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- 1st News from the Dark | discussed WISPy Cold Dark matter,
Introduced new generic DM candidates, huge new parameter spaces, brodened the scope ...

- To get some things done, the last few years | 've been trying to narrow down a bit
| will discuss here my recent results on QCD axion DM in the post-inflationary scenario

It could not get much narrower than that



- Intro
- Axions from strings
- Miniclusters

- High mass haloscopes ...



0CD Axion motivation: The strong CP “issue”

- CP violation in QCD sector: CKM angle 0,3 = 1.2 + 0.1 rad AND flavour-neutral phase 0 = Oqcp + N¢d
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quark phase redefinition shifts between quark mass phase and QCD vacuum because of the axial anomaly

-The 0-angle produces flavour-neutral CP violation like Electric Dipole Moments ... never observed!
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Driving & dynamically to zero with BSM physics

CP Conservation in the Presence of Pseudoparticles™

R. D. Peccei and Helen R. Quinnt
Institute of Theovetical Physics, Depaviment of Physics, Stanford University, Stanford, California 91305
(Received 31 March 1977)

We give an explanation of the CF conservation of strong interactions which includes the
effects of psecudoparticles. We find it is a natural result for any theory where at least
one flavor of fermion acquires its mass through a Yukawa coupling to a scalar field which
hus nonvanishing vacuum expectation value.

It is experimentally obvious that we live in a grangian.
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OCD vacuum energy is minimised at 6 = (!

- Any theory promoting ¢ to a dynamical field, & (¢, x ) ,will automaticallyset & — O after some time...

A
vV (6’) —> generated by QCD
non-perturbative dynamics
Potential energy density (instantons)
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( Canonlcally normallsed 6’ field is the QCD AXION! a(m)
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what do we know about fA

Less interacting @¢—————————p  More interacting
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Axion dark matter in a nutshell

5. Axions field rolls down potential at
tl ~ 1/mA

and oscilates around minimum (dust-like) A

Vaen (0)

2: The QCD vacuum energy depends on 6
it has a minimumat @ = O !!l!

1: The axion field (A) is the dynamical
version of the theta angle of QCD A

We observe 0 ~ ( )l i




Axion DM in the lab

. 0
0.

TR G(t) = Oy cos(mat)

Local Dark Matter density®
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Detecting Axion Dark Matter

- 0, = 3.6 x 10~ is a very small number but, oscillations allow for coherent detection!

- Couple a resonator to the axion and SCAN (with the resonant frequency) but is time-consuming!

- Axion spectrum is not exactly monochromatic, non-zero velocity of DM in the galaxy -> finite width

frequency w ~ mg (14 v%/2+ ...) 5 MoV
2
—
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- Maximum amplification is quality factor of axion resonance* (Q ~ 10°
*substructure can have much larger Q’s



Axion DM in a B-field

- Axion photon coupling in a strong B-field becomes a source of E-field
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- Axion cavity haloscopes
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Experimental results
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Dark matter in a nutshell 2

5: post-inflationary scenario : Initial conditions 6: pre-inflationary scenario : Axion initial
after inflation ( conditions before inflation, inflation smoothest them out
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4. Axion dark matter abundance depends:

L 1016V \ 117
Axlonmass ¢y 1o 192 (2K
- Initial angle ma

5: Axions field rolls down potential at
tl ~ 1/mA

and becomes dark matter (like inflaton) A

Vaen (0)

2: The QCD vacuum energy depends on 6
it has a minimumat @ = O !!l!

1: The axion field (A) is the dynamical
version of the theta angle of QCD A
We observe 6 ~ ( < )l 0= —
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Axion DM mass VA camh? = 0.12

- Calculate the axion mass to get all the observed cold dark matter
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Post inflationary scenario

- In principle, we can calculate the initial-condition average and give a clear experimental target

- But 1: current uncertainty comes from axions radiated from global string networks

- But 2: Dark matter is inhomogeneous (miniclusters)
how much DM is outside MCs available to direct discovery experiments?
can we detect miniclusters directly?

- But 3: current trends point to mA ~ 10-4 eV ... where cavity haloscopes are not sensitive enough

can we envision haloscopes at 10-4 eV?



Post inflationary scenario

U(1) Spontanous breaking -> Global
cosmic strings (Kibble 80)

PQ-phase transition
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Inflation?
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Galaxy forms with MC halo

hierarchical growth

z ~ O(1)



Axions from strings

- At PQ phase transition, QCD irrelevant, U(1) symmetry good, network of global strings by Kibble mech.
- String network relaxes (loop collapse, straightening...) at distances ~causal horizon

- String energy density is transferred into axion waves

- Differential spectrum

........................... o 1> 1 (IR modes dominate)
....... Many soft axions.

Enhancement of DM abundance.
}_( ke mr) _ 1 1 O (R48’0a) .................. -,
RH ’ H (f a H )2 R3 8t 8k g < 1 (UV modes dominate)
"1 Few hard axions.
a |

Suppression of DM abundance.

im. from Saikawa 23

- Theoretical estimates do not converge, we resort to numerical simulations



Spectral index of axion radiation from a global string network

- Gorghetto and Buschmann found very different g's (growing with log (fA/H) vs g~1)

- We can understant part of this difference from their setups (ICs, discretisation errors) Saikawa, to appear

- We find the growing trend, but accounting for discretisation errors in the extrapolation leave room

for both g>1 and g~1 solutions.

- The next generation of simulations (AMR) could settle the issue ... but we will need theory too

From Saikawa, JR, 2023 (to appear)
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Axion DM Mass

- Axion DM mass from theory

Different Cosmo scenarios
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- A general prediction of post-inflationary scenario is O(1) inhomogeneities at Hs horizon scales

- We cannot simulate with total certainty because we cannot simulate global strings with adecuate
tension at Hq times (T~GeV) (we can only log ~ 9, we need 60)

- We have performed simulations in three extreme cases to compare predictions,
- q<1 with small log (low tension strings)
- Q=2 removing strings
- artificial high tension simulations (Moore 17)



post-inflationary scenario
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Early Universe, large scales

Energy density fluctuations as seeds for miniclusters
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Pierobon, JR et al 23
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L1 is the size of the causal horizon when m~H



post-inflationary scenario

“Late” Universe

Free-stream (RD)

Galaxy forms with MC halo

hierarchical growth

2~ O(1)



Axion miniclusters

- free stream analitically up to z~100 ze,
- Sample the density distribution with N-body particles (de Broglie wavelength too small to resolve)
- Gadget codes for the gravitational evolution ...

- early collapse of O(1) overdensities into miniclusters

- Hierarchical formation of clusters of miniclusters

Eggemeier 19




Axion miniclusters
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- Simulations (very small scales) grow non-linear and do not allow to reach redshift 0



Encounters with the Earth

Direct encounters of miniclusters with the Earth occur once in ~10° years

Problematic scenario for direct
detection (e.g. cavities )

However disrupted miniclusters
can form tidal streams
Analytical estimates find

factor ~10 amplification
for 2-3 days every 20 years

N(A)

A numerical study needs to be
performed!

Number of encounters with axion streams
producing amplification factor larger than A Tinyakov-+ 2016

10




Distribution of DM around the Earth: minivoids

Observation time [years]

- Ignore tidal disruption, which ejects more axions A S S S S

into the voids, use the converging void density ;
as a conservative lower limit ...

Eggemeier 22
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-femtolensing of GRBs  \/ ~ 10710 ~ 10_13M@

Most GRBs are innappropriate due to large sizes Katz 18

- microlensing of M31 stars Fairbairn 17

Expectations based on very optimistic th-M(Cs
10° . .
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Fairbairn 17
e isolated MC
S _— dense MCH
1000} £ —  diffuse MCH |
g
a EROS:
3 —_ isolated MC
2 10} dense MCH |
X N
0.1 “ i
. .//-.-— ~‘\\\
-15 -10 -5 0
log1o(Mo/M)

Need to study better NFWness of central profiles
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Revisited after numerical simulations (optimistic)
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Conclusions

- QCD axion is a compeling DM candidate

- Post-inflationary scenario is free from IC uncertainty
- clear experimental target -> quick discovery?
- other uncertainties are ~ small

- Axion string radiation not completely understood, g~1 and growing?
- next generation simulations could answer

- Axion miniclusters
- Typical mass is uncertain (decreases with increasing q)
- bound fraction (~80%) and void density (~8%) not very sensitive!
- Conservative lower bound on intracluster density for experiments

- We need experiments that can target the 10-4 eV mass area
- MADMAX (dielectric haloscope)
- ALPHA (plasma haloscopes)
- Dish antennas ...



UUUSS

tch

UNION EUROPEA

Fondo Europeo de
Desarrollo Regional (FEDER) C OS MIC
Una manera de hacer Europa VVISPERS
AGENCIA
ESTATAL DE CA21106

INVESTIGACION

MAX-PLANCK-GESELLSCHAFT



