#### Cosmological probes of particle dark matter

#### Deanna C. Hooper

(they/them)

News from the Dark 12<sup>th</sup> September 2023



HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI HELSINKI INSTITUTE OF PHYSICS

### Cosmology tells us that dark matter is abundant in the universe, but what is it?





#### 4.9% Normal Matter





Deanna C. Hooper - University of Helsinki



#### Lyman- $\alpha$ : absorption lines in quasar spectra produced by the intergalactic medium



Deanna C. Hooper - University of Helsinki

#### Lyman- $\alpha$ traces the matter power spectrum at high redshifts and small scales



Deanna C. Hooper - University of Helsinki

# Lyman- $\alpha$ data requires computationally expensive hydro simulations

- Lyman- $\alpha$  is non-linear, we need hydro sims
- A lot of astrophysical foregrounds
- In slight tension with Planck (is this a problem?)



#### We can use full simulations or remappings to constrain dark matter



Deanna C. Hooper - University of Helsinki

### Or we can use alternative approaches to constrain dark matter



Deanna C. Hooper - University of Helsinki

#### **Cosmic Microwave Background**

### Decoupled photons provide a snapshot of the early universe



#### Deanna C. Hooper - University of Helsinki

# Dark matter annihilations can affect the energy of the CMB

#### arXiv: 1807.06209



Assuming WIMPs, CMB bounds are competitive with and complementary to indirect DM searches.

## Various dark matter couplings can be studied with the CMB anisotropies

- Spin-independent interactions, complementary to other probes
- Few assumptions about underlying model needed



## Spectral distortions are deviations from a perfect black body in the CMB



- Predicted in standard and nonstandard models
- Only constraints we have so far are from FIRAS
- Future missions could measure them

# Spectral distortions are deviations from a perfect black body in the CMB



Deanna C. Hooper - University of Helsinki

### Can improve constraints on decaying dark matter by 3-4 orders of magnitude



Deanna C. Hooper - University of Helsinki

### Can probe lower-mass regions than anisotropies for DM interactions



## We expect the foregrounds to be much larger than a spectral distortion signal



Deanna C. Hooper - University of Helsinki

#### **Gravitational Waves**

# Gravitational waves can probe vastly different cosmological epochs

#### The Gravitational Wave Spectrum



Deanna C. Hooper - University of Helsinki

# Phase transitions in the early universe can source gravitational waves

- Many BSM models predict firstorder phase transitions
- Bubbles of new phase nucleate and grow



Credits: D. J. Weir



#### Credits: A. Kormu

- Bubble collision, sound waves, and turbulence make gravitational waves
- Target for LISA: future space-based gravitational wave mission (203X)

#### Dark matter models can be involved in or produced by phase transitions

#### Model data from arXiv: 1811.11175



#### Figures made with PTPlot, <u>doi:10.5281/zenodo.6949107</u>

17/20

### Measuring a SGWB coming from a phase transition will be difficult



Deanna C. Hooper - University of Helsinki

### Measuring a SGWB coming from a phase transition will be difficult



Deanna C. Hooper - University of Helsinki

## Combining probes might disentangle models with similar signatures



Credits: D. C. Hooper

Deanna C. Hooper - University of Helsinki

# Cosmology can offer a lot of insight into the particle nature of dark matter

#### Summary

- Cosmology can probe dark matter on many different scales
- CMB, Lyman- $\alpha$  and gravitational waves can cover many dark matter models

#### Questions

- Can LISA actually find a phase transition signal compatible with dark matter?
- How will we deal with all the foregrounds?
- Can we combine all of these probes to get more information?

#### **Thanks for listening!**

Get in touch! Email: deanna.hooper@helsinki.fi Mastodon: @dchooper91\_cosmo@astrodon.social