

GANIL, 6-8 september 2023

Reaching for the infinities – Nuclear Physics – Low Energy

1- What is « Low Energy » at GANIL today ?

2- Which kind of experiment are we talking about?

Which developments do we need ?

3- What will be « Low Energy » at GANIL tomorrow / after tomorrow

Which developments will be needed ?

4- Few words about the future of GANIL in general

Stéphane Grévy LP2i Bordeaux (Laboratoire des 2 infinis Bordeaux)

1- What is « Low Energy » at GANIL today ?

1- What is « Low Energy » at GANIL today ?

With the ISOL method, exotic nuclei are produced at very lov energy (30-60 keV)

 \rightarrow No reactions

ightarrow Measurement of fundamental properties of the nuclei

Beta decay measurements
 Half-lives, decay shemes, spin-parities...

Trap-assisted spectroscopy

Masses, angular correlations (decay)...

Laser-assisted spectroscopy

Isotope shifts, charge radii, spins, nuclear moments...

With the ISOL method, exotic nuclei are produced at very lov energy (30-60 keV)

 \rightarrow No reactions

ightarrow Measurement of fundamental properties of the nuclei

Beta decay measurements
 Half-lives, decay shemes, spin-parities...

Trap-assisted spectroscopy

Masses, angular correlations (decay)...

Laser-assisted spectroscopy

Isotope shifts, charge radii, spins, nuclear moments...

> At GANIL (today), very limited program

- Limited « low energy community » at GANIL
- No real experimental areas

(LIRAT corridor...

- The « salle au piliers » has never been equiped with beam lines)
- Few experimental devices
- Concurrence of dedicated facilities : ISOLDE...

With the ISOL method, exotic nuclei are produced at very low energy (30-60 keV)

 \rightarrow No reactions

ightarrow Measurement of fundamental properties of the nuclei

Beta decay measurementsHalf-lives, decay shemes, spin-parities...

Trap-assisted spectroscopy

Masses, angular correlations (decay)...

Laser-assisted spectroscopy

Isotope shifts, charge radii, spins, nuclear moments...

At GANIL (today), very limited program

- Limited « low energy community » at GANIL
- No real experimental areas
- Few experimental devices
- Concurrence of dedicated facilities : ISOLDE...

□ Beta-decay experiment

- $0+ \rightarrow 0+$ transition : half lives and branching ratio measurements for testing the standard model

Test of the of the CVC hypothesis of the standard model and CKM matrix

Pure Fermi transitions $0^+ \rightarrow 0^+$:

determination of Ft values from Q-value , $T_{1/2},$ branching ratios

With the ISOL method, exotic nuclei are produced at very low energy (30-60 keV)

 \rightarrow No reactions

ightarrow Measurement of fundamental properties of the nuclei

Beta decay measurementsHalf-lives, decay shemes, spin-parities...

Trap-assisted spectroscopy
Massac angular carrolations (does

Masses, angular correlations (decay)...

Laser-assisted spectroscopy Isotope shifts, charge radii, spins, nuclear moments...

At GANIL (today), very limited program

- Limited « low energy community » at GANIL
- No real experimental areas
- Few experimental devices
- Concurrence of dedicated facilities : ISOLDE...

Beta-decay experiment

- $0+ \rightarrow 0+$ transition : half lives and branching ratio measurements for testing the standard model
- Search of exotic decays as proof of the dark matter

Is there a dark decay of neutrons in ⁶He ?

- ► Look at the possible decay of a low lying neutron into Dark Matter upper limit : $Br(\chi) = 1.2*10^{-5}$
- ➢ Signature : excess of neutron with lifetime of ⁶He ⁶
- ➢ Beam from SPIRAL1 detection of neutrons with TETRA n + ³He → t + p + 765keV

With the ISOL method, exotic nuclei are produced at very low energy (30-60 keV)

 \rightarrow No reactions

ightarrow Measurement of fundamental properties of the nuclei

Beta decay measurementsHalf-lives, decay shemes, spin-parities...

Trap-assisted spectroscopy

Masses, angular correlations (decay)...

Laser-assisted spectroscopy

Isotope shifts, charge radii, spins, nuclear moments...

At GANIL (today), very limited program

- Limited « low energy community » at GANIL
- No real experimental areas
- Few experimental devices
- Concurrence of dedicated facilities : ISOLDE...

Beta-decay experiment

- $0+ \rightarrow 0+$ transition : half lives and branching ratio measurements for testing the standard model
- Search of exotic decays as proof of the dark matter

□ Trap assisted spectroscopy

- Beta-neutrino angular correlation for testing the standard model

Measurements of $\beta\text{-v}$ correlation coefficient in nuclear β decays using LPCTrap

Precision measurements in nuclear beta decay to search for exotic currents in the weak interaction

> ⁶He+→⁶Li^{2+/3+}

 $^{6}_{2}\text{He}^{+}$

 ${}_{3}^{6}\mathrm{Li}^{2}$

- Measurement of fundamental properties of the nuclei : Masses, half-lives, spin/parities, nuclear moments...
 - \rightarrow Beta decay measurements
 - \rightarrow Trap assisted spectroscopy
 - \rightarrow Laser assisted spectroscopy

> At GANIL, very limited program

- No real experimental areas
- Few experimental devices
- Concurrence of dedicated facilities : ISOLDE, ALTO...

□ Beta-decay experiment

□ Trap assisted spectroscopy

High precision measurements require

- \rightarrow high intensity
- → High purity (at the target, after the target...)

- Measurement of fundamental properties of the nuclei : Masses, half-lives, spin/parities, nuclear moments...
 - \rightarrow Beta decay measurements
 - \rightarrow Trap assisted spectroscopy
 - \rightarrow Laser assisted spectroscopy

> At GANIL, very limited program

- No real experimental areas
- Few experimental devices
- Concurrence of dedicated facilities : ISOLDE, ALTO...

□ Beta-decay experiment

□ Trap assisted spectroscopy

Which developments do we need ?

- production of (new) exotic nuclei
- Intensity
- > purity

High precision measurements <u>require</u>

- \rightarrow high intensity
- → High purity (at the target, after the target...)

- \rightarrow Reliability and intensity of cyclotron beams
- \rightarrow Development of SPIRAL1 TIS

- Measurement of fundamental properties of the nuclei : Masses, half-lives, spin/parities, nuclear moments...
 - \rightarrow Beta decay measurements
 - \rightarrow Trap assisted spectroscopy
 - \rightarrow Laser assisted spectroscopy

> At GANIL, very limited program

- No real experimental areas
- Few experimental devices
- Concurrence of dedicated facilities : ISOLDE, ALTO...

□ Beta-decay experiment

□ Trap assisted spectroscopy

Which developments do we need ?

- production of (new) exotic nuclei
- > Intensity

purity

 \succ

- → Reliability and intensity of cyclotron beams
 → Development of SPIRAL1 TIS
- In the context of the futur of GANIL, question to you : Would be a test bunch (« SIRA revival ») useless/useful/mandatory ? If yes, which caracteristics ?

High precision measurements require

- \rightarrow high intensity
- → High purity (at the target, after the target...)

3- What will be « Low Energy » at GANIL tomorrow / after tomorrow ?

3- What will be « Low Energy » at GANIL tomorrow / after tomorrow ?

3- What will be « Low Energy » at GANIL tomorrow / after tomorrow ?

Drivers

Production

Experimental rooms

3- What will be « Low Energy » at GANIL tomorrow / after tomorrow ?

Which developments do we need ?

- > The needs are in the production of (new) exotic nuclei...
 - \rightarrow development of S3 beams
 - LINAC beam intensities for HI \rightarrow Newgain...
 - S3 targets
 - \rightarrow development of « production building » beams
 - fission fragments \rightarrow many developments have been done in the context of the original SPIRA2 project
 - MNT : Multi Nucleon Transfer \rightarrow nothing for the moment

High precision measurements <u>require</u> \rightarrow high intensity

 \rightarrow High purity

S. Grévy – Workshop Targets - Ion Source - GANIL 6-8 sept. 2023

Prospective works have been done :

- In 2019-2021 in the framework of the French National prospectives
- In 2020-2021 in the framework of the International Expert Committee (« Mission Spiro »)

 \Rightarrow Report « Vision for the future of GANIL »: 3 steps

Prospective works have been done :

- In 2019-2021 in the framework of the French National prospectives
- In 2020-2021 in the framework of the International Expert Committee (« Mission Spiro »)
 - \Rightarrow Report « Vision for the future of GANIL »: 3 steps
 - 1- Complete the on-going projects
 - S3 spectrometer and associated devices
 - DESIR hall and equipment
 - NEWGAIN: New injector A/Q=7
 - CYREN: Cyclotron Renovation

Prospective works have been done :

- In 2019-2021 in the framework of the French National prospectives
- In 2020-2021 in the framework of the International Expert Committee (« Mission Spiro »)
 - \Rightarrow Report « Vision for the future of GANIL »: 3 steps
 - 1- Complete the on-going projects
 - S3 spectrometer and associated devices
 - DESIR hall and equipment
 - NEWGAIN: New injector A/Q=7
 - CYREN: Cyclotron Renovation
 - 2- Enlarge the GANIL capabilities
 - Deliver neutron-rich ions for SPIRAL2 physics program
 - Target station for production of medical radio-isotopes
 - Interdisciplinary studies

Prospective works have been done :

- In 2019-2021 in the framework of the French National prospectives
- In 2020-2021 in the framework of the International Expert Committee (« Mission Spiro »)
 - \Rightarrow Report « Vision for the future of GANIL »: 3 steps
 - 1- Complete the on-going projects
 - S3 spectrometer and associated devices
 - DESIR hall and equipment
 - NEWGAIN: New injector A/Q=7
 - CYREN: Cyclotron Renovation
 - 2- Enlarge the GANIL capabilities
 - Deliver neutron-rich ions for SPIRAL2 physics program
 - Target station for production of medical radio-isotopes
 - Interdisciplinary studies
 - 3- Engage the long-term future
 - Develop in-beam studies capabilities : post-acceleration to ~100 Me'
 - Studies towards an electron-Radioactive lons collider

Prospective works have been done :

- In 2019-2021 in the framework of the French National prospectives
- In 2020-2021 in the framework of the International Expert Committee (« Mission Spiro »)
 - \Rightarrow Report « Vision for the future of GANIL »: 3 steps
 - 1- Complete the on-going projects
 - 2- Enlarge the GANIL capabilities
 - 3- Engage the long-term future

CEA and CNRS have given the mission to define the project in terms of:

- Define the priorities among the scientific strategies presented by the expert committee
- Define the technical needs, developments and infrastructure necessary to obtain the results
- Make a budget estimation
- Propose a planning

Prospective works have been done :

- In 2019-2021 in the framework of the French National prospectives
- In 2020-2021 in the framework of the International Expert Committee (« Mission Spiro »)
 - \Rightarrow Report « Vision for the future of GANIL »: 3 steps
 - 1- Complete the on-going projects
 - 2- Enlarge the GANIL capabilities
 - 3- Engage the long-term future

CEA and CNRS have given the mission to define the project in terms of:

- Define the priorities among the scientific strategies presented by the expert committee
- Define the technical needs, developments and infrastructure necessary to obtain the results
- Make a budget estimation
- Propose a planning
- Pre-Project leader : Hanna Franberg Delahaye
- Scientific leader : Stéphane Grévy

S. Grévy – Workshop Targets - Ion Source - GANIL 6-8 sept. 2023

GANIL, 6-8 september 2023

Thank you for your attention

Reaching for the infinities – Nuclear Physics – Low Energy

1- What is « Low Energy » at GANIL today ?

2- Which kind of experiment are we talking about?

Which developments do we need ?

3- What will be « Low Energy » at GANIL tomorrow / after tomorrow

Which developments will be needed ?

4- Few words about the future of GANIL in general

Stéphane Grévy LP2i Bordeaux (Laboratoire des 2 infinis Bordeaux)