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Not a vacuum

Dark matter can reach high densities in # regions of the Universe

» At the center of haloes
*» Inside compact objects following DM capture
» DM spike near SMBH ?

One can expect collective quantum effects, such as
superfluidity, to emerge.



Non-interacting Dark Matter at finite density



Free degenerate Dark Matter

H — H — uN, u the chemical potential
L =P(id = myp + dpr
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Free degenerate Dark Matter
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» Fermi Pressure

> Self-gravitating
configurations

> Cores of dwarf spheroidal

galaxies [pomcke, 2014; Randal 2017]
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Self-interactions can significantly change this picture.



First interactions at the Fermi surface



The scalar condensate and finite density
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The scalar condensate and finite density
_ 1 _
L= (i + % — myp + 5 (0°¢ — m3¢?) + g vbod
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The scalar density condensate
L= B+ 0= m) + 3 (6 — mig?) + 5 0o
Minimize the potential V (¢) = %mé& — g<zzw>¢

— (i + 2 = [m—g (D)) with (0) = £ (Du)

v ~ SIDM & finite density !
QUT2); Phenomenological applications in :

Nuclear Physics [Walecka, 1974]

scalar
gdensity

Neutrinos [Stephenson, 1996 ; Smirnov 2022]
Cosmology [Esteban, 2021]
Dark stars [Gresham, 2017, 2018]

v My = m (1 o ('0) Cored haloes, avoid TG [Garani, Tytgat, JV 2022]



Large DM self-interactions — New phases !
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C3 = 4ay/3m x (mpy/mg)? the DM—¢ coupling
Effective mass in the medium : m, =m(1—¢) <m
Qualitatively different from a thermal mass!

van der Waals matter : gas/liquid [cresham, 2018; Garani, Tytgat, 3v 2022]
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Superfluid Phases of Condensed Dark Matter



Superbehaviours and their ingredients

Breaking of a global/local symmetry and free transport of
mass/charge.

Recent interest in dark matter phenomenology :

> BOSOﬂIC DM [Berezhiani, 2015]
» Coloured dark sector (« STUMP ») [alexander, 2020]

> Imports results from the QCD community
> Superfluid quark matter at large densities (« CFL »)

Emerges if, for example,
» Fermionic system
» Degeneracy

» Attractive interactions

The Yukawa theory is very economical and can exhibit also

superfluidity ! [Pisarski, 1999 Alford 2017] & toy model for more complicated setup.



Characterizing superfluid phases
Start by focusing on non-relativistic/low-density systems

» Superfluidity emerges via non-relativistic scattering between
DM particles at the Fermi surface



Characterizing superfluid phases
Start by focusing on non-relativistic/low-density systems

» Superfluidity emerges via non-relativistic scattering between
DM particles at the Fermi surface

Qualitative understanding via scattering length a [sethe, 1949; chu, 2020]
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Allows for delimiting the different superfluid phases :
> (kra)~* > 1 corresponds to bound state formation (BEC)
» (kpa)~* < —1 corresponds to attractive interactions (BCS)
> (kg |a])™! — 0, the unitary limit (crossover)

— Superfluid phase diagram of the Yukawa theory.



The low-density phases of Condensed Dark Matter
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[Garani, Tyteat, JV 2022]



Focus on the BCS regime



The superfluid energy gaps or Cooper pairing

The blob is the « gap » (¥»1) : the number density of Cooper pairs.
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The superfluid energy gaps or Cooper pairing
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The superfluid energy gaps or Cooper pairing

(M — (M
W WY
In the heavy mediator limit, mg > m, 1 :
2 d3k A
A1 = 2gr;7 J 27)3 : 2
6 M7 J(wr — p)? + A3

i.e., the textbook BCS gap equation



The superfluid energy gaps or Cooper pairing
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General setup : heavy/light mediator, (non-)relativistic DM
Not plagued by UV divergences

Exactly what is required for doing phenomenology.

Also sole phase for relativistic system : focus.
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Solutions to the gap equations : Heavy mediators
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Solutions to the gap equations : Beyond heavy mediators
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Beyond the BCS assumptions.
Larger gaps : Non-relativistic DM need light mediator !



Solutions to the gap equations : Light mediators
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» Change of regime at kp ~ a~".
» Signature of the « phase transition »



Solutions to the gap equations : Light mediators
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» Limit not usually studied in other realization.

» Typical g and my for SIDM, opm—pwm large but not excluded !

» Again, signature of the « phase transition ».
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Beyond the scalar interaction

The formalism we developed allows for other choices of mediators.
Some attractive choices would be :

Pseudo-scalar :
» No scalar density (zero momentum effect)
» Gap equations similar in spirit to the scalar mediator

» Requires a theory of non-relativistic scattering for full
understanding.

Spin 2 :
» Work ongoing
» Many theoretical aspects to clear up.
» Graviton vs. Kaluza-Klein <> extra dimension

» We expect new, qualitatively different density effects to
appear.



Conclusion

» DM could develop non-zero chemical potential in the Universe

v

There exists a rich dark matter phase diagram at low densities

» Emerges due to strong, long-range DM—DM interactions

v

| presented the thermodynamics of it. Dynamics is hard.

v

We are at the crossroad of many areas of physics : Dark
matter, condensed, nuclear, scattering physics

v

Zero T, zero i physics has been extensively chartered.
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The BCS argument and electron superconductivity
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Add a particle
Qni1=E+p—p(N+1)

with attractive interactions
Qny1 < Qy

Formation of many bosonic Cooper pairs which condensate ~ (¢1))
Inevitable



The BCS argument and electron superconductivity

QNIE—,U,N

Add a particle
Qni1=E+p—p(N+1)

with attractive interactions
Qny1 < Qy

Formation of many bosonic Cooper pairs which condensate ~ ()
Inevitable

For electronic superconductors :

» Photon exchanges between electrons are repulsive

» Attractive interaction sourced by the lattice (phonons), thanks to
screening

» The U (1) theory is the most complicated !



Color superconductivity in QCD with 2 light flavours
QCD seems quite different than the Yukawa theory :

» How to handle the strong interaction ?
» Lattice can't help : numerical sign problem.

» If u>» AQcp, probe short distance/large momentum exchange
at the Fermi surface v/



Color superconductivity in QCD with 2 light flavours
QCD seems quite different than the Yukawa theory :

» How to handle the strong interaction ?
» Lattice can't help : numerical sign problem.

» If u>» AQcp, probe short distance/large momentum exchange
at the Fermi surface v/

How does super-behaviours arise ?
» 3 x 3 =13+ 6 : antisymmetric channel is attractive v’
» Pairing is most attractive in 1S : [1]) —[|1)
» Wavefunction has to be overall antisymmetric

» Need to be also antisymmetric in flavour v/



In the Yukawa theory

L=P(id +~n—myp + % (0%°¢ — m36°) +

> There is enough in this very simple theory to accommodate
what is needed for BCS superconductivity

> > Attractive particle—particle interactions v

» 1S pairing [1]) — [I1) v

> Only need one specie v/

» 1 colour, 1 flavour, spin—0 limit of QCD, share some
properties



BCS in QFT and parallels to BEH

Same Yukawa theory but heavy mediator : 4—fermion interaction

L=9>id +n—myyp+
~ (¥ ve) (Kﬂwo—m K—m”—m> <$C>

<y ) ¥




Dirac structure of the gap

A has fermionic indices, respects Fermi statistics,

Nos = e (x) s (¥))

The most general structure of the gap is

A =A1ys + Doy - kyoys + Aszyos
+ Ay + Dy - ko + Dgy - ks
+ A7y - kys + Ago



Dirac structure of the gap

A has fermionic indices, respects Fermi statistics,

Nos = e (x) s (¥))

The most general structure of the gap is

A =A1ys + Doy - kyoys + Aszyos
+ Dg + Asy - ko + Dey - ks
+ A7y - kys + Ago

For the Yukawa theory, all gaps are zero or negligible except

A =Agvys + Doy - kyoys + Asos



Dispersion relation in the medium

A =Agvys + Doy - kyoys + Asos

L= (¢ vc) (KJFmO_m k—mo—m> (fc)

)
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Dispersion relation in the medium
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Dispersion relation in the medium

A =Agvys + Doy - kyoys + Asos

L= (Y ) (KJFmO_m k—mo—m> ($c>

)

inverse propagator

A =p® +w? + AT+ A3+ A+
+ 2 (pPw? + 2uk A1 Dy + mPA3 + AZA3 + 2muliAs
—2mkDoAs + K2A2 + A2A2)Y
In BCS, A «

k
3 (w + ,u)2 + (Al + <A2 + mA3>)
w w

Effectively, there's one gap, as the standard BCS theory.

2

H

€



Dispersion relation of massless particles with A = 0.2u

W)=y (k- ) + A?
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Impulsion distribution of massless particles with A = 0.2u

Distribution of quasi-particles

0.0 0.5 1.0 15 2.0

» Dashed orange : Fermi-Dirac distribution with 5 = 8 (best fit)



How to determine A ? The gap equations

> Starting from the action,
S=10, PG (xy) ¥ ()~ 36(x) D (x,¥) o (¥)] ~
g5, v () ¥ (x) ¢ (x)
do Hubbard-Strantanovich transformation to introduce gaps

1oc [DADA exp{—3(A — ) 2(A — ) — 3(A — ) 2(A — ¢eh)}
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How to determine A ? The gap equations

> Starting from the action,
S=1,[00) G (x,0)%(y) = 36(x) D" (x,¥) ¢ (y)] -
g5, ¥ () ¥ (x) ¢ (x)
do Hubbard-Strantanovich transformation to introduce gaps
> S =0, 0(x) G (x,y)¢ () + ADA + A + PAD
Z = { DYDYDADAexp (—S)
Use mean-field approximation then compute path integrals
> Obtain partition function, free energy Q
Q=—-"Llogz
> Differentiate Q w.r.t gaps, set to 0 :

o
oa =0



How to determine A ? The gap equations

> Starting from the action, do Hubbard-Strantanovich transformation to

introduce gaps

> Use mean-field approximation then compute path integrals

> Obtain partition function, free energy Q

> Differentiate Q2 w.r.t gaps, set to 0 :

2 2
~ + (p— k)
A dk= L 1og 2
=(p 3271'22f {0 m2+ (pt kP
. ko . m3 + k* + p? og m3 + (p — k)?
T wpwi 2kp m3 + (p + k)?

N
N

2 ms+ (p—k A, (k
in m IOg ¢ (p )2 7]( )
wpwk - mg+(p+k)* | (k)

N

> Solve by iterative numerical methods. Very general setup!



The Schwinger-Dyson equation
The gap structure and the gap equations are
OF = +A195 + D27 - kYo7 + Azy07s

T _
®* (p) =g’ >, D(p— k) GO+ G*
k

In a more transparent manner,
A17ys + Doy - Pryoys + Azvoys =

2 k m
-8 _ A]_—A25—A
_T/TZD(p k)[
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straints for m =1 GeV, g = 2

SIDM cluster con

—
o
—

10°

BCS

W\\c\\\\\\\\\wmm%i

O
—




1GeV,g=3
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The other gaps
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Gaps + condensate
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Gaps + condensate
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One application : Scalar density dominated haloes

» Taking into account a gas—liquid phase transition
» Adding gravity through the TOV equations

1012 B T 1 T ITITT T T lll1l”|)|| yl TTITTT]

/ large galaxies
11
10t |
e N . K

/8 1010 B

= 100}

108 |

10’ L
10!

10! 102

R (kpc)

» Dashed : Free fermions, M oc R~3. Dashed blue m = 165 eV
» Solid : Condensate, M oc R®. Very light. Viable w.r.t Bullet Cluster.



Gas/liquid phase transition :

3.0 gLl0™

P — T phase diagram
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Gas/liquid phase transition : Coexisting phases
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