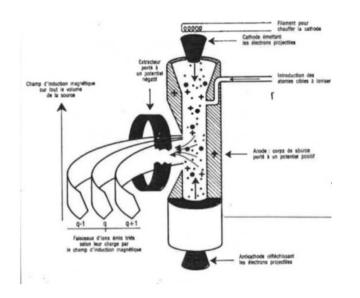
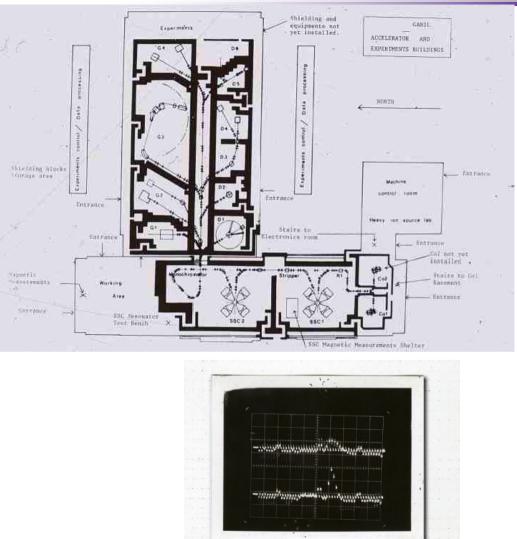


GANIL-SPIRAL2 Introduction

GANIL-SPIRAL2




40th Anniversary of first GANIL experiment

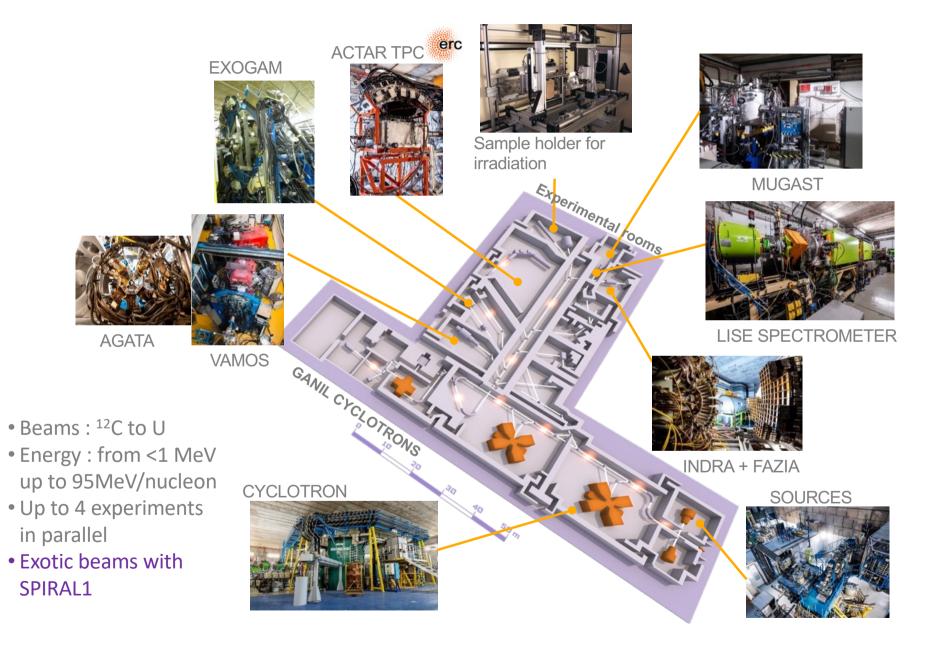
GANIL-SPIRAL2

⁴⁰Ar¹⁶⁺ 5 nA were ejected from 150 nA injected, starting from 200 nA ⁴⁰Ar⁴⁺ ejected of SSC1 from a PIG source

41st Anniversary of first GANIL extracted beam

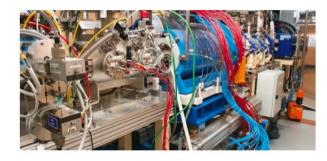
A brief history of GANIL and SPIRAL2

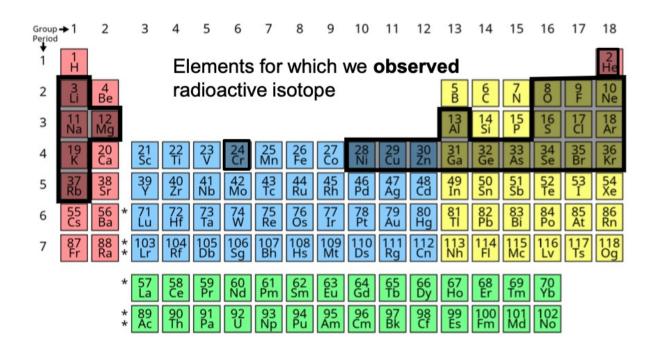
- Creation of GANIL GIE (Grand Accélérateur national d'ions lourds)
- First experiment
- SPIRAL1 exotic beams



- 2006 SPIRAL2 Project signature of convention for construction Inclusion on European Strategy Forum for Research Infrastructures (ESFRI) roadmap
- Start of SPIRAL2 Construction
- Start of the SPIRAL2 commissioning
- First neutron beams at SPIRAL2
- First heavy ion beams at SPIRAL2

GANIL Cyclotrons and experimental equipment


SPIRAL1 upgrade



New target Ion Source Systems (FEBIAD)

• The charge breeder

50 new isomers/isotopes With intensities suitable for acceleration

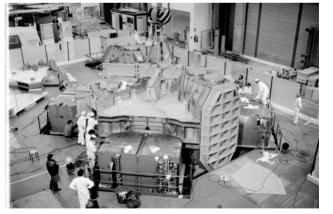
CYREN – Cyclotron Renovation

Last 10 years : Cyclotrons maintenance and refurbishment reduced to the strict minimum. GANIL manpower dedicated to SPIRAL2 building then commissioning. Aging *A* Reliability *A* Manpower for curative maintenance *A*

Launch of the pre project CYREN : march 2022

keep the facility in operational conditions for at least 20 years
 optimize manpower needed for maintenance after refurbishment

Scope : full installation


Cyclotrons and experimental areas, infrastructure and utilities, safety, security, radioprotection

Conclusion: 2 scenarios

One new accelerating cavity/ 4 new cavities

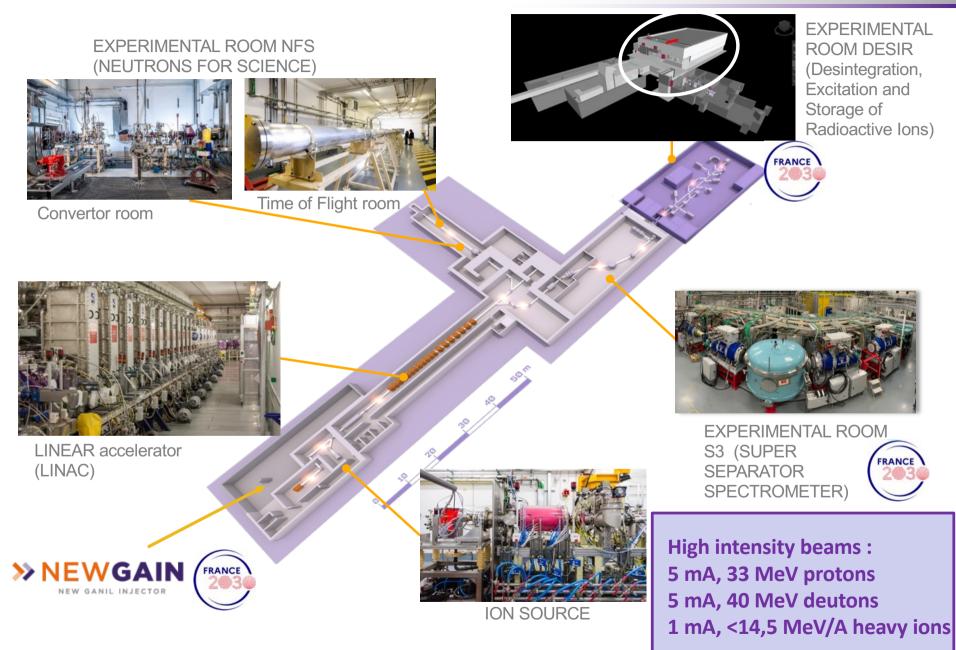
Implementation:

Dedicated funding from Minisitry, 2024-2030, facility available during renovations with possible shutdowns during some phases

Cyclotrons et experimental rooms Power Supplies and Magnets RF cavities and systems Remote control PLCs Vacuum systems Diagnostics Production targets Ions Sources

Infrastructures and utilities

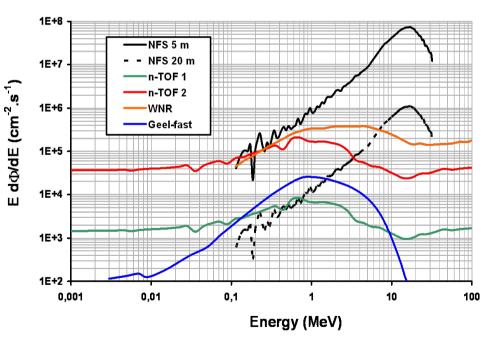
Electricity Distribution Cooling systems HVAC Buildings Various networks (water, air, gas) Computer Infrastructures


Safety / Security / Radioprotection Systems

Radioprotection devices (radiation detectors, active dosimeters, gamma spectrometers, ...)

Access Management System Fire Safety System

SPIRAL2 LINAC and the new experimental rooms



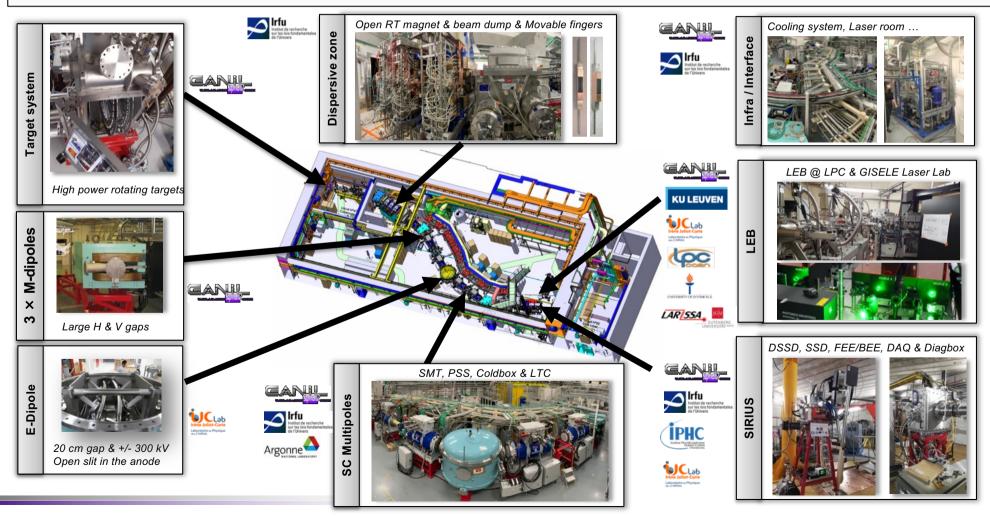
Physics case

- □ Fundamental physics
- □ Astrophysics
- □ New generation of reactor
- □ Fusion technology
- Radioisotopes production for medical applications
- □ Biology (cells irradiation..)
- Development and characterization of new detectors
- □ Study of the single-event upsets

High neutron flux and good complementarity with other facilities

ਿੱ": the Super Separator Spectrometer

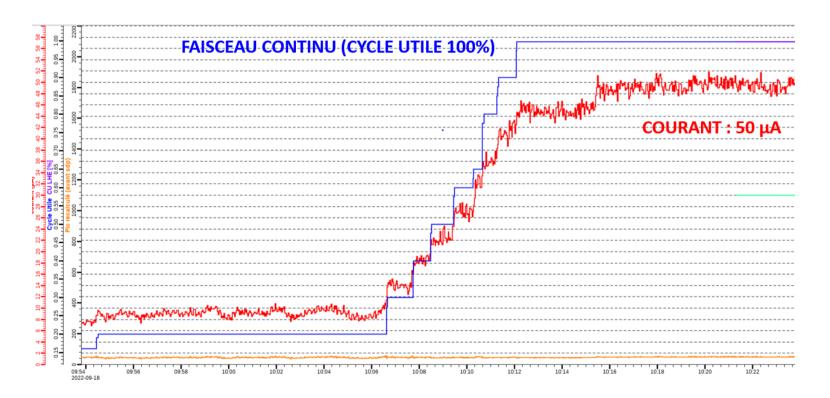
Optical


Commissioning

Planned end 2024

FRANCE

Fundamental research in Nuclear & Atomic physics


- High selectivity > 10¹³ beam rejection ٠
- High efficiency 50% ٠
- Mass resolution > 350 •
- Versatility : high resolution, high transmission, high beam rejection modes... ٠
- Versatility : high resolution, high transmission, high beam rejection modes... SIRIUS commissioning in 202 Unique instrumentation : SIRIUS for p, α , electron and γ spectroscopy, and S3-LEB with gas catcher, RFQ and MR-ToF-MS ٠

Heavy-ions in SPIRAL2-LINAC

September 2022 : First beams of ¹⁸O⁶⁺ 50µA, 7 MeV/nucleon LINAC Transmission 98% Quasi-automatic change of different charge states for acceleration

November 2022 : ${}^{40}Ar^{14+}$ 80µA, 7 MeV/nucleon

Getting ready for S3 scientific programme ...

New injector for SPIRAL2: NEWGAIN

Floorplan, design intensities and time line

Emergency Exit	beam intensities lons ¹⁸ O ¹⁹ F ³⁶ Ar ⁴⁰ Ar ³⁶ S ⁴⁰ Ca ⁴⁸ Ca ⁵⁸ Ni ⁸⁴ Kr ¹³⁹ Xe ²³⁸ U	<i>injector1</i> 2023 Intensity (pμA) Phoenix V3 RFQ A/Q≤3 80 >15 16 3.6 2.3 2.9 1.2 1.1 0.1 0.001 ≤<0.001	NEWGAIN 2028 Intensity (рµА) Phoenix V3 RFQ A/Q≤7 * >40 70 70 70 * 10 10 10 4 10 10 10 7 0	≥ 2030 Intensity (pµA) SC Ion Source RFQ A/Q≤7 375 >40 45 45 45 20 20 8 20 8 20 >10				
	²³⁸ U	<<0.001	0.1	6				
	Measu	ired Estimate	d * -> no es	timation				
NEWGAIN White Book NEWGAIN time line								
https://www.ganil-spiral2.eu/scientists/ganil-spiral-2-facilities/accelerators/newgain/ 2020 2021	2022 202	3 2024 20	25 2026	2027 2028				
Construction Phase								

Courtesy of MH Moscatello, D. Ackermann

NEWGAIN Project – intensity

EDIR

Comparison between different installations relevant to SHE studies

Beam intensities puA	SPIRAL2 GANIL, Caen		SHE factory FLNR, Dubna**	RIKEN Nishina Center Wako (Tokyo)		GSI Darmstadt
100% enriched	LINAG A/q≤3 Phoenix v3	NEWGAIN* A/q≤7 SC source	DC-280	RILAC	RRC (RILAC(2) as injector)	UNILAC***
¹⁸ O	80	300	16	10	-	1
⁴⁰ Ar	16	38	10	10	1	8
³⁶ S	23	30	****	-	-	-
⁴⁰ Ca	2.9	16	****	-	-	-
⁴⁸ Ca	1.2	16	10	3	0.3	4
⁵⁸ Ni	1.1	6.4	****	****	****	2.2
⁸⁶ Kr	0.1	16	****	10	****	0.2
¹³⁶ Xe	0.001	>10	16	10	0.3	1
²³⁸ U	<<0.001	4.8	0.008	0.2	0.5	0.06 ⁱ

80% total transmission assumed

** http://flerovlab.jinr.ru/index.php/2017/03/23/she-factory/

*** for the cw-linac project with the assumption of a 50% total transmission, priv. comm. W. Barth et al., GSI

**** beams not delivered

i VARIS ion source, 80% Alvarez-transmission, mode: 2 Hz/0.1 ms, priv. com. W. Barth et al., GSI

- intensities not provided

Highest intensity

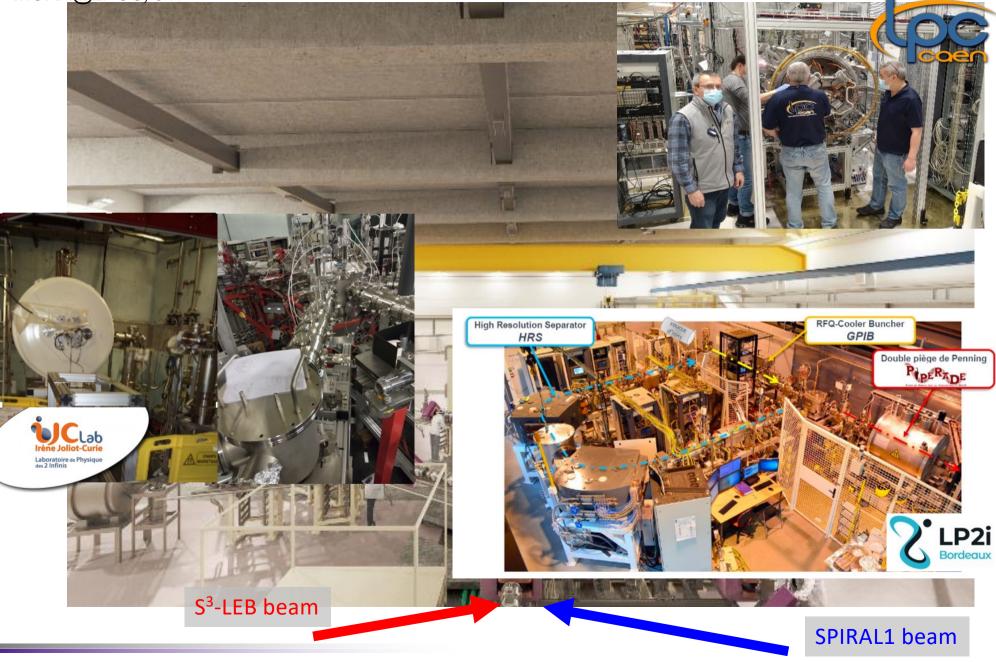
(pps)	(A/Q=3)	S3 LEB (A/Q=7)	FRIB1	FRIB2	FRID
¹⁰⁰ Sn	7	34	0.05	0.2	4
¹⁰¹ Sn	170	850	3	10	161
⁹⁷ In	0.2	2.6	0	0	0
⁹⁸ In	4	11	0.02	0.09	4
⁹⁹ In	80	800	2.7	13	316
¹⁰⁰ In	740	7400	231	1150	18400
⁹⁸ Cd	3600	18000	505	2520	105000
⁹⁷ Cd	19	95	6.4	32	2030
⁹⁶ Cd	3	15	0.24	1.2	89
⁹⁵ Cd	0.4	2	0.004	0.02	1.6
⁹⁴ Ag	136	680	0.04	0.2	20
⁹⁵ Ag	870	4350	30	152	14700
⁹¹ Pd	81	405	0.02	0.12	27
⁹² Pd	810	4050	1.7	8	1870
⁹⁰ Rh	210	1050	0.02	0.09	52

Pates STER STER EDIDA EDIDA

N=Z nucleus

Highest intensity

Courtesy Iulian Stefan


Contracts for construction signed in September 2022

Authorisation obtained from Nuclear Safety Authority and Environmental Authority

- public inquiry April 24-May 26
- > permit for construction received in June,
- First experiments 2027

MLLTRAP@IJCLab GPIB, PIPERADE@LP2IB MORA@LPCC, JYF

Welcome

GANIL is a unique facility for

- R&D for ion manipulation, trapping, boosting, laser ionisation...

- challenging scientific programs with high intensity stable and exotic beams and thin targets

We thank the organisers, the initiators and the participants of the workshop to discuss and develop the so important fields of ion sources and targets, at this very special moment where so many projects are about to start and need this crucial emphasize on this very particule R&D

Wishing all of you a very fruitful meeting !

Welcome

GANIL is a unique facility for

- R&D for ion manipulation, trapping, boosting, laser ionisation...

- challenging scientific programs with high intensity stable and exotic beams and thin targets

We thank the organisers, the initiators and the participants of the workshop to discuss and develop the so important fields of ion sources and targets, at this very special moment where so many projects are about to start and need this crucial emphasize on this very particule R&D

Wishing all of you a very fruitful meeting !

A tribute to....

Rodolphe Clédassou