

COSMOS-WEBB

BUFFALO

SPT

GALAXIES

muse

RE/

The Challenges Brought by the JWST Observations of the Distant Universe.

Guillaume Mahler (he/him) Durham University

Main collaborators: Mathilde Jauzac, David Lagattuta, Catherine Cerny, Nency Patel, Anna Niemiec, Keren Sharon, Johan Richard, Mike Gladders, Jane Rigby, Richard Massey

News From the Dark 8 - Université Libre de Bruxelles

13 September 2023

JWST can see the first galaxies

JWST can see the first galaxies

JWST can see the first galaxies

_abbé+23

JWST first year programs (CEERS, ERO, FRESCO, etc..), reported 10^9 Msun Atek+22; Finkelstein+22); Harikane+22); Naidu+22); Yan+22, Biagetti+23, Labbé+23, Xia+23 and others.

8

Labbé+23

 $M_{\star} \equiv \epsilon f_{\rm b} M_{\rm halo}$

 $f_b = 0.156$ Planck+2020

E Efficiency to
convert baryon to
stars

Boylan-Kolchin+23 10

Even with spec-z

Xiao,Oesch+23

Xiao,Oesch+23

Xiao, Oesch+23

What strong lensing is ?

www.spacetelescope.org

SMACS J0723.3-7327

The journey to a mass model...

Building a lens model ...with Lenstool

Find the lensing constraints

Building a lens modelwith Lenstool

Locating the "red sequence"

Building a lens model

20

Building a lens model

21

Building a lens model ...with Lenstool

Placing Dark matter...

Building a lens modelwith Lenstool

Placing Dark matter...

The unexpected importance of the ICL!!!

The run of the MCMC chains

The complexe structure of the Intra-Cluster Light

The complexe structure of the Intra-Cluster Light

The standard deviation of the mass map

NO ICL clump model ICL clump model rms ~0.85" BIC 454 rms ~0.32" BIC 256

Reverse lensing - modelling

28

Luminosity function

Luminosity function

Luminosity function

Causstic crossing events

Caustic crossing

Diego+18

Caustic crossing

Light curve power spectra

Diego+18

Lensed stars at high-z

Meena+23

Welch+22

Cluster members and supermassive black holes

Found 1000s of wandering SMBH in >10^14 Msol halos Ricarte et Can we see them? Maybe with lensing....

Ricarte et al. 2021

g.... 37

What if a wandering SMBH aligned with a lensed galaxy ?

What if a wandering SMBH aligned with a lensed galaxy ?

Using the power of lensing

One 1E8 Msun every 5000 clusters

Euclid predictions

JWST ERO - SMACJ0723

4 giant arcs' clusters every day for 6 years!!!

SGAS0033 - witnessing AGN driven wind at 100pc in a galaxy at z=2.39

Fisher, Mahler+2019

Using the power of lensing

z=0.48 -> z=2.39

Using the power of lensing

A wanderer candidate?

Mahler+23a

$M_SMBH = 4.7 \times E8 Msun$

What if a wandering SMBH aligned with a lensed galaxy ?

Self interaction dark matter cross section

SIDM cross section

Robertson+19

Harvey+19

SIDM cross section

Conclusions

- The high-z universe is rich in phenomenon to observe properties of mark matter, taking astrophysics into account
- JWST's sensitivity and resolution offers new probe to the dark matter:
 - High-z galaxy and Dark Matter halo
 - Faint end of the high-z UV Luminosity function
 - Caustic crossing events
 - ICL+disrupted galaxies Dark Mater tidal structure?
 - Wandering SMBH and dark clumps Future missions such as Euclid open a new Era for statistical analysis