Axion DM mutter

(the post inflationary universe)

Javier Redondo

12th September 2023
News from the Dark '23
ULB, Brussels, Belgium
based on ...

Dep. Theoretical Physics Universidad de Zaragoza

MAX-PLANCK-GESELLSCHAFT

MPP Munich

The University of New South Wales

- 1st News from the Dark I discussed WISPy Cold Dark matter, introduced new generic DM candidates, huge new parameter spaces, brodened the scope ...
 - To get some things done, the last few years I 've been trying to narrow down a bit I will discuss here my recent results on QCD axion DM in the post-inflationary scenario

it could not get much narrower than that

outline

- Intro

- Axions from strings

- Miniclusters

- High mass haloscopes ...

QCD Axion motivation: The strong CP "issue"

- CP violation in QCD sector: CKM angle $\,\delta_{13}=1.2\pm0.1\,{
m rad}\,$ AND flavour-neutral phase $\,\theta= heta_{
m QCD}+N_f\delta$

$$\mathcal{L}_{\text{SM}} \in -\bar{q}_L \begin{pmatrix} m_u e^{i\delta/2} & 0 & \dots \\ 0 & m_d e^{i\delta/2} & \dots \\ 0 & \dots \end{pmatrix} \begin{pmatrix} u \\ d \\ \dots \end{pmatrix}_R - \frac{\alpha_s}{8\pi} G \widetilde{G} \, \theta_{\text{QCD}}$$

quark phase redefinition shifts between quark mass phase and QCD vacuum because of the axial anomaly

- The θ -angle produces flavour-neutral CP violation like Electric Dipole Moments ... never observed!

- Neutron EDM (Pospelov 9908508)

$$d_n = (2.4 \pm 1.0)\theta \times 10^{-3} \text{e fm}$$

- Experimental upper limit (Grenoble hep-ex/0602020)

$$|d_n| < 3 \times 10^{-13} \,[\text{e fm}]$$

- Why is $\theta < 10^{-10}$?

Driving θ dynamically to zero with BSM physics

CP Conservation in the Presence of Pseudoparticles*

R. D. Peccei and Helen R. Quinn†

Institute of Theoretical Physics, Department of Physics, Stanford University, Stanford, California 94305 (Received 31 March 1977)

We give an explanation of the *CP* conservation of strong interactions which includes the effects of pseudoparticles. We find it is a natural result for any theory where at least one flavor of fermion acquires its mass through a Yukawa coupling to a scalar field which has nonvanishing vacuum expectation value.

It is experimentally obvious that we live in a

grangian.

QCD vacuum energy is minimised at $\theta = 0$!

-Any theory promoting $\, heta\,$ to a dynamical field, $heta(t,{f x})$,will automatically set $\, heta o 0\,$ after some time...

generated by QCD non-perturbative dynamics (instantons)

- PQ Mechanism: Global U(1) symmetry spontaneously broken + color anomaly-> Goldstone boson + QCD term

$$\mathcal{L}_{\theta} = \frac{1}{2} (\partial_{\mu} \theta) (\partial^{\mu} \theta) f_a^2 - \frac{\alpha_s}{8\pi} G_{\mu\nu a} \widetilde{G}_a^{\mu\nu} \theta$$

Canonically normalised θ -field is the QCD AXION! $a(x) = \theta(x) f_a$

New Spontaneous symmetry breaking [energy] scale f_a

New scale f_{lpha} can relate to fundamental scales (string, flavor)

what do we know about fA

Axion dark matter in a nutshell

$$\Omega_c h^2 \sim 0.12 \theta_I^2 \left(\frac{10 \mu \text{eV}}{m_A}\right)^{1.17}$$

3: Axions field rolls down potential at $t_1 \sim 1/m_A$ and oscilates around minimum (dust-like)

2: The QCD vacuum energy depends on $\, \theta \,$ it has a minimum at $\, \, \theta = 0 \, !!!! \,$

1: The axion field (A) is the dynamical version of the theta angle of QCD
We observe $\,\theta \simeq 0$

Axion DM in the lab

Local Dark Matter density*

$$\rho_{c,0} \simeq \frac{1}{2}\dot{a}^2 + \frac{1}{2}m_a^2a^2 = \frac{1}{2}m_A^2f_A^2\theta_0^2 = 0.4\frac{\text{GeV}}{\text{cm}^3}$$

$$\theta_0 = 3.6 \times 10^{-19}$$

Detecting Axion Dark Matter

- $\theta_0 = 3.6 \times 10^{-19}$ is a very small number but, oscillations allow for coherent detection!
- Couple a resonator to the axion and SCAN (with the resonant frequency) but is time-consuming!

- Axion spectrum is not exactly monochromatic, non-zero velocity of DM in the galaxy -> finite width

- Maximum amplification is quality factor of axion resonance * $~Q \sim 10^6$

Axion DM in a B-field

-Axion photon coupling in a strong B-field becomes a source of E-field

$$\mathcal{L}_I = -C_{a\gamma} \frac{\alpha}{2\pi} \theta(t) \, \mathbf{B}_{\mathrm{ext}} \cdot \mathbf{E}$$

source

E-field
$$E \sim \mathcal{O}(10^{-12} \mathrm{V/m}) \frac{|\mathrm{B_{ext}}|}{10 \mathrm{\,T}} C_{a\gamma} \times \cos(m_a t)$$

E-field
$$E \sim \mathcal{O}(10^{-12} \text{V/m}) \frac{|\text{B}_{\text{ext}}|}{10 \, \text{T}} C_{a\gamma} \times \cos(m_a t)$$
 Power $P/Area \sim |\mathbf{E}_a|^2 \sim 2 \times 10^{-27} \left(\frac{\text{B}}{5 \, \text{T}} \frac{C_{a\gamma}}{2}\right)^2 \frac{\text{Watt}}{1 \, \text{m}^2}$

- Axion cavity haloscopes

ADMX cavity tunable with metal rods

Experimental results

- micro eV cavities have excluded an octave of parameter space in 30 years
- more competition and faster scanning now
- some theoretical bias could accelerate the search

Dark matter in a nutshell 2

5: post-inflationary scenario: Initial conditions after inflation (only mass dependence!)

6: pre-inflationary scenario: Axion initial conditions before inflation, inflation smoothest them out

$$\theta_I = ?$$

- 4: Axion dark matter abundance depends:
 - Axion mass Initial angle $\Omega_c h^2 \sim 0.12 \theta_I^2$

- 3: Axions field rolls down potential at $t_1 \sim 1/m_A$ and becomes dark matter (like inflaton)
- 2: The QCD vacuum energy depends on θ it has a minimum at $\theta = 0 !!!!$
 - 1: The axion field (A) is the dynamical version of the theta angle of QCD We observe $\theta \simeq 0$

- Calculate the axion mass to get all the observed cold dark matter

Post inflationary scenario

- In principle, we can calculate the initial-condition average and give a clear experimental target

- But 1: current uncertainty comes from axions radiated from global string networks

- But 2: Dark matter is inhomogeneous (miniclusters)
 how much DM is outside MCs available to direct discovery experiments?
 can we detect miniclusters directly?
- But 3: current trends point to mA $\sim 10^{-4}$ eV ... where cavity haloscopes are not sensitive enough can we envision haloscopes at 10^{-4} eV?

Post inflationary scenario

Axions from strings

- At PQ phase transition, QCD irrelevant, U(1) symmetry good, network of global strings by Kibble mech.
- String network relaxes (loop collapse, straightening...) at distances ~causal horizon
- String energy density is transferred into axion waves
- Differential spectrum

$$\mathcal{F}\left(\frac{k}{RH},\frac{m_r}{H}\right) \equiv \frac{1}{(f_aH)^2}\frac{1}{R^3}\frac{\partial}{\partial t}\left(R^4\frac{\partial\rho_a}{\partial k}\right)$$

$$\mathcal{F} \left(\frac{k}{RH},\frac{m_r}{H}\right) \equiv \frac{1}{(f_aH)^2}\frac{1}{R^3}\frac{\partial}{\partial t}\left(R^4\frac{\partial\rho_a}{\partial t}\right)$$

$$\mathcal{F} \left(\frac{k}{RH}\right) = \frac{1}{(f_aH)^2}\frac{1}{R^3}\frac{\partial}{\partial t}\left(R^4\frac{\partial\rho_a}{\partial t}\right)$$

$$\mathcal{F} \left(\frac{k}{RH}\right) = \frac{1}{(f_aH)^2}\frac{1}{R^3}\frac{\partial}{\partial t}\left(R^4\frac{\partial\rho_a}{\partial t}\right)$$

$$\mathcal{F} \left(\frac{k}{RH}\right) = \frac{1}{(f_aH)^2}\frac{\partial}{\partial t}\left(R^4\frac{\partial\rho_a}{\partial t}\right)$$

$$\mathcal{F} \left(\frac{k}{RH}\right) = \frac{1}{(f_aH)^2}\frac{\partial}{\partial$$

- Theoretical estimates do not converge, we resort to numerical simulations

Spectral index of axion radiation from a global string network

- Gorghetto and Buschmann found very different q's (growing with log (fA/H) vs q~1)
- We can understant part of this difference from their setups (ICs, discretisation errors)

 Saikawa, to appear
- We find the growing trend, but accounting for discretisation errors in the extrapolation leave room for both q>1 and $q\sim1$ solutions.
- The next generation of simulations (AMR) could settle the issue ... but we will need theory too

Axion DM Mass

Stochastic Graham 2018

Kinetic mis/Parametric resonance Co 2020

- Axion DM mass from theory

 10^{-10}

 10^{-9}

 10^{-8}

 10^{-7}

 10^{-2}

 10^{-1}

 10^{-6}

 $m_A[eV]$

 10^{-5}

 10^{-4}

 10^{-3}

pre-inflationary PQ N=1

> postinflationary PQ N=1

> > N>1

Miniclusters

- A general prediction of post-inflationary scenario is O(1) inhomogeneities at H₁ horizon scales
- We cannot simulate with total certainty because we cannot simulate global strings with adecuate tension at H_1 times (T~GeV) (we can only log ~ 9, we need 60)
- We have performed simulations in three extreme cases to compare predictions,
 - q<1 with small log (low tension strings)
 - q=2 removing strings
 - artificial high tension simulations (Moore 17)

post-inflationary scenario

Early Universe, large scales

Simulations of the axion field when it starts oscillating

Early Universe, large scales

Energy density fluctuations as seeds for miniclusters

L₁ is the size of the causal horizon when m~H

post-inflationary scenario

Axion miniclusters

- free stream analitically up to z~100 z_{eq}
- Sample the density distribution with N-body particles (de Broglie wavelength too small to resolve)
- Gadget codes for the gravitational evolution ...
 - early collapse of O(1) overdensities into miniclusters
 - Hierarchical formation of clusters of miniclusters

Eggemeier 19

Axion miniclusters

Pierobon 23

- Halo mass function

increasing q reduces k1, smaller minicluster mass, more low-mass objects big uncertainty!

- Fraction of axions bound in MCs, average **VOID** density

timings are different but **convergence**

- Simulations (very small scales) grow non-linear and do not allow to reach redshift 0

Encounters with the Earth

Direct encounters of miniclusters with the Earth occur once in ~10⁵ years

Problematic scenario for direct detection (e.g. cavities)

However disrupted miniclusters can form tidal streams

Analytical estimates find factor ~10 amplification for 2-3 days every 20 years

A numerical study needs to be performed!

Distribution of DM around the Earth: minivoids

- Ignore tidal disruption, which ejects more axions into the voids, use the converging void density as a conservative lower limit ...

- Using 8% of average DM for detection has sizeable implications for direct detection

(but could be much worse!)

$$a(x,t) \approx \frac{\sqrt{2\rho_a}}{m_a} \cos(\omega_a t + \varphi)$$

$$P(\omega_i) \propto g_{a\gamma}^2 \alpha(\omega_i) \rho_a f(\omega_i)$$

$$P(\omega_i) \propto g_{a\gamma}^2 \ \alpha(\omega_i) \ \rho_a \ f(\omega_i)$$

Observation time [years]

Eggemeier 22

Lensing

- femtolensing of GRBs $~M \sim 10^{-16} \sim 10^{-13} M_{\odot}$

Most GRBs are innappropriate due to large sizes Katz 18

- microlensing of M31 stars Fairbairn 17

Expectations based on very optimistic th-MCs HSC: Fairbairn 17 PBH dense MCH 1000 diffuse MCH EROS: N_{exp} isolated MC dense MCH 10 0.1 -15 -10 $\log_{10}(M_0/M_{\odot})$

Revisited after numerical simulations (optimistic)

Need to study better NFWness of central profiles

Conclusions

- QCD axion is a compeling DM candidate
- Post-inflationary scenario is free from IC uncertainty
 - clear experimental target -> quick discovery?
 - other uncertainties are ~ small
- **Axion string radiation** not completely understood, q~1 and growing?
 - next generation simulations could answer
- Axion miniclusters
 - Typical **mass is uncertain** (decreases with increasing q)
 - bound fraction (~80%) and void density (~8%) not very sensitive!
 - Conservative lower bound on intracluster density for experiments
- We need experiments that can target the **10**-4 **eV mass** area
 - MADMAX (dielectric haloscope)
 - ALPHA (plasma haloscopes)
 - Dish antennas

tchüuüss

