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In the standard model the quadratic μ term in the Higgs potential breaks scale invariance 
explicitly: 

Poor man’s Higgs: h neutral and not doublet of SU(2). 

When fermions are coupled to the Higgs field, this gives rise to fermion masses

Scale invariance could be broken spontaneously leaving a “Goldstone” field  parameterising the breaking scale: 

The physics is interesting when this field becomes massive with a small mass after electroweak breaking:  



As the breaking scale is (almost) the only scale in the theory, the dilaton can acquire two types of potential 
terms:

The cut-off scale introduce 
another scale which allows 
for this operator. This is 
automatically generated by 
closing the Higgs loop from: 

The sign is chosen such that μ
decreases in the cosmological 
evolution. 

As the dilaton is light, the Higgs field 
can be integrated out: 

In this Higgs phase, the potential 
picks up a term: 



In the Higgs phase, the Higgs and the fermions acquire a mass. This implies Coleman-Weinberg corrections 
to the dilaton potential: 

Here the Higgs contribution. 

This can be reabsorbed in a redefinition of the Higgs self-coupling

In the end, the only dynamical scale in the problem is the μ term and predominantly :

As a consequence, the minimum of the potential (before or after Higgs breaking) is always such that:



This has important consequences at low energy after integrating out the heavy Higgs field:  

The dilaton field                           couples quadratically to matter!

The suppression scales depends inversely on the mass of the dilaton : 

This coupling will be very much suppressed for light scalars, highly relevant to hide light scalars. Hence very light 
dilatons will be invisible.  

Recent into for quadratically coupled axions: 

2307.10362



In the presence of matter, this coupling has two effects:

o The mass of fermions becomes dilaton dependent: 

Very well-known quadratic dependence 
known as scalarisation /symmetron in the 
context of modified gravity. 

o In the presence of macroscopic matter, the effective potential is modified and becomes: 

Number density
In the presence of matter, the field can be affected. Can 
lead to screening.



In practice, the minimum of the effective potential will be hardly sensitive to matter densities. So the electron 
mass will be the same in the Sun and in vacuum. On the other hand, a small ball of matter could affect the 
profile of the dilaton variation        .

Typically we will consider potentials for the dilaton like this: 

Minimum with a very flat potential 
around it. This guarantees that the 
dilaton is lighter than the Higgs. 

What is the cosmology of such a model? 

o Must be a spectator field during inflation.
o Must converge towards the “right” minimum at the right time (EW 

transition) 



As the potential is not  a tracking potential, the long time evolution of the field is dependent on the 
initial conditions. The convergence and oscillations around the “right” minimum specifies a basin of 
attraction for the initial condition. 

Initial phase described by a slow roll 
evolution post-inflation. 

Oscillations around the minimum of 
the potential. 

This works provided the dilaton is at rest during inflation. This can be realised if, for instance, the dilaton couples 
conformally to the inflation field:  

Jordan metric



This is a “trick” which modifies that effective potential of the dilaton during inflation as: 

The simplest choice is to pin the dilaton by the coupling to the inflaton energy density:

This guarantees that the field is stuck at        during inflation with a large mass:  

As a result no “isocurvature” fluctuations due to the dilaton during inflation. So at the background cosmology level, the 
dilaton only plays a role when it starts oscillating around its minimum                                  misalignment mechanism. 

For a recent review on stopping the 
relaxion: 

1911.08473



The quadratic coupling could imply that the dilaton is in thermal equilibrium with the fermion bath. This is only 
true at temperatures higher than: 

This is always larger than the EW scale for light scalars of masses less than 1 eV, which is required to guarantee that 
the scalar field behaves like a classical condensate. So light scalars can be dark matter by the initial misalignment and 
not thermal equilibrium. 

Let us give an example of interesting potential largely inspired by the relaxion models: 

Large when the scalars 
are light. 

The minimum is at: 



In these models the mass is typically hierarchically small: 

The field starts oscillating when:  

The initial dark matter density is suppressed:

This decays as the inverse of the scale factor cubed with time. This field could live its dark matter life without 
being bothered by matter if there was no quadratic couplings. Let us see what happens.  

See also 1810.01889



The dilaton couples to each constituents of the nuclei, i.e. the gluon condensate , the electromagnetic energy 
and the constituent quark masses. As atoms contain different numbers of nuclei, the effective coupling to 
different types of material will be different. This could lead to a violation of the equivalence principle.  

A=Platinum B=Titatium

2209.15487



The Klein-Gordon equation of the dilaton in the presence of matter is:

The coupling depends on a phenomenological factor Q which is tabulated 
for different materials. 

The solution reads: 

1/r behaviour which 
modifies gravity. 

See also 1807.04512



Gravity is modified depending on the screening parameter:

As for screening of scalar dark energy, this happens for objects with a large Newtonian potential. The 
exterior field is then given by: 

The dilaton imparts  an extra acceleration to bodies:

Similar to screening criterion 
for modified gravity. 

See for instance 1203.4812



This  implies that a non-zero Eotvos parameter is generated: 

No effect at the surface of the 
Earth C, only effect in satellites. 

For a cut-off scale around 10 TeV, the screening criterion gives: 

The dilaton is unscreened! 



Despite being unscreened, the day is saved as the coupling is proportional to the square root of the 
dark matter density, so very small (unless we lived in a clump?)  

The small effective coupling β is what matters for other types of tests of this model:

• Atomic clocks:  the dilaton could induce a change of the energy level 
of atoms for very light dilaton. This requires   

• The dilaton has a quadratically induced coupling to photons which leads to an 
effective coupling in the dark matter halo of order β. The decay rate  is too small to be 
observable, its inverse is much larger than the age of the Universe. 



Atoms become screened. 

1807.04512



The dilaton could also affect the growth of structure by modifying the coupling to gravity: 

This is valid on scales smaller than the Compton wavelength of the dilaton:  
Scale factor. 

Even at the EW scale for a redshift, 

This would not compensate the extreme smallness of the coupling. 



CONCLUSIONS

• The dilaton coming from the breaking of scale invariance could lead to models of scalar dark matter 
quadratically coupling to matter and vector bosons.

• Quadratic effects lead to screening around compact objects.

• Light dilatons are not screened around the Earth and the Sun but evade all known tests by being 
extremely weakly coupled due to the very smallness of the local dark matter density.

• Maybe this type of dark matter could lead to fuzzy dark matter clumps of extremely small sizes where 
the density would be much higher as it varies like the inverse of the size to the fourth? Would this lead 
to observable effects locally if the Earth crossed a clump?

see 1710.04323


