Heating helix on ceramic body
- Water cooled support tube
- Crucible or aperture ring

OPERATING PARAMETERS

- Power: 2-120W
- Temperature: 400 -1550°C
- Consumption: 0,2 5 mg/h
- Lifetimes days: ${\rm ^{48}Ca} \le 30,\,{\rm ^{64}Ni} \le 6$

* Ti with High Temperature Oven (HTO)

11

Evaporation technique for metal ion beam production at HLI

LAYOUT

* Ti with High Temperature Oven (HTO)

GSI Resistive Oven Concept

- The oven head: Two types for different temperature ranges (STO and HTO)
- The sluice (exactly the same for both oven types): Stainless steel part flanged with DN 16 ISO KF for oven exchange without breaking the vacuum (a gate valve is mated)

The push rod (nearly the same for both oven types): System of three concentric stainless steel tubes for cooling water flow. Inside the inner tube an Al₂O₃ insulated rod inserted for the current connection.

Resistive evaporation oven heads

Outer dimensions: length 70 mm, diameter 14.5 mm

Resistive evaporation oven heads

Outer dimensions: length 70 mm, diameter 14.5 mm

STANDARD TEMPERATURE OVEN (STO)

yellow = Al₂O₃; green = Ta; orange = Mo; violet = CuBe₂; black = WRe(26%Re)

- Tungsten wire wound around a ceramic body (heater)
- Aperture ring necessary if the material is liquid at the required vapour pressure (i.e. Fe, Ni)
- Ta or W crucible used inside the ceramic to avoid chemical reactions (i.e. Mg, Ca, Li)
- Ta and Mo parts dismounted, cleaned and re-used

Longitudinal temperature gradient

14

Resistive evaporation oven heads

Outer dimensions: length 70 mm, diameter 14.5 mm

- Tungsten wire wound around a ceramic body (heater)
- Aperture ring necessary if the material is liquid at the required vapour pressure (i.e. Fe, Ni)
- Ta or W crucible used inside the ceramic to avoid chemical reactions (i.e. Mg, Ca, Li)
- Ta and Mo parts dismounted, cleaned and re-used

Longitudinal temperature gradient

Outer dimensions: length 70 mm, diameter 14.5 mm

Resistive evaporation oven heads

- Removed ceramic body (heater) and ceramic parts where high temperature is expected
- Free standing heating wire made of an Aluminum Potassium Silicate doped Tungsten (WVM) (Plasnee GmbH company)
- Crucible retainer made of a Tungsten alloy with 2% La₂O₃ (WL20 provided by Witstar company)

Outer dimensions: length 70 mm, diameter 14.5 mm

- Removed ceramic body (heater) and ceramic parts where high temperature is expected
- Free standing heating wire made of an Aluminum Potassium Silicate doped Tungsten (WVM) (Plasnee GmbH company)
- Crucible retainer made of a Tungsten alloy with 2% La₂O₃ (WL20 provided by Witstar company)

oH Fabio Maimone Worksho

Workshop Targets - Ion Sources, GANIL, 06-08 September 2023

Resistive evaporation oven heads

2000 Temperature [°C] 1000 1000 Interpolated curve based on 500 Extrapolated Thermocouple Measurement data 100 200 300 400 500 600 700 Power [W]

2500

6-

2230 °C

GSI

A CCD camera looks through the straight beam line and the extraction aperture into the plasma chamber.

Spectrum of ⁴⁸Ca + He optimized on ⁴⁸Ca¹⁰⁺

Spectrum of ⁴⁸Ca + He optimized on ⁴⁸Ca¹⁰⁺ after an excessive oven power increase

Spectrum of ⁴⁸Ca + He optimized on ⁴⁸Ca¹⁰⁺ during an over heating of the oven

Spectrum of ⁴⁸Ca + He optimized on ⁴⁸Ca¹⁰⁺ after a power reduction of the oven

Spectrum of ⁴⁸Ca + He re-optimized on ⁴⁸Ca¹⁰⁺

Plasma image recorded with the CCD camera

Hours of beam time wasted, consumption increase of expensive material and experimentalists disappointment.

20 GSI Helmholtzzentrum für Schwerionenforschung GmbH

Fabio Maimone

Optical diagnostic devices at HLI

Telephoto Lens

Optical Beam Splitter and Glass Fiber

CCD Camera

OCEAN OPTICS QE Pro

Entrance slits: 25 µm Wavelenght Range 449-833 nm Resolution 0.95 nm

https://www.oceaninsight.com

..to the Optical Emission Spectrometer

Fabio Maimone

HLI diagnostic devices set-up

GSI Helmholtzzentrum für Schwerionenforschung GmbH

22

Fabio Maimone

Workshop Targets - Ion Sources, GANIL, 06-08 September 2023

GSI

Optical Emission Spectroscopy on E = I FAIF a Standard Temperature Oven

Oven heating: CCD Camera images and Optical Emitted Spectrum

Microwave shielding of the oven orifice

MICROWAVE SHIELDING

- Material: Tungsten
- Mesh 100 (149 $\mu m)$ 25.4 μm wire
- Optical spectroscopy as a diagnostic tool for metal ion beam production with an ECRIS

F.*Maimone, J.Mäder, R.Lang, P.T.Patchakui, K.Tinschert R.Hollinger*, Rev. Sci. Instrum. 90, 123108, 2019 OES measurements for different oven powers

- Measurements carried out with the shielded empty oven inserted inside the ECRIS.
- Helium plasma generated by coupling up to 650 W microwave power.
 - Oven power settings: 8.4, 12.5, 17.4 W.
 - Up to 69% shielding due to the mesh.
 - Succesfull test at EIS testbench with ⁴⁰Ca

OES diagnostic during first ⁴⁸Ca¹⁰⁺ beam run in 2022

25 GSI Helmholtzzentrum für Schwerionenforschung GmbH

Fabio Maimone

HLI ⁴⁸Ca¹⁰⁺ last beam-runs

160

2020

- Higher intensity and stability achieved
- Highest current:140 eµA
- optimizations and parameters Less tuning required
- Less on call interventions

160

140

120

60

40

20

0

17-04 19-04

⁵⁴Cr Performance improvement

Fabio Maimone

Summary

• GSI offers a wide selection of **metallic ion beams from three separate injectors**.

Choice of injector/ion source based on the ion beam requirements

- Duty cycle
- Beam Intensity/Stability
- Material consumption
- Technical constrains
- The **resistive heated oven** is the established technique for metallic element evaporation with the ECRIS at GSI
- **Optical emission spectroscopy** together with **plasma images** are powerfull diagnostic and monitoring tools for metal ion beam production from ECRISs
- The **microwave schielding** can prevent parasitic heating of the oven (possible condensation of evaporated material)

THANK YOU FOR YOUR ATTENTION

Ralph Hollinger (dpt. Leader), Patchakui, Aleksandr Andreev, Michael Galonska, Aleksey Adonin, Rustam Berezov, Me

Ser a

NY 20