The VDAR in the Milky Way

Giacomo Monari (Observatoire Astronomique de Strasbourg)

With Federico Lelli and Benoit Famaey

The VI AR in the Milky Way

Giacomo Monari (Observatoire Astronomique de Strasbourg)

With Federico Lelli and Benoit Famaey

The VAR in the Milky Way

Giacomo Monari (Observatoire Astronomique de Strasbourg)

With Federico Lelli and Benoit Famaey

Coordinates

The RAR

RAR = 'Radial Acceleration Relation'

- $g_{\text{obs}}(R) = V_c^2(R)/R$
- $g_{\text{bar}}(R)$ from models of luminous matter + Poisson eq.
- Tight correlation between the two

The RAR

Lelli et al. (2017)

The RAR

Brouwer et al. (2021)

The VAR

VAR = 'Vertical Acceleration Relation'

- $a_{z,obs}(R,z)$ from Jeans eqs.
- $a_{z,bar}(R,z)$ from models of luminous matter + Poisson eq.
- What's the relation between the two at different z?

'Vertical' Jeans equation

Assuptions

- Galaxy is stationary
- Galaxy is axisymmetric
- Ignore cross term in the v_R - v_z velocity DF
- Note: the acceleration here is NOT the gravitational force per unit mass.
- Plays the same role of $v_c^2(R)/R$ in RAR

$$a_{z, \text{ obs}} = \frac{1}{v} \frac{\partial}{\partial z} (v \sigma_z^2)$$

'Vertical' Jeans equation

Assuptions

- Galaxy is stationary
- Galaxy is axisymmetric
- Ignore cross term in the v_R - v_z velocity DF
- Note: the acceleration here is NOT the gravitational force per unit mass.
- If $v(R,z)=v_0(R)\exp(-|z|/h(R))$ with scale heigth h

$$a_{z, \text{ obs}} = \frac{-\operatorname{sgn}(z) \sigma_z^2}{h} + \frac{\partial \sigma_z^2}{\partial z}$$

Poisson equation

Assumptions:

- Galaxy is axisymmetric
- Integration over z
- Here the acceleration IS the gravitational force per unit mass; $g_{\text{bar}}(R) = -a_{R,\text{bar}}(R,z=0)$

$$a_{z, \text{bar}} = 2 \pi G \Sigma_z + 2 \int_0^z dz' \frac{1}{R} \frac{\partial (R a_{R, \text{bar}})}{\partial R}$$

Poisson equation

Assumptions:

- Galaxy is axisymmetric
- Integration over z
- Here the acceleration IS the gravitational force per unit mass; $g_{\text{bar}}(R) = -a_{R,\text{bar}}(R,z=0)$; $V_{\text{c,bar}}(R) = R g_{\text{bar}}(R)$

$$a_{z, \text{bar}} \approx 2 \pi G \Sigma_z - 4 \frac{v_{c, \text{bar}}}{R} \frac{d v_{c, \text{bar}}}{d R} z$$

The case of the Milky Way

Check the VAR on the MW (Gaia DR3) before external galaxies

- v and σ_z estimated from the number counts and v_z dispersion of Gaia data inside R and z bins
- $a_{z,bar}$ from models of the baryonic content of the Galaxy ...

Ingredients: σ_z

• σ_z : measure it from std deviation of v_z for stars in Gaia at different R rings and z slices

From Gaia collab. (2018)

Ingredients: σ_z

- σ_z : measure it from std deviation of v_z for stars in Gaia at different R rings and z slices
- Pick tracer population: RGB stars (Gaia collab. 2023)

Avoid the bar!

• Non-axisymmetric effects strongest R<5kpc

Ingredients: v

- ν : count stars in Gaia at different R rings and z slices?
- You'll never make it this way ...

Ingredients: v

- ν: count stars in Gaia at different R rings and z slices?
- You'll never make it this way ...
- Simple (simplistic?) solution: fit $v(R,z)=v_0(R)\exp(-|z|/h(R))$ in the Solar neighbourhood and extrapolate to the rest of the Galaxy
- Find h(R) = aR + b, a = 0.05 and $h(R_0) = 0.32$ kpc
- Increasing scaleheight with R found by many authors (e.g. Binney & Vasiliev 2023)

Ingredients for $a_{z,bar}$

- Models for the baryons of the MW ... Unfortunately for the stellar disk few and date back to >20 years ago (e.g. Freudenreich 1998, Drimmel & Spergel 2001). IR point source measurements are the most reliable (scale length ~ 2.6 kpc)
- Almost the same happens with gas

Ingredients for $a_{z,bar}$

- Baryonic model 1): McMillan (2017) without the dark halo (beware: the fit was done WITH the halo!)
- Baryonic model 2): McGaugh (2019) with gas data from Olling & Merrifield (2001), disk obtained inverting RAR
- Beware! $R_0 = 8.2$ kpc for McMillan, but was 8.122 kpc for McGaugh. I use $R_0 = 8.277$ (Gravity 2022).
- I stretched McGaugh model which is now ~ 2x more massive than McMillan.

Results

McGaugh and McMillan

McGaugh and McMillan

No conclusions but caveats

- Is the velocity dispersion from Gaia still biased?
- Are we getting the vertical density of the RGBs right?
- Cross terms / Galactic wobbling and phase-spiral?
- Non-axisymmetric effects?
- Baryonic models. Which one is 'right'?
- What's the detailed prediction from MOND?