Why we need to care about unobservable modes

Based on

Lacasa & Rosenfeld 2016, Lacasa et al. 2018, Lacasa & Kunz 2017, Lacasa & Grain 2019, Gouyou Beauchamps et al. 2022, Lacasa et al. arXiv:2209.14421

News from the Dark 2023

NASA/WMAP Science Team

Time and (non-) linearity

Scales and (non-) linearity

Millenium simulation

Scales and (non-) linearity

Millenium simulation

Photometric surveys Euclid : 30 gals/arcmin² Rubin/LSST : 45 gals/arcmin²

Radio surveys SKA2 : +precise redshifts Super-sample modes and their impact

Super-sample modes

Finite z bin = finite volume (even in full sky)

Super-sample fluctuations exist

Matter density

Matter density

Feedback/backreaction of long on short modes

Equivalent to evolution in separate Universe

 \rightarrow impacts <u>all probes</u>

Galaxies, clusters, lensing, HI...

 \rightarrow impacts <u>all statistics</u>

Power spectrum, bispectrum, machine learning, field level inference...

Matter density

$\mathrm{Cov} = \mathrm{Cov}_{\mathrm{G}} + \mathrm{Cov}_{\mathrm{SSC}} + \mathrm{Cov}_{\mathrm{oNG}}$

Matter density

Euclid and making SSC popular

Impact of SSC for Euclid : first look

Fisher information on Dark Energy (unmarginalized) forecasts for photometric galaxy C₁

Validation of the SSC approximation: DE Fisher information

Impact on constraing Dark Energy

Euclid-like forecast for Dark Energy Figure of Merit (FoM)

with weak lensing (WL), photometric galaxy clustering (Gcph) and their cross-correlation (XC)

Probe	Survey area [deg ²]	Gaussian	Full-sky SSC
WL	5	0.014	0.009
	15000	43.12	\rightarrow 26.329
GCph	5	0.035	0.029
	15000	103.71	→ 88.636
GCph+WL+XC	5	0.346	0.153
	15000	1038.13	\rightarrow 454.59
		•	

"full-sky" = rescaled by sky fraction (as tradition for Gaussian covariance)

Gouyou Beauchamps et al. 2022

Fast and easy SSC, in partial sky

Team formed during Euclid France summer school 2019 S. Gouyou Beauchamps, I. Tutusaus, M. Aubert, P. Baratta, A. Gorce

> Formalism to account for survey mask in SSC New PySSC release https://pyssc.readthedocs.io

Fast and easy SSC, in partial sky

Comparison of cosmo errors: rigorous partial sky vs traditional rescaling

DES-like Euclid-like

Gouyou Beauchamps et al. 2022

A new approach to SSC

Problems of the trad approach (=numerical covariance)

Compared to Gaussian covariance, SSC matrix

- is highly off-diagonal
- has low rank

\rightarrow **Problems**

- memory and CPU cost is higher
- numerical inversion can be unstable (ill-conditioned problem)
- does not take advantage of a diagonal covariance

Solution: invert total covariance analytically (Woodbury identity)

 \rightarrow analytical formulae for likelihood and Fisher

Lacasa et al. 2022

SSC directly for likelihood or Fisher

Likelihood is a correction to the noSSC case

 $\ln \mathcal{L} = \ln \mathcal{L}_{\rm noSSC} + \delta \ln \mathcal{L}$

Can also get Fisher or inverse Fisher matrices

$$F = F_{\text{noSSC}} - Y^T (1 + I(\delta_b) S)^{-1} Y$$
$$F^{-1} = F_{\text{noSSC}}^{-1} + Z^T \Sigma^2(\delta_b) Z$$

 $I(\delta_b)$: Fisher info on δ_b (unmarginalised). Y: contains probes responses.

Interests:

- updating a pipeline at low cost
- fast if noSSC is diagonal

Lacasa et al. 2022

Conclusions

Conclusions

- Long wavelength modes are unobservables but backreact on observed modes
 → super-sample covariance (SSC)
- SSC correlates all probes, even if independent otherwise
- SSC importance increases with statistical power
 Ex: push to high resolution, combine probes, combine surveys.
 => Impact for stage IV constraints on Dark Energy, σ₈, Ω_m... (modified gravity?)
- Fast & easy computation possible: public code PySSC including mask effect https://github.com/fabienlacasa/PySSC https://pyssc.readthedocs.io
- New method directly at level of likelihood or Fisher
 → easier, faster, robuster
 Currently implementing it for Euclid + CMB

Thank you

Additional slides

SSC and traditional covariance methods

Method 1: survey footprint replicated at different points of a large simulation

same redshifts

two different redshifts

10

12

14

16

Method 2 (jackknife):

- Random subsamples removed from data \rightarrow fake data realisations
- Apply canonic covariance estimator and rescale to survey area

Works for classic covariance terms. For SSC: biased by up to factor 5.

Scales

z=1

Covariance and 4-point function

 $\operatorname{Cov}\left(C_{\ell}, C_{\ell'}\right) = \operatorname{Cov}_{G} + \operatorname{Cov}_{NG}$

Diagrams for Cov(Cl)

Higher order terms

Context recall

 $\delta_h(\mathbf{x}) = b_1 \,\delta_m(\mathbf{x}) + b_2 \left(\delta_m(\mathbf{x})^2 - \left\langle \delta_m^2 \right\rangle \right) + b_{s^2} \,s^2(\mathbf{x}) + \dots = \sum b_{\mathcal{O}} \,\mathcal{O}(\mathbf{x})$ $\delta_m = \delta_m^{(1)} + \delta_m^{(2)} + \delta_m^{(3)} \qquad \delta_m^{(n)}(\mathbf{k}) = \int d^3 \mathbf{q}_{1\cdots n} \delta_D(\mathbf{k} - \mathbf{q}_{1+\cdots+n}) F_n(\mathbf{q}_{1\cdots n}) \delta_m^{(1)}(\mathbf{q}_1) \cdots \delta_m^{(1)}(\mathbf{q}_n)$ $T_{3h}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4) \propto B_{halo}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3 + \mathbf{k}_4) + 5 \text{ perm.}$ **3-halo term** $B_{\text{halo}} = B_{2\text{PT}} + B_{b_2} + B_{s^2}$ $B_{2PT}(k_{123}|M_{123}) = b_1(M_1)b_1(M_2)b_1(M_3)2!F_2(\mathbf{k}_1,\mathbf{k}_2)P(k_1)P(k_2) + 2$ perm. $T_{4h}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4) \propto T_{halo}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4) = T^{2 \times 2} + T^{1 \times 3}$ 4-halo term

 $T^{2\text{PTx2PT}}(\mathbf{k}_{1234}|M_{1234}) = b_1(M_1)b_1(M_2)b_1(M_3)b_1(M_4)4F_2(\mathbf{k}_{1+3}, -\mathbf{k}_1)F_2(\mathbf{k}_{1+3}, \mathbf{k}_2)$ $\times P(k_{1+3})P(k_1)P(k_2) + 11 \text{ perm.}$

 $T^{3PT}(\mathbf{k}_{1234}|M_{1234}) = b_1(M_1)b_1(M_2)b_1(M_3)b_1(M_4)3!F_3(\mathbf{k}_1,\mathbf{k}_2,\mathbf{k}_3)P(k_1)P(k_2)P(k_3) + 3\,\text{perm.}$

Fabien Lacasa

Measurement error bars

Covariance matrices : off-diagonal importance

Fabien Lacasa

Cosmological error bars

all z

Is SSC important ?

Weak lensing : yes

Rizzato et al. 2018

Euclid : decrease of S/N by factor ~2

Barreira et al. 2018

Euclid : error bars increase +30% to +110%

DE, $\sigma_{_8}$ and $\Omega_{_m}$ particularly affected

SSC vs Braiding

	SSC	Braiding	
Terms in the trispectrum	$\propto P(\mathbf{k}_1 + \mathbf{k}_2)$	$\propto P(\mathbf{k}_1 + \mathbf{k}_3)$	
Diagram example (2-halo)			
Feynman diagram (4-halo, 2x2)	$egin{array}{ccc} \mathbf{k}_1 & \mathbf{k}_3 & & & \\ \mathbf{k}_2 & & \mathbf{k}_4 & & \\ \end{array}$	\mathbf{k}_1 \mathbf{k}_3 \mathbf{k}_2 \mathbf{k}_4	
Physical interpretation	Modulation of the two spectra by a long wavelength (super-survey) matter mode	Modulation of each mode by an intra-survey matter mode ?	