Galaxy formation and primordial non-Gaussianities

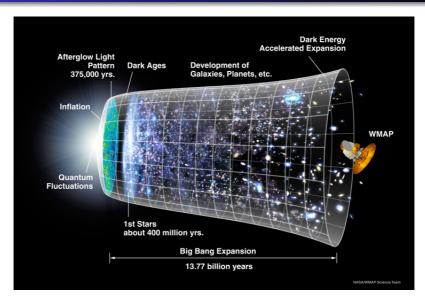
Clément Stahl

Observatoire Astronomique de Strasbourg, Université de Strasbourg

12 September 2023

Based on 2209.15038, 2307.03300

<u>Collaborators:</u> T. Montandon, Y. Dubois, B. Famaey, O. Hahn, K. Kraljic,
R. Ibata

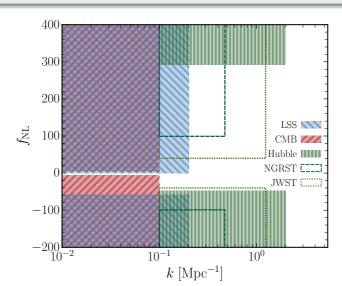

Probe inflation

PNG on small scales: current status

Theoretical proposals of scale dependant PNG
JWST: a population of bright massive galaxies at high redshift

Example of small scale problem: hot orbit problem

Large Scale Structures (LSS) formation


Cosmological structures formation

Fluids mechanics in an expanding universe.

Primordial non-Gaussianities (PNG) on small scales: current status

propagate Primordial non-Gaussianities \rightarrow test inflationary physics

$$\Phi(\mathbf{x}) = \Phi_G(\mathbf{x}) + f_{\text{NL}} \left(\Phi_G^2(\mathbf{x}) - \langle \Phi_G^2 \rangle \right) . \tag{1}$$

Probe inflation
PNG on small scales: current status
Theoretical proposals of scale dependant PNG
JWST: a population of bright massive galaxies at high redshift
Example of small scale problem: hot orbit problem

Scale dependant PNG

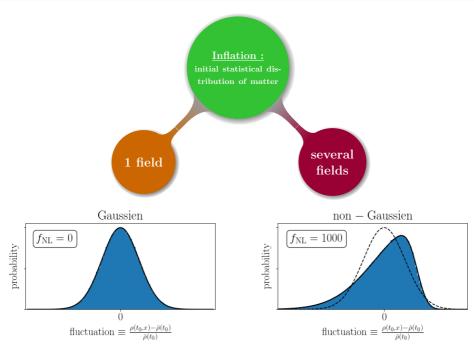
Several models of strongly scale dependant PNG

Beyond slow roll

- Khoury 0811.3633: time-dependant sound speed
- Riotto 1009.3020: scalar field with abrupt change of mass
- Byrnes 1108.2708: curvaton-self interactions
- \bullet Can parametrize with $n_{f_{NL}} \equiv \frac{d \ln f_{NL}}{d \ln k}$
- ullet Planck 1905.05697: constraints on running NG o compatible with 0.

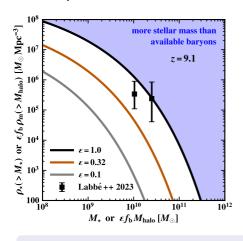
Large PNG on scales smaller than $\overline{k_{CMB/LSS}} \equiv k_{\rm cut} = \mathcal{O}(0.1)~{ m Mpc^{-1}}$

$$B_{\Phi} = f_{NL} P_{\Phi}(k_1) P_{\Phi}(k_2) \Theta(k_i - k_{\text{cut}}) + 5 \text{ perm.}$$
 (2)

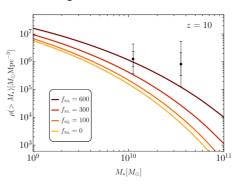

ns

Probe inflation

Theoretical proposals of scale dependant PNG

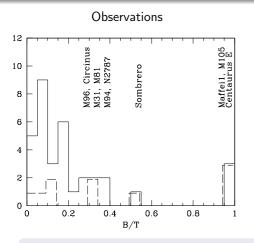

I heoretical proposals of scale dependant PNG
JWST: a population of bright massive galaxies at high i
Example of small scale problem: hot orbit problem

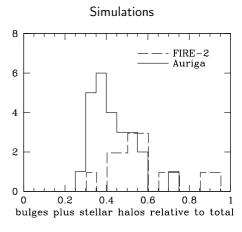
Scale dependant PNG



Bright massive galaxies at high redshift?

Boylan-Kolchin 2208.01611

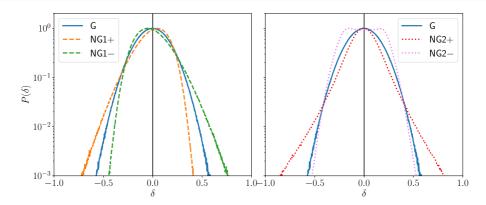

Biagetti 2210.04812



- ullet Presence of massive galaxies naturally solved if structure formation started "earlier" ightarrow PNG favouring overdensities.
- \bullet Still, as all the other beyond Λ CDM solutions, the evolution of those massive galaxies between redshift 10 and 8 requires fine tuning in the models.
- Preliminaries observations. Take it with a grain of salt.

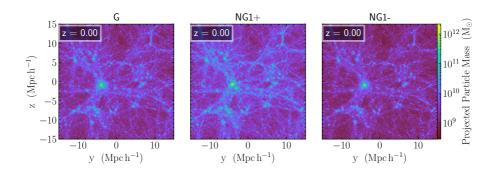
Probe inflation
PNG on small scales: current status
Theoretical proposals of scale dependant PNG
JWST: a population of bright massive galaxies at high redshift
Example of small scale problem; hot orbit problem

Peebles 2005.07588: study bulge to total luminosity of galaxies

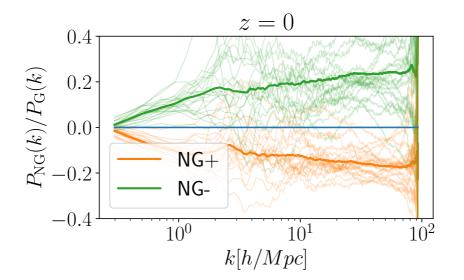


- "Hot orbit problem" naturally solved if galaxies have a calmer environment, and form through a calmer history.
- Baryon feedback play a crucial role here
- Initial condition modification has also been tested: genetic modification (Stopyra 2006.01841), splicing (Cadiou 2107.03407), modify initial angular momentum (Cadiou 2206.11913).

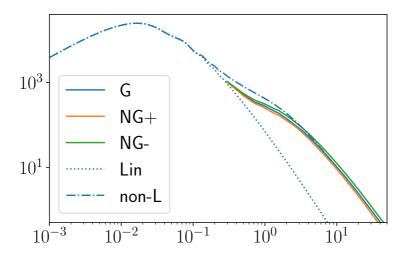
- Motivations
 - Probe inflation
 - PNG on small scales: current status
 - Theoretical proposals of scale dependant PNG
 - JWST: a population of bright massive galaxies at high redshift
 - Example of small scale problem: hot orbit problem
- 2 Dark Matter Only Simulations
 - Visualisation
 - Matter Power spectrum
 - Density profile
 - Satellites of MW-like galaxy
- 4 Hydrodynamical Simulations
 - Visualisation
 - Disk kinematics
 - specific Star Formation Rate
- 4 Conclusions and Perspectives


Numerical setup

- Toy models: NG of $f_{NL} = \pm \mathcal{O}(1000)$.
- 20 Dark Matter Only simulations^a
- Grid : 512^3 , BoxSize : 30 Mpc/h, softening length 1 kpc/h.
- \bullet Total mass in the box: $3.4\times10^{15}M_{\odot}$, mass of DM particles $2.6\times10^{7}M_{\odot}$

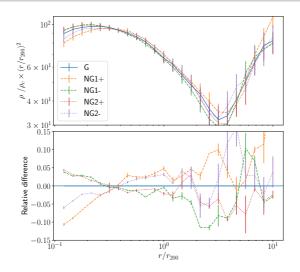

 $[^]a$ Work with Gadget4 (https://wwwmpa.mpa-garching.mpg.de/gadget4/) and Monofonic (https://bitbucket.org/ohahn/monofonic/src).

Halos in quieter environments



Matter power spectrum

$$\langle \delta(\vec{k}_1, t) \delta(\vec{k}_2, t) \rangle = (2\pi)^3 \delta_D(\vec{k}_1 + \vec{k}_2) P_m(k_1, t)$$
 (3)



Matter power spectrum

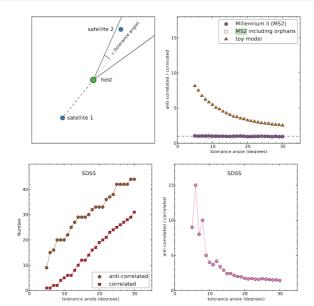
Amon 2206.11794: a 30% decrease of the non-linear power spectrum solves the S8 tension (3 σ discrepancy between Planck and large scale structures observations)

Density profiles

- Stacked result on our sample of the 100 more massive halo found in each simulation. $M_h \in \left[1.6 \times 10^{14}; 1.1 \times 10^{12}\right] M_{\odot}$.
- Similar study to Smith 1009.5085, though our box is much smaller.

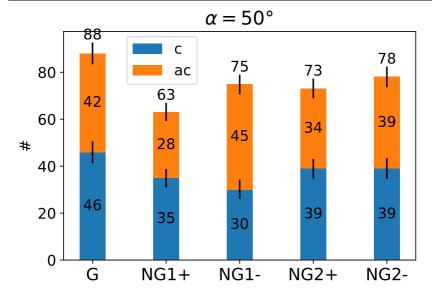
Planar subhalos?

- Take the 11 more massive subhalos of the 100 more massive halos ($M_h \in 1.6 \times 10^{14}$ to $1.1 \times 10^{12} \, M_\odot$)
- inertia tensor:


$$I_{ij} = \sum_{n=1}^{N} x_{n,i} x_{n,j} \tag{4}$$

- eigenvalue $\equiv a^2, b^2, c^2$.
- For the MW, 'Vast Polar Structure' (VPOS)=rotating plane of satellite galaxies, observations: c/a = 0.182 (Pawlowski 1204.5176).
- Gaia proper motion: 50% to 75% of the satellites within the VPOS are orbiting around that structure (Li 2104.03974)
- Difficult to account for in traditional N-body, see however Sawala 2205.02860

Simulation	G	NG1+	NG1-	NG2+	NG2-
c/a	0.33 ± 0.01	0.34 ± 0.01	0.32 ± 0.02	0.31 ± 0.01	0.37 ± 0.02

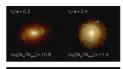

Correlated subhalos?

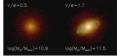
A classical test of the litterature (Ibata 1407.8178): dwarf satellite galaxies are aligned in thin and kinematically coherent planar structures

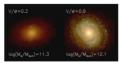
Correlated subhalos?

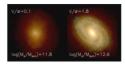
Simulation	G	NG1+	NG1-	NG2+	NG2-
AC/C, $\alpha = 10 \deg$					l
AC/C, $\alpha = 50 \deg$	0.9 ± 0.2	0.8 ± 0.2	1.5 ± 0.3	0.9 ± 0.2	1.0 ± 0.2

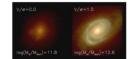
- Motivations
 - Probe inflation
 - PNG on small scales: current status
 - Theoretical proposals of scale dependant PNG
 - JWST: a population of bright massive galaxies at high redshift
 - Example of small scale problem: hot orbit problem
- 2 Dark Matter Only Simulations
 - Visualisation
 - Matter Power spectrum
 - Density profile
 - Satellites of MW-like galaxy
- 3 Hydrodynamical Simulations
 - Visualisation
 - Disk kinematics
 - specific Star Formation Rate
- 4 Conclusions and Perspectives

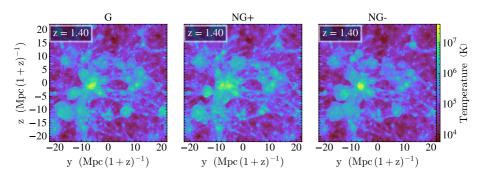
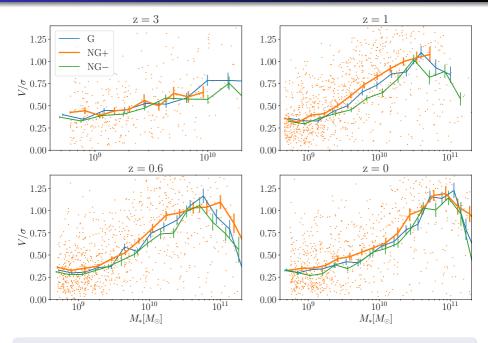

17/25 17/25

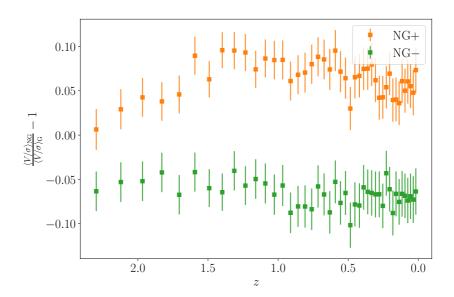

Numerical setup


- Same random seed, same setup
- Hydrodynamical simulation for the baryons following the Horizon-AGN code (Dubois 1606.03086).
- Dynamics of gas, cooling and heating.
- Mass in the box: $3.4 \times 10^{15} M_{\odot}$, mass of DM particles $2.2 \times 10^7 M_{\odot}$.
- 2 Mhours of CPU time.


Subgrid model


- Star formation
- Feedback of stars (stellar winds, supernovae type II and Ia)
- 6 chemical species (O, Fe, C, N, Mg, Si)
- Feedback of Active Galactic Nuclei

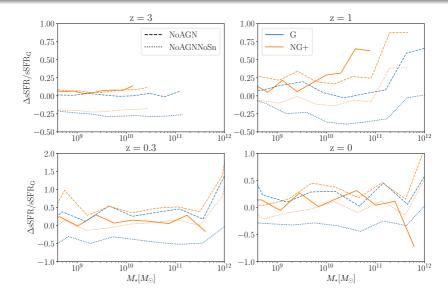




Figure: Temperature of the gas at redshift z = 1.4.

Disk kinematics


• Hierarchy of the models similar as DMO simulations: NG+ > G > NG-

Evolution with redshift


• About 5% effect at all z<3

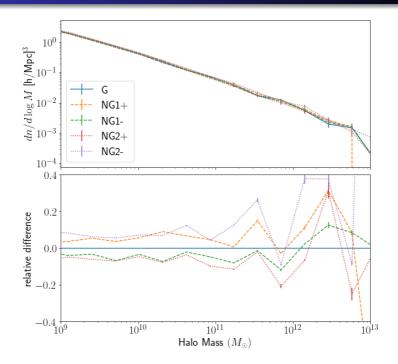
specific Star Formation Rate

• Hierarchy of the models similar as DMO simulations: NG+ > G > NG-

Impact of the feedback?

- AGN shut down star formation at high mass
- Supernovae (stellar winds) impact at low ($<10^{11}M_{\odot}$) mass

Conclusions


- Large PNG on small scales: potential to impact open questions in galaxies
- Massive high-z galaxies are also easier to form in that context?
- Would NFW still be a nice fit to dark matter profiles with PNG?
- Feedback parameters vs inflationary parameters → impact of fundamental physics to galaxies; memory of the galaxies of their initial conditions?
- Need to back up these explorations with more simulations: zoom on one galaxy in a cosmological background...
- Refine my templates of PNG: low pass filter, power laws, inflationary sounds models (Riotto 1009.3020).
- Easy to extend to WDM or Effective Theory of DM (α, β, γ parametrization of Murgia 1704.07838 already implemented by us in Monofonic.)
- Primordial Black Holes: a natural dark matter candidate with large PNG.

24/25 24/25

Thank you for your attention

Halo Mass Function

In-situ vs ex-situ stars

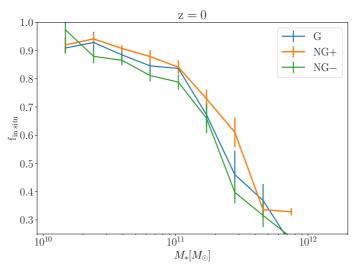


Figure: Mean fraction of in situ formed stars as a function of stellar mass at z=0.

• Hierarchy of the models similar as DMO simulations: NG+ > G > NG-

M_* - M_h relation

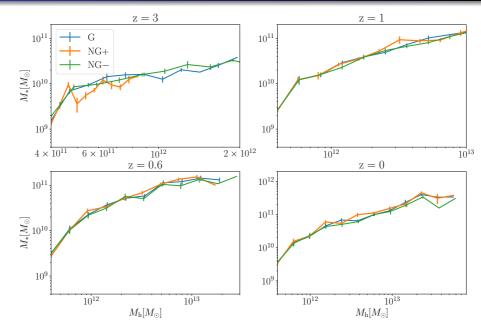
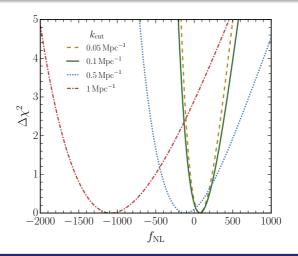
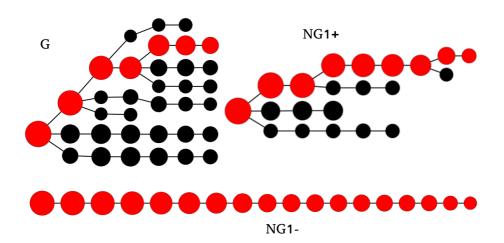
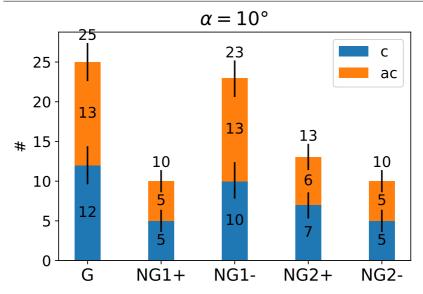



Figure: NG+ builds its galaxies later: at z=3, it has fewer stars at fixed halo mass but it catches up at later times to slightly dominate at z=0.


Primordial non-Gaussianities (PNG) on small scales

Sabti 2009.01245

- Study UV galaxy luminosity function of Hubble telescope
- A detection at 1.7 σ . Most likely a bump in the data, but who knows... \rightarrow JWST, NGRST
- Using another model of dust extinction, no more detection


Merging history

Simulation	G	NG1+	NG1-	NG2+	NG2-
$ z_{1/2} $	0.64 ± 0.01	0.59 ± 0.01	0.67 ± 0.02	0.64 ± 0.01	0.60 ± 0.01
MC	3.5 ± 0.1	3.5 ± 0.2	3.3 ± 0.2	2.8 ± 0.2	4.8 ± 0.2

Correlated subhalos?

Simulation	G	NG1+	NG1-	NG2+	NG2-
AC/C, $\alpha = 10 \deg$	1.1 ± 0.5	1.0 ± 0.8	1.3 ± 0.6	0.9 ± 0.6	1.0 ± 0.8



Image credit: Pablo Carlos Budassi

Inflation *explains* the origin of the primordial density perturbation. It predicts a Gaussian spectrum (nearly) scale invariant $P(k) = A_s k^{n_S-1}$.

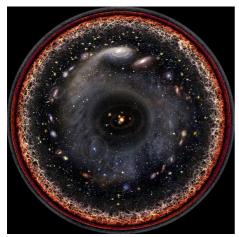


Image credit: Pablo Carlos Budassi

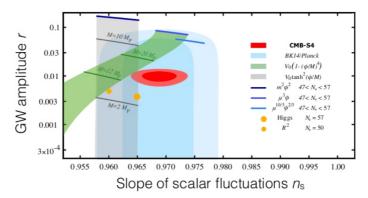
Inflation *explains* the origin of the primordial density perturbation. It predicts a Gaussian spectrum (nearly) scale invariant $P(k) = A_s k^{n_S-1}$.

The perturbations grow into the CMB anisotropies and eventually into the stars and galaxies we see around us.

We have a detection of a small departure from scale invariance, consistent with the expectations of simple inflationary models.

In inflationary paradigm, in the first fractions of second, the rapid expansion dillutes anything but quantum fluctuations which imprint into the *full* gravitational fields of the universe.

Successfull (and has no serious concurrent consistant with data) but... How did inflation occur? How did it begin? Are ground-state quantum fluctuations truly the source of density perturbations? What is the connection of inflation to the rest of physics? Are there observations that could falsify inflation?


Quite a zoology of inflation models (Encyclopaedia Inflationaris, Martin 1303.3787, 368 pages, 192 figures)

	5.16	Supergravity Brane Inflation (SBI)	18	
	5.17	Spontaneous Symmetry Breaking Inflation (SSBI)	18	
	5.18	Inverse Monomial Inflation (IMI)	19	
	5.19	Brane Inflation (BI)	19	
6	Thi	Three parameters Models		
	6.1	Running-mass Inflation (RMI)	20	
	6.2	Valley Hybrid Inflation (VHI)	20	
	6.3	Dynamical Supersymmetric Inflation (DSI)	21	
	6.4	Generalized Mixed Inflation (GMLFI)	21	
	6.5	Logarithmic Potential Inflation (LPI)	21	
	6.6	Constant n_s D Inflation (CNDI)	22	

3	Zer	Parameter Models	23
	3.1	Higgs Inflation (HI)	23
1	One	Parameter Models	31
	4.1	Radiatively Corrected Higgs Inflation (RCHI)	31
	4.2	Large Field Inflation (LFI)	37
	4.3	Mixed Large Field Inflation (MLFI)	41
	4.4	Radiatively Corrected Massive Inflation (RCMI)	44
	4.5	Radiatively Corrected Quartic Inflation (RCQI)	47
	4.6	Natural Inflation (NI)	49
	4.7	Exponential SUSY Inflation (ESI)	54
	4.8	Power Law Inflation (PLI)	57
	4.9	Kähler Moduli Inflation I (KMII)	60
	4.10	Horizon Flow Inflation at first order (HF1I)	65
	4.11	Colemann-Weinberg Inflation (CWI)	68
		Loop Inflation (LI)	72
	4.13	$(R + R^{2p})$ Inflation (RpI)	77
	4.14	Double-Well Inflation (DWI)	81
	4.15	Mutated Hilltop Inflation (MHI)	85
	4.16	Radion Gauge Inflation (RGI)	87
	4.17	MSSM Inflation (MSSMI)	89
	4.18	Renormalizable Inflection Point Inflation (RIPI)	96
	4.19	Arctan Inflation (AI)	100
	4.20	Constant n_S A Inflation (CNAI)	103
	4.21	Constant n_s B Inflation (CNBI)	108
	4.22	Open String Tachyonic Inflation (OSTI)	111
	4.23	Witten-O'Raifeartaigh Inflation (WRI)	115
,	Tue	Parameters Models	120
•	5.1	Small Field Inflation (SFI)	120
		Intermediate Inflation (II)	123
		Kähler Moduli Inflation II (KMIII)	128
		Logamediate Inflation (LMI)	134
		Twisted Inflation (TWI)	138
		Generalized MSSM Inflation (GMSSMI)	143
	5.7	Generalized Renormalizable Point Inflation (GRIPI)	148
	5.8	Brane SUSY breaking Inflation (BSUSYBI)	152
		Tip Inflation (TI)	155
		β exponential inflation (BEI)	161
		Pseudo Natural Inflation (PSNI)	163
		Non Canonical Kähler Inflation (NCKI)	167
		Constant Spectrum Inflation (CSI)	170
		Orientifold Inflation (OI)	173
		Constant n _e C Inflation (CNCI)	177

Energy scale at which inflation occurs is unknown and can range across 10 orders of magnitude.

Quantum fluctuations imprint into the *full* gravitational fields of the universe \rightarrow Production of gravitational waves! Potential observation for highest energy model of inflation (>10¹⁶ Gev) through interaction with polarization of CMB photons (B-modes).

$$\left(rac{r}{0.01}
ight)\simeqrac{V^{1/4}}{10^{16}{
m Gev}}$$

Models with energy scale below 10^{16} Gev have no observable primordial gravitational waves. Class these models using **primordial non-gaussianities** (PNG): complement GW seaches (Meerburg 1903.04409)

Theorem: (Consistency relations), Maldacena 0210603

If only one light scalar field is active during inflation, the behavior of the three-point correlation function, in the squeezed limit, is entirely fixed by the two-point correlation function.

Single field predicts $f_{\rm NL}\simeq \frac{5}{12}(1-n_S)\simeq 0.02.$ A detection of $f_{\rm NL}\gg 0.02$ rules out all single inflation.

Constraints

```
f_{\rm NL}=-0.9\pm5.1 (Planck 1905.05697). 
 f_{\rm NL}=-12\pm21 (SDSS, 2106.13725) 
 Future LSS experiements (Euclid, DESI, SKA...) will improve this constraint by an order of magnitude: 
 \sigma(f_{\rm NL})=\mathcal{O}(1)
```

 $f_{\rm NL} = 37 \pm 20$ (WMAP 1212.5225),

