

Reaching for the infinities : Nuclear Physics - « High » energy

M. Assié, IJCLab

with the help of F. Hammache, E. Clément, B. Fernandez-Dominguez, T. Roger, O. Sorlin, D.Beaumel, J-J Valiente-Dobon, S Koyama and many others...

Physics program at GANIL:

- Nuclear astrophysics
- Pairing, clusters
- Shape coexistence
- Shell evolution

Instruments :

- beams
- set-ups
- targets

Nuclear astrophysics Pairing and np correlations Z=50 NI-00 **Deformation &** (New) clustering Shape coexistence at N~Z z (fm) 5 J=1, S=0 T=0, J=1,...,2j Z=28 -2 N=50 4 -2 0 2 4 **Z=20** -4 x (fm) Shell model & nuclear structure Method : \rightarrow direct reactions : transfer, ------ LSSM (refs. 28) Z=8 • Exp. This wor ---- CC (ref. 27) elastic/inelastic scattering... IM-SRG N=28 ORPA \rightarrow resonant elastic scattering E(2;) (MeV) N=20 N=28 16 N=20 Another important ingredient: N=8 --> structure & reaction theory

Overview of the perspectives for nuclear physics at GANIL

GANIL opportunities : method & instruments

GANIL opportunities : method & instruments

Beam Reactions Detection gamma-rays heavy residues **Coulomb** excitation AGATA Elastic/inelastic scatt. Radioactive С VAMOS GAM2 **Resonant elastic scatt** Spiral 1 beams neutrons <~ 10 A MeV Transfer (stripping) NEDA_{0.5 mm}) Beam intens. > 10⁴pps + BTD charged particles ACTAR MUGAST Fragmentation **Transfer reactions :** beams LISE ND - pick-up (p,t), (p,d)... (intermediate - stripping ? energy) amplificat ZODE Elastic/inelastic scatt.

Availability @ GANIL

M. Assié --- Workshop Targets - Ion sources

4

GANIL opportunities : method & instruments

Beam Reactions Detection gamma-rays heavy residues **Coulomb** excitation Elastic/inelastic scatt. AGATA Radioactive ĉ VAMOS GAM2 **Resonant elastic scatt** Spiral 1 beams neutrons <~ 10 A MeV Transfer (stripping) ??? NEDA_{0.5 mm}) Beam intens. > 10^4 pps + BTD charged particles 2024, 2027-2028 MUGA **Fragmentation Transfer reactions :** beams LISE ND - pick-up (p,t), (p,d)... (intermediate - stripping ? energy) Elastic/inelastic scatt.

Availability @ GANIL

M. Assié --- Workshop Targets - Ion sources

5

 \checkmark Typical solid targets : CH₂, CD₂, ⁶⁻⁷LiF -->OK

Typical reactions:

- one-nucleon transfer (d,p), (p,d) ---- (d,³He), (³He,d),
- two-nucleon transfer (p,³He),(³He,p),(d,⁴He) --- (t,p),(p,t)
- triton, ³He transfer : (p, ⁴He), (⁴He,p),(t,⁶Li)
- alpha transfer (d, ⁶Li),(⁷Li,t),(⁶Li,d)
- elastic scattering (p,p'),(d,d'),(⁴He,⁴He')

 \checkmark Typical solid targets : CH₂, CD₂, ⁶⁻⁷LiF -->OK

X ³He implanted targets on W and Al (to be tested @ ALTO)

Typical reactions:

- one-nucleon transfer (d,p), (p,d) ---- (d,³He), (³He,d),
- two-nucleon transfer (p,³He),(³He,p),(d,⁴He) --- (t,p),(p,t)
- triton, ³He transfer : (p, ⁴He), (⁴He,p),(t,⁶Li)
- alpha transfer (d, ⁶Li),(⁷Li,t),(⁶Li,d)
- elastic scattering (p,p'),(d,d'),(⁴He,⁴He')

"Solid ³He targets"

- Magnetron sputtering technique under quasi-static flux conditions
- Gas nanobubbles trapped within a nanoporous solid matrix (amorphous silicon)

 ^{3}He areal density: ca 5 – 7 x 10 18 at/cm 2 Al backing: 7.4 μm

 \checkmark Typical solid targets : CH₂, CD₂, ⁶⁻⁷Li F -->OK

✓ X ³He implanted targets on W and Al (to be tested @ ALTO) N.Séréville, F. Hammache & M. Assié

✓ Cryogenic targets :

CHyMENE - windowless H target (still under development @ CEA, A. Gillibert)

Typical reactions:

- one-nucleon transfer (d,p), (p,d) ---- (d,³He), (³He,d),
- two-nucleon transfer (p,³He),(³He,p),(d,⁴He) --- (t,p),(p,t)
- triton, ³He transfer : (p, ⁴He), (⁴He,p), (t, ⁶Li)
- alpha transfer (d, ⁶Li),(⁷Li,t),(⁶Li,d)
- elastic scattering (p,p'),(d,d'),(⁴He,⁴He')

CHyMENE windowless H proton target

M. Assié --- Workshop Targets - Ion sources

- \checkmark Typical solid targets : CH₂, CD₂, ⁶⁻⁷Li -->OK
- ✓ X ³He implanted targets on W and Al (to be tested @ ALTO) N.Séréville, F. Hammache & M. Assié
- ✓ Cryogenic targets :
 - ✓ ★ CHyMENE H target (still under development @ CEA, A. Gillibert)

✓ **HeCTOr** ³He target (*M.Pierens, M. Assié* IJCLab) already used during the MUGAST-AGATA-VAMOS campaign

Typical reactions:

- one-nucleon transfer (d,p), (p,d) ---- (d,³He), (³He,d)
- two-nucleon transfer (p,³He),(³He,p),(d,⁴He) --- (t,p),(p,t)
- triton, ³He transfer : (p, ⁴He), (⁴He,p), (t, ⁶Li)
- alpha transfer (d, ⁶Li),(⁷Li,t),(⁶Li,d)

Typical reactions: Targets for physics: - one-nucleon transfer (d,p), (p,d) ---- (d,³He), (³He,d) ✓ Typical solid targets : CH₂, CD₂, ⁶⁻⁷Li -->OK - two-nucleon transfer (p,³He),(³He,p),(d,⁴He) --- (t,p),(p,t) - triton, ³He transfer : $(p, {}^{4}He), ({}^{4}He,p), (t, {}^{6}Li)$ ✓ X³He implanted targets on W and Al - alpha transfer (d, ⁶Li),(⁷Li,t),(⁶Li,d) (to be tested @ ALTO) elastic scattering (p,p'),(d,d'),(⁴He,⁴He') Vacuum ✓ Cryogenic targets : Pulse measurement and **Cryo-target** tube ✓ **X** CHVMENE - H target analysis (still under development @ CEA, A. Gillibert) 1st stage 36 W@45 K Thermal shield \checkmark HeCTOr ³He target (already used at GANIL) 2nd stage 1.5 W@4 K --> new version under development : ANR ATRACT + ³He active target (ACTAR-³He) Target temperature control Deflection Marlène ASSIE (IJCLab) measurement Thomas Roger (GANIL) Mock-up target for testing windows and de-icing protocol Insulating vacuum ACTAR-³He Beam M. Assié ---- Workshop Targets - Ion sources 11

 \checkmark Typical solid targets : CH₂, CD₂, ⁶⁻⁷Li -->OK

✓ X ³He implanted targets on W and Al (to be tested @ ALTO)

✓ Cryogenic targets :

✓ ★ CHyMENE - H target (still under development @ CEA, A. Gillibert)

✓ HeCTOr ³He target (already used at GANIL)

--> new version under development : ANR ATRACT + ³He active target (ACTAR-³He)

X Tritium targets : no development on-going in Europ, commercial version available with only 40 ug/cm² Activity : 10 GBq

Typical reactions:

- one-nucleon transfer (d,p), (p,d) ---- (d,³He), (³He,d),
- two-nucleon transfer (p,³He),(³He,p),(d,⁴He) --- (t,p),(p,t)
- triton, ³He transfer : (p, ⁴He), (⁴He,p), (t, ⁶Li)
- alpha transfer (d, ⁶Li),(⁷Li,t),(⁶Li,d)
- elastic scattering (p,p'),(d,d'),(⁴He,⁴He')

Overview of the perspectives for nuclear physics at GANIL

F. Hammache, N. de Séréville (IJCLab), F. de Oliveira (GANIL), G. Lotay (U of Surrey)

Nuclear astrophysics

-- Type I X-ray bursts

. Sensitive study --> few tens of reactions play an important role

- \rightarrow (α,p) process: (α,p)(p,γ) up to A<60 → rp-process: (p,γ) reactions & β+ decay
- Probing the ⁵⁶Ni waiting point via ⁵⁵Co(*d*,*p*) and ⁵⁷Ni(*d*,*p*) transfer (mirror reactions)
- Determination of reaction rate for ⁵⁹Cu(p,γ) via ⁵⁹Cu(³He,dγ)

M. Assié --- Workshop Targets - Ion sources

► Case of ⁵⁹Cu(p,y)⁶⁰Zn studied through ⁵⁹Cu(³He,d)⁶⁰Zn (the most sensitive reaction according to Cyburt et al)

 \rightarrow determination of the proton spectroscopic factor : $S_p \Longrightarrow \Gamma_p$

→ orbital angular momentum: 🦉

Overview of the perspectives for nuclear physics at GANIL

"Desired" reaction B* -- Massive stars (M>8M_O): weak s-process Z=50 When direct measurement of (n, γ) crosssections is not available → surrogate method (error bar ~20-30%) "Surrogate" reaction b d 🔶 • s-branchings : ⁷⁹Se, ⁸⁵Kr • Stellar model test : ⁵⁹Fe D Abundance (Si=10⁶) (%) UNCERTAINTY (n, γ) cros-sections Käppeler, NPA (2006)^h 10 100 200 Mass Number N=28 Ni Co Fe CROSS SECTION r-Process Region N=20 $\frac{8}{2}$ ⁵⁶Fe s-Branchings Seed for s-Process 50 100 150 200 (⁶³Ni, ⁷⁹Se, ⁸⁵Kr, ...) s-Process Reaction MASS NUMBER

F. Hammache, N. de Séréville (IJCLab), G. de Angelis, F. Recchia (INFN, LNL)

Nuclear astrophysics

Path

Production of ⁶⁰Fe in massive stars through ⁵⁹Fe(n, y)via the surrogate reaction ⁵⁹Fe(d, p)

F. Hammache, N. de Séréville (IJCLab)

- Case of ⁶⁰Fe(p,y)⁶⁰Zn studied through surrogate reaction ⁵⁹Fe(d,p)
 - → ⁶⁰Fe observed in the galaxy (RHESSI, INTEGRAL) through its γ-ray emission in: (Smith04, Wang07, Binss16, Wallner16, Fimiani16)
 - . galactic cosmic rays (CRIS/ACE)
 - . deep-ocean crusts & sediments
 - . in lunar soils
- Production of ⁶⁰Fe in massive stars through weak s-process and released in ISM by subsequent Core Collapse supernovae (*Limongi et al ApJ06*)

Two reactions of interest ⁵⁹Fe(n,y)⁶⁰Fe & ⁶⁰Fe(n,y)⁶¹Fe (*Giron2017, GANIL*-LISE) highly uncertain !

M. Assié --- Workshop Targets - Ion sources

Overview of the perspectives for nuclear physics at GANIL : pairing and clustering

D. Beaumel, V. Girard-Alcindor (IJCLab), B. Fernandez-Dominguez (U. of Santiago), G.F. Grinyer (Regina U.), S. Koyama (GANIL), D. Suzuki (RIKEN)

-- Clustering -- Probing neutron molecular orbitals and 18C Z=50 alpha clustering through elastic/inelastic 30.78 scattering (d,d') and (⁴He,⁴He') ¹²Be 16C ⁴⁸Cr, ⁵²Fe, ⁵⁶Ni (d, ⁶Li) 12.05 25.87 -- New clustering ¹¹Be 15C Search for ³He and t clusters in the g.s. ⁵⁶Ni 8.89 21.62 **Theory: All kind of clusters** of proton-rich and neutron-rich nuclei Z=28 S.Typel, J.Phys.Conf.Ser.420,012078(2013) should be formed at low density (resp.) ¹⁰Be 20.40 ^{8,9,11}Li (⁴He,p) ^{11,12,14}Be 10° F 1 111111 Z=20 ^{10,12}Be (⁴He,p) ^{13,15}B 8.34 12.01 ^{10,12}Be (p,⁴He) ^{7,9}Li ⁹Be particle fraction X ^{14,16}C (p,⁴He) ^{11,13}B 1.57 12.21 ⁸Be p -0.090 n ^{2}H ³H He ⁴He N=8 10 10-4 10-5 10-3 10-2 10⁻¹ density n [fm⁻³]

Probing new clustering in the light nuclei using transfer reactions

D. Beaumel, V. Girard-Alcindor (IJCLab), S. Koyama (GANIL), D. Suzuki (RIKEN) B. Fernandez-Dominguez (U. of Santiago)

Evidence of ³He clustering in p-rich nuclei?

Experiments @GANIL

- Triton and ³He at the surface of light n-rich nuclei through $(p, {}^{4}He), ({}^{4}He, p) and (t, {}^{6}Li)$
- In 2024 : neutron-rich Be ٠ isotopes via (p,alpha)

--> Further program in the protonrich and neutron-rich light nuclei (in particular C)

- \Rightarrow Intense primary beam for LISE : ¹²C, ¹⁸O beams
- \Rightarrow ^{8,9,11}Li, ^{10,12}Be Spiral1 beams at 1-15 AMeV ~10³-10⁴ pps
- ⇒ ¹⁷F Spiral1 beam
- ⇒ active targets / cryogenic targets / tritium / solid ...

Overview of the perspectives for nuclear physics at GANIL : pairing and clustering

M. Assié (IJCLab), G. De France (GANIL), G.F. Grinyer (Regina U.)

Overview of the perspectives for nuclear physics at GANIL : pairing and clustering

M. Assié (IJCLab), G. De France (GANIL), G.F. Grinyer (Regina U.)

-- Clustering

-- Probing neutron molecular orbitals and alpha clustering through elastic/inelastic scattering (d,d') and (⁴He,⁴He')

-- New clustering

Search for ³He and t clusters in the g.s. of **proton-rich and neutron-rich** nuclei (resp.) ^{8,9,11}Li (⁴He,p) ^{11,12,14}Be ^{10,12}Be (⁴He,p) ^{13,15}B ^{10,12}Be (⁴He,p) ^{13,15}B ^{10,12}Be (p,⁴He) ^{7,9}Li ^{14,16}C (p,⁴He) ^{11,13}B

-- Two-proton emission

. Determination of the ${}^{17}F(p,\alpha){}^{14}O$ resonant transfer reaction rate and **2p decay** from ${}^{18}Ne$ excited states with ACTAR

S=0

S=0

np pairs in the fp shell nuclei: anti-aligned and maximum aligned pairs

Search for T=0 spin-aligned pairs Spin-aligned pairs : slightly stronger attraction than anti-aligned Spin-aligned scheme found in ⁹²Pd ($q_{9/2}$ shell) B. Cederwall et al, Nature (2010) Towards *p*- and *q*-shells \rightarrow Spin-aligned scheme in *f*-shell through transfer (d,⁴He γ) or (³He,p γ) ⁵²Fe ⁴⁰Ca 48Cr 56Ni $\sigma(0+,T=1)/\sigma(1+,T=0)$ 10 measured @ GANIL **GXPF1+DWBA** SP+DWBA

Search for T=0 pairing (spin anti-aligned pairs i.e. Cooper-like pairs) For the moment, T=0 pairing is elusive in the experimental data from the *sd*- and *f*-shell. In the *f*-shell, the spin-orbit hinders the T=0 channel, what about the *p*- and *q*-shells ?

³He cryogenic target (ATRACT) \Rightarrow ⁵²Fe (LISE) from ⁵⁸Ni ACTAR-³He primary beam OK ! VUGAST/G gas volume ACTAR ⇒ ⁶⁰Zn Spiral1 beam at electric field 10⁵ pps AM + any N=Z nucleus of בא heavier mass (Ge, Ga...)

21

exp.

50

46 48

Mass of initial nucleus

42

40

44

54 56

Overview of the perspectives for nuclear physics at GANIL : shape coexistence

E. Clément (GANIL), J-J Valiente-Dobon (INFN-LNL)

Detailed spectrocopy along Kr chain to reveal shape coexistence mechanism

E. Clément (GANIL)

Overview of the perspectives for nuclear physics at GANIL: Shell evolution and 3N forces

O. Sorlin, E. Clément (GANIL), I. Zanon (INFN-LNL), B. Fernandez-Dominguez (U. Santiago)

Neutron array (NEDA) (d,n), (3He,n) measurement

Shell model & nuclear structure

-- 3N forces

- .²⁴O is the last bound isotopes : striking anomaly !
- → need for **3N forces** to understand it

--> Constraining ab-initio models towards the dripline: ¹⁹O(d,py) measured at GANIL (under publication) ²³Ne(d,py) to be measured !

Overview of the perspectives for nuclear physics at GANIL: Shell evolution and 3N forces

N=28

N=20

N=8

O. Sorlin, E. Clément (GANIL), I. Zanon (INFN-LNL), B. Fernandez-Dominguez (U. Santiago)

Shell model & nuclear structure

-- <u>3N forces</u>

- .²⁴O is the last bound isotopes : striking anomaly !
- → need for **3N forces** to understand it

. Above A>22, g.s. energy very sensitive to 3N forces \rightarrow determine ²²Si, ²⁶S g.s.

--<u>Magicity of Z=14, Z=16, Z=28 shell gaps and size</u> through

³⁴Si(³He,d)³⁵P : respective roles of spin-orbit and tensor forces at Z=14 and Z=16

.^{68,70,72...}Ni(³He,d)Cu : study of the reduction of the proton $1f_{5/2} - 1f_{7/2}$ SO splitting and weakening of Z=28

 $.^{24}$ Si, 28 S, $^{34-32}$ Ar(p,t) 22 Si, 26 S, $^{32-30}$ Ar \rightarrow with increased intensity of 40 Ca, 36 Ar or 32 S

Probing proton shell gaps Z=14 and 16

B. Fernandez-Dominguez (U. Santiago)

-- Spectroscopy of ²²Si and ²⁶Si via ²⁴Si, ²⁸S(p,t)²²Si, ²⁶S: proposed at OEDO-RIKEN in 2018 - not run - at GANIL?

Summary of the perspectives for nuclear physics at GANIL